

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f27k40-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	170	
PIE0	_	—	TMR0IE	IOCIE	—	INT2IE	INT1IE	INTOIE	179	
PIE1	OSCFIE	CSWIE	—	—	—	—	ADTIE	ADIE	180	
PIE2	HLVDIE	ZCDIE	—	—	—	—	C2IE	C1IE	181	
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	182	
PIE4	—	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	183	
PIE5	_	_	_	_	_	TMR5GIE	TMR3GIE	TMR1GIE	184	
PIE6	_	—	—	—	—	—	CCP2IE	CCP1IE	185	
PIE7	SCANIE	CRCIE	NVMIE	—	—	—	—	CWG1IE	186	
PIR0	_	_	TMR0IF	IOCIF	—	INT2IF	INT1IF	INT0IF	171	
PIR1	OSCFIF	CSWIF	—	—	—	—	ADTIF	ADIF	172	
PIR2	HLVDIF	ZCDIF ⁽¹⁾	_	_	_	_	C2IF	C1IF	173	
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	174	
PIR4	_	—	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	174	
IOCAP	_	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	211	
IOCAN	_	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	211	
IOCAF	_	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	211	
IOCCP ⁽¹⁾	_	—	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	211	
IOCCN ⁽¹⁾	_	—	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	211	
IOCCF ⁽¹⁾	_	—	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	211	
STATUS	_	—	—	TO	PD	Z	DC	С	118	
VREGCON	_	—	_	—	—	—	VREGPM	Reserved	64	
CPUDOZE	IDLEN	DOZEN	ROI	DOE	—		DOZE<2:0>		65	
WDTCON0	—	—			WDTPS<4:0>			SEN	85	
WDTCON1	_		WDTPS<2:0>		_		WINDOW<2:0>	WDTPS<2:0> — WINDOW<2:0>		

 TABLE 6-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

10.4.5 STATUS REGISTER

The STATUS register, shown in Register 10-2, contains the arithmetic status of the ALU. As with any other SFR, it can be the operand for any instruction.

If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, the results of the instruction are not written; instead, the STATUS register is updated according to the instruction performed. Therefore, the result of an instruction with the STATUS register as its destination may be different than intended. As an example, CLRF STATUS will set the Z bit and leave the remaining Status bits unchanged ('000u u1uu').

It is recommended that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

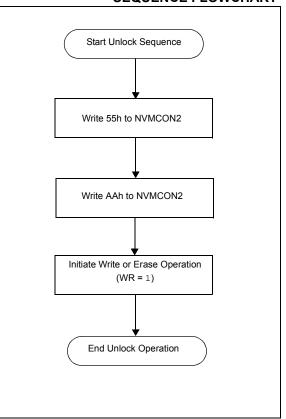
For other instructions that do not affect Status bits, see the instruction set summaries in **Section 35.0 "Instruction Set Summary"** and Table 35-3.

Note: The <u>C</u> and <u>DC</u> bits operate as the borrow and digit borrow bits, respectively, in subtraction.

11.1.4 NVM UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the NVM from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- PFM Row Erase
- Write of PFM write latches to PFM memory
- Write of PFM write latches to User IDs
- Write to Data EEPROM Memory
- · Write to Configuration Words


The unlock sequence consists of the following steps and must be completed in order:

- Write 55h to NVMCON2
- Write AAh to NMVCON2
- · Set the WR bit of NVMCON1

Once the WR bit is set, the processor will stall internal operations until the operation is complete and then resume with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

BCF	INTCON, GIE	; Recommended so sequence is not interrupted
BANKSEL	NVMCON1	
BSF	NVMCON1, WREN	; Enable write/erase
MOVLW	55h	; Load 55h
MOVWF	NVMCON2	; Step 1: Load 55h into NVMCON2
MOVLW	AAh	; Step 2: Load W with AAh
MOVWF	NVMCON2	; Step 3: Load AAh into NVMCON2
BSF	INTCON1,WR	; Step 4: Set WR bit to begin write/erase
BSF	INTCON, GIE	; Re-enable interrupts
Note 1:	Sequence begins when NVMCO	N2 is written; steps 1-4 must occur in the cycle-accurate order
	shown. If the timing of the steps 1 will not take place.	to 4 is corrupted by an interrupt or a debugger Halt, the action
2:	Opcodes shown are illustrative; a	any instruction that has the indicated effect may be used.
	-	

EXAMPLE 11-2: NVM UNLOCK SEQUENCE

11.3 Data EEPROM Memory

The data EEPROM is a nonvolatile memory array, separate from the data RAM and program memory, which is used for long-term storage of program data. It is not directly mapped in either the register file or program memory space but is indirectly addressed through the Special Function Registers (SFRs). The EEPROM is readable and writable during normal operation over the entire VDD range.

Four SFRs are used to read and write to the data EEPROM as well as the program memory. They are:

- NVMCON1
- NVMCON2
- NVMDAT
- NVMADRL
- NVMADRH

The data EEPROM allows byte read and write. When interfacing to the data memory block, NVMDAT holds the 8-bit data for read/write and the NVMADRH:NVMADRL register pair hold the address of the EEPROM location being accessed.

The EEPROM data memory is rated for high erase/write cycle endurance. A byte write automatically erases the location and writes the new data (erase-before-write). The write time is controlled by an internal programming timer; it will vary with voltage and temperature as well as from chip-to-chip. Please refer to the Data EEPROM Memory parameters in **Section 37.0 "Electrical Specifications"** for limits.

11.3.1 NVMADRL AND NVMADRH REGISTERS

The NVMADRH:NVMADRL registers are used to address the data EEPROM for read and write operations.

11.3.2 NVMCON1 AND NVMCON2 REGISTERS

Access to the data EEPROM is controlled by two registers: NVMCON1 and NVMCON2. These are the same registers which control access to the program memory and are used in a similar manner for the data EEPROM.

The NVMCON1 register (Register 11-1) is the control register for data and program memory access. Control bits NVMREG<1:0> determine if the access will be to program, Data EEPROM Memory or the User IDs, Configuration bits, Revision ID and Device ID.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear.

The WRERR bit is set by hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

The WR control bit initiates write operations. The bit can be set but not cleared by software. It is cleared only by hardware at the completion of the write operation.

The NVMIF interrupt flag bit of the PIR7 register is set when the write is complete. It must be cleared by software.

Control bits, RD and WR, start read and erase/write operations, respectively. These bits are set by firmware and cleared by hardware at the completion of the operation.

The RD bit cannot be set when accessing program memory (NVMREG<1:0> = 0x10). Program memory is read using table read instructions. See **Section 11.1.1 "Table Reads and Table Writes"** regarding table reads.

REGISTER 13-9: CRCXORH: CRC XOR HIGH BYTE REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
r////x	r///-x/x	r///-x/x	r////x	K/ VV-X/ X	K/ VV-X/X	r///*//X	FX/ V V-X/ X
			X<1	5:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all o			ther Resets

bit 7-0 X<15:8>: XOR of Polynomial Term XN Enable bits

REGISTER 13-10: CRCXORL: CRC XOR LOW BYTE REGISTER

'0' = Bit is cleared

R/W-x/x	U-1						
			X<7:1>				
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 X<7:1>: XOR of Polynomial Term XN Enable bits

bit 0 Unimplemented: Read as '1'

'1' = Bit is set

18.1 Timer0 Operation

Timer0 can operate as either an 8-bit timer/counter or a 16-bit timer/counter. The mode is selected with the T016BIT bit of the T0CON register.

18.1.1 16-BIT MODE

The register pair TMR0H:TMR0L, increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

18.1.1.1 Timer0 Reads and Writes in 16-Bit Mode

In 16-bit mode, to avoid rollover between reading high and low registers, the TMR0H register is a buffered copy of the actual high byte of Timer0, which is neither directly readable nor writable (see Figure 18-1). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte was valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

18.1.2 8-BIT MODE

In normal operation, TMR0 increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

In 8-bit mode, the value of TMR0L is compared to that of the Period buffer, a copy of TMR0H, on each clock cycle. When the two values match, the following events happen:

- TMR0_out goes high for one prescaled clock period
- TMR0L is reset
- The contents of TMR0H are copied to the period buffer

In 8-bit mode, the TMR0L and TMR0H registers are both directly readable and writable. The TMR0L register is cleared on any device Reset, while the TMR0H register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- A write to the TMR0L register
- A write to either the T0CON0 or T0CON1 registers
- Any device Reset Power-on Reset (POR), MCLR Reset, Watchdog Timer Reset (WDTR) or
- Brown-out Reset (BOR)

18.1.3 COUNTER MODE

In Counter mode, the prescaler is normally disabled by setting the T0CKPS bits of the T0CON1 register to '0000'. Each rising edge of the clock input (or the output of the prescaler if the prescaler is used) increments the counter by '1'.

18.1.4 TIMER MODE

In Timer mode, the Timer0 module will increment every instruction cycle as long as there is a valid clock signal and the T0CKPS bits of the T0CON1 register (Register 18-2) are set to '0000'. When a prescaler is added, the timer will increment at the rate based on the prescaler value.

18.1.5 ASYNCHRONOUS MODE

When the TOASYNC bit of the TOCON1 register is set (TOASYNC = '1'), the counter increments with each rising edge of the input source (or output of the prescaler, if used). Asynchronous mode allows the counter to continue operation during Sleep mode provided that the clock also continues to operate during Sleep.

18.1.6 SYNCHRONOUS MODE

When the T0ASYNC bit of the T0CON1 register is clear (T0ASYNC = 0), the counter clock is synchronized to the system clock (Fosc/4). When operating in Synchronous mode, the counter clock frequency cannot exceed Fosc/4.

18.2 Clock Source Selection

The T0CS<2:0> bits of the T0CON1 register are used to select the clock source for Timer0. Register 18-2 displays the clock source selections.

18.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, Timer0 operates as a timer and will increment on multiples of the clock source, as determined by the Timer0 prescaler.

18.2.2 EXTERNAL CLOCK SOURCE

When an external clock source is selected, Timer0 can operate as either a timer or a counter. Timer0 will increment on multiples of the rising edge of the external clock source, as determined by the Timer0 prescaler.

REGISTER 21-3: CCPxCAP: CAPTURE INPUT SELECTION MULTIPLEXER REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/x	R/W-0/x
—	—	—	_	_		CTS<	<1:0>
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2 Unimplemented: Read as '0'

bit 1-0 CTS<1:0>: Capture Trigger Input Selection bits

CTS<1:0>	Connection				
013<1.02	CCP1	CCP2			
11		IOC_Interrupt			
10		CMP2_output			
01		CMP1_output			
00	Pin selected by CCP1PPS	Pin selected by CCP2PPS			

REGISTER 21-4: CCPRxL: CCPx REGISTER LOW BYTE

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
CCPRx<7:0>							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0	MODE = Capture Mode:
	CCPRxL<7:0>: LSB of captured TMR1 value
	MODE = Compare Mode:
	CCPRxL<7:0>: LSB compared to TMR1 value
	MODE = PWM Mode && FMT = 0:
	CCPRxL<7:0>: CCPW<7:0> - Pulse-Width LS 8 bits
	MODE = PWM Mode && FMT = 1:
	CCPRxL<7:6>: CCPW<1:0> - Pulse-Width LS 2 bits
	CCPRxL<5:0>: Not used

© 2016-2017 Microchip Technology Inc.

22.0 PULSE-WIDTH MODULATION (PWM)

The PWM module generates a Pulse-Width Modulated signal determined by the duty cycle, period, and resolution that are configured by the following registers:

- PRx
- TxCON
- PWMxDCH
- PWMxDCL
- PWMxCON

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the PWMx pin. Each PWM module can select the timer source that controls the module. Each module has an independent timer selection which can be accessed using the CCPTMRS register (Register 21-2). Please note that the PWM mode operation is described with respect to TMR2 in the following sections.

Figure 22-1 shows a simplified block diagram of PWM operation.

Figure 22-2 shows a typical waveform of the PWM signal.

FIGURE 22-1: SIMPLIFIED PWM BLOCK DIAGRAM

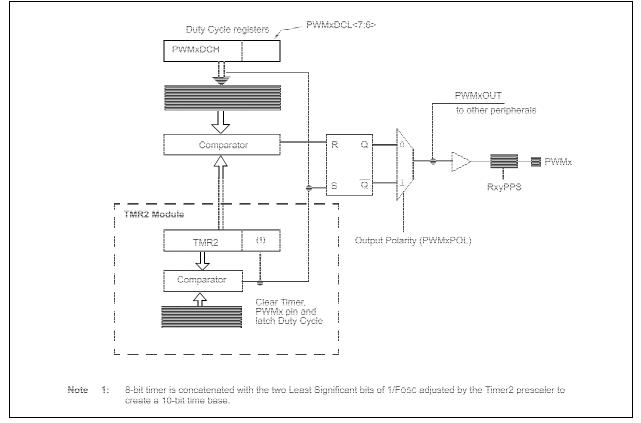
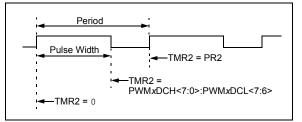
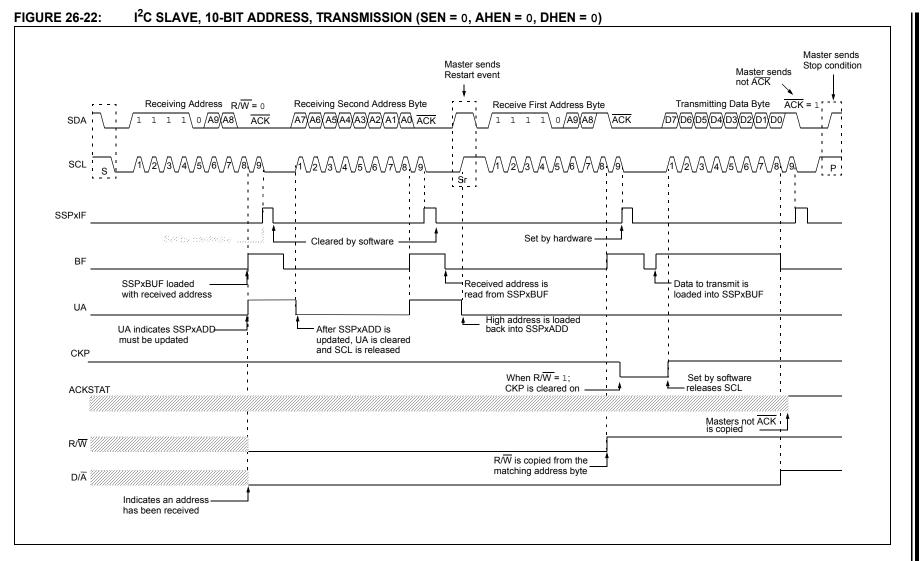



FIGURE 22-2:

PWM OUTPUT

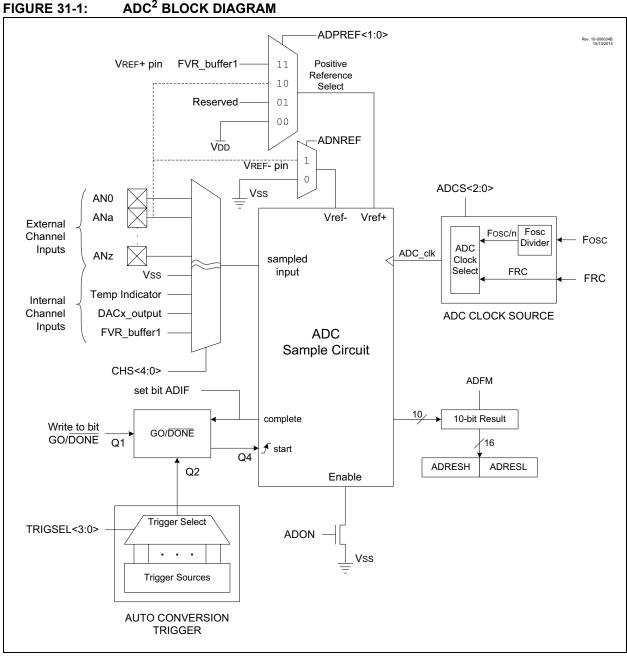


For a step-by-step procedure on how to set up this module for PWM operation, refer to Section 22.1.9 "Setup for PWM Operation using PWMx Pins".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
MDCON0	EN	_	OUT	OPOL	—	—	—	BIT	325
MDCON1	—		CHPOL	CHSYNC	_	_	CLPOL	CLSYNC	326
MDCARH	_	—	—	_	— — CHS<2:0>				327
MDCARL	—	_	_	_	CLS<2:0>				327
MDSRC	_	—	—	_	— SRCS<3:0>				328
MDCARLPPS	_	—	—		С	ARLPPS<4:()>		216
MDCARHPPS	—				С	ARHPPS<4:)>		216
MDSRCPPS	—		_		5	SRCPPS<4:0	>		216
RxyPPS	_					RxyPPS<4:0	>		218
PMD5	_	_	_		_	_	_	DSMMD	73

TABLE 25-4: SUMMARY OF REGISTERS ASSOCIATED WITH DATA SIGNAL MODULATOR MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.



© 2016-2017 Microchip Technology Inc

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fosc = 32.000 MHz Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz					
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23

TABLE 27-5: SAMPLE BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fos	c = 8.000) MHz	Hz Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	_	_	_
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	_	—	—

ADC² BLOCK DIAGRAM

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
—	—	—			ADACT<4:0>					
oit 7							bit			
Legend:										
R = Readab	le bit	W = Writable b	oit	U = Unimpleme	ented bit, read as	s 'O'				
u = Bit is unchanged x = Bit is unknown		own	-n/n = Value at	POR and BOR/	/alue at all other	Resets				
'1' = Bit is set '0' = Bit is cleared		red								
bit 7-5	Unimpleme	Unimplemented: Read as '0'								
bit 4-0	ADACT<4:0	>: Auto-Conversio	n Trigger Select	Bits						
		oftware write to ADF								
		served, do not use								
	11101 = Software read of ADRESH									
	11100 = Software read of ADERRH 11011 = Reserved, do not use									
	11011 - Re	served, do not use								
	•									
	•									
	10000 = Re	eserved, do not use								
	01111 = Int	errupt-on-change I	nterrupt Flag							
	01110 = C2	—								
	01101 = C1	—								
	01100 = PV									
		01011 = PWM3_out								
		01010 = CCP2_trigger 01001 = CCP1 trigger								
		/R6_postscaled								
		/R5_overflow								
00110 = TMR4_postscaled										
	00101 = TMR3_overflow									
		IR2_postscaled								
		IR1_overflow								
		IR0_overflow								
		n selected by ADA(ternal Trigger Disa								
	00000 - EX	liemai myyei Disa	lieu							

REGISTER 31-32: ADACT: ADC AUTO CONVERSION TRIGGER CONTROL REGISTER

BRA	BRA Unconditional Branch							
Synta	ax:	BRA n						
Oper	ands:	$-1024 \le n \le 1023$						
Oper	ation:	(PC) + 2 + 2n	\rightarrow PC					
Statu	s Affected:	None						
Enco	ding:	1101 ()nnn nnni	n nnnn				
Desc	ription:	Add the 2's complement number '2n' to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.						
Word	ls:	1						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	Write to PC				
	No	No	No	No				
	operation	operation	operation	operation				
	nple: Before Instruc PC After Instructi PC	= ad	BRA Jump dress (HERE) dress (Jump)					

BSF	Bit Set f								
Syntax:	BSF f, b {	,a}							
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$								
Operation:	$1 \rightarrow f \le b >$	$1 \rightarrow f \le b >$							
Status Affected:	None	None							
Encoding:	1000	bbba f:	Eff	ffff					
Description:	Bit 'b' in register 'f' is set. If 'a' is '0', the Access Bank is selecte If 'a' is '1', the BSR is used to select th GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See See tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Li eral Offset Mode" for details.								
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3		Q4					
Decode	Read register 'f'	Process Data	re	Write gister 'f'					
Example:	BSF F	LAG_REG,	7, 1						
Before Instruction FLAG_REG = 0Ah After Instruction FLAG_REG = 8Ah									

	Complem							
Syntax:	COMF f {	{,d {,a}}						
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	d ∈ [0,1]						
Operation:	$(\overline{f}) \rightarrow dest$	$(\overline{f}) \rightarrow dest$						
Status Affected:	N, Z							
Encoding:	0001	11da	ffff	ffff				
	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.							
Words:	1	Mode	or actails					
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read register 'f'	Proce Data		Write to estination				
Example:	COMF	REG,	0, 0					
Before Instruct REG After Instructio REG	= 13h							

CPFSEQ	Compare	f with W, sk	ip if f = W					
Syntax:	CPFSEQ	f {,a}						
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]							
Operation:		(f) – (W),						
	skip if $(f) = (f)$	skip if (f) = (W)						
	. –	comparison)						
Status Affected:	None							
Encoding:	0110	001a fff						
Description:		Compares the contents of data memory						
		location 'f' to the contents of W by performing an unsigned subtraction.						
		en the fetched						
		nd a NOP is ex king this a 2-c						
	instruction.		yolo					
		he Access Bar						
	GPR bank.	he BSR is used	d to select the					
		nd the extende	ed instruction					
		ed, this instruc						
		Literal Offset A ever f ≤ 95 (5F						
		"Byte-Oriente						
	Oriented In	Oriented Instructions in Indexed Literal Offset Mode" for details.						
		Mode" for det	ails.					
Words:	1							
Cycles:	1(2) Note: 3 cv	cles if skip an	d followed					
		a 2-word instru						
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read	Process	No					
lf skip:	register 'f'	Data	operation					
Q1	Q2	Q3	Q4					
No	No	No	No					
operation	operation	operation	operation					
If skip and followed Q1	•	Q3	Q4					
No	No	No	No					
operation	operation	operation	operation					
No operation	No operation	No operation	No operation					
L .	operation	operation	operation					
Example:	HERE	CPFSEQ REG	, 0					
	NEQUAL EQUAL	:						
Before Instruc								
PC Addre		RE						
W	= ?	= ?						
REG After Instructic	= ?							
If REG	= W;							
PC		dress (EQUAI	L)					
If REG	≠ W;							
PC	= Ad	dress (NEQUA	AL)					

DECF	sz	Decremer	nt f, skip if O)	DCFSNZ	Decrement f, skip if not 0
Syntax:		DECFSZ f	{,d {,a}}		Syntax:	DCFSNZ f {,d {,a}}
Operan	nds:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]			Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$
Operati	ion:	(f) – 1 \rightarrow de skip if result	-		Operation:	(f) – 1 → dest, skip if result \neq 0
Status /	Affected:	None			Status Affected:	None
Encodir	ng:	0010	0010 11da ffff ffff		Encoding:	0100 11da ffff ffff
Descrip	otion:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Ascess Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.			Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.
Words:		1				
Cycles:		1(2)			Words:	1
			cles if skip an 2-word instru		Cycles:	1(2) Note: 3 cycles if skip and followed
Q Cyc	le Activity:				O Cuelo A stivit	by a 2-word instruction.
_	Q1	Q2	Q3	Q4	Q Cycle Activity	
	Decode	Read register 'f'	Process Data	Write to destination	Q1 Decode	Q2 Q3 Q4 Read Process Write to
If skip:		register i	Dala	destination	Decode	register 'f' Data destination
n skip.	Q1	Q2	Q3	Q4	If skip:	
	No	No	No	No	Q1	Q2 Q3 Q4
		operation		operation	No	No No No
lf skip	and followe	d by 2-word in	struction:		operation	
	Q1	Q2	Q3	Q4	•	wed by 2-word instruction:
	No	No	No	No	Q1	Q2 Q3 Q4
	operation	operation	operation	operation	No operation	No No No operation operation operation
	No operation	No operation	No operation	No operation	No	No No No
	operation	operation	operation	operation	operation	
<u>Exampl</u>	<u>le</u> :	HERE CONTINUE	DECFSZ GOTO	CNT, 1, 1 LOOP	Example:	HERE DCFSNZ TEMP, 1, 0 ZERO : NZERO :
Be	efore Instruc				Before Inst	
٨۴	PC tor Instructiv		(HERE)		TEMF	
AT	ter Instructio CNT	on = CNT - 1			After Instru	
	If CNT	= 0;	(- ,
	PC If CNT	= Address \neq 0;	G (CONTINUE	;)	If TEN F	IP = 0; PC = Address (ZERO)
	PC		6 (HERE + 2	2)	If TEN	
					Г	

RCA	LL	Relative Call						
Synta	ax:	RCALL n						
Oper	ands:	-1024 ≤ n ≤	$-1024 \le n \le 1023$					
Oper	ation:	· · ·	$(PC) + 2 \rightarrow TOS,$ (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None						
Enco	ding:	1101	1nnn	nnnn	nnn	ı		
Desc	ription:	Subroutine from the cur address (PC stack. Then number '2n' have increm instruction, ' PC + 2 + 2r 2-cycle instru	rrent loca C + 2) is , add the to the P nented to the new n. This in	ation. Fi pushed 2's col C. Sinc o fetch t address	note the molement molement the the PC whe next s will be			
Word	ls:	1						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'n' PUSH PC to stack	Proce Dat		Write to P	С		
	No	No	No		No			
	operation	operation	opera	tion	operation	1		

Example: HERE RCALL Jump

Before Instruction

PC = Address (HERE)

After Instruction

PC = Address (Jump) TOS = Address (HERE + 2)

RES	ET	Reset							
Synta	ax:	RESET							
Oper	ands:	None							
Oper	ation:	Reset all registers and flags that are affected by a MCLR Reset.							
Statu	s Affected:	All	All						
Encoding:		0000	0000	1111		1111			
Desc	ription:	This instru execute a	<u> </u>			•			
Word	ls:	1	1						
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3 Q4			Q4			
	Decode	Start	No			No			
		Reset	opera	tion	op	peration			

Example:

After Instruction

Registers =	Reset Value
Flags* =	Reset Value

RESET

© 2016-2017 Microchip Technology Inc.

ADDWF	ADD W to Indexed (Indexed Literal Offset mode)						
Syntax:	ADDWF	[k] {,d}					
Operands:	$\begin{array}{l} 0 \leq k \leq 95 \\ d \ \in \ [0,1] \end{array}$						
Operation:	(W) + ((FSI	R2) + k) \rightarrow de	st				
Status Affected:	N, OV, C, DC, Z						
Encoding:	0010	01d0 kk	kk kkkk				
Description:	Description: The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'. If 'd' is '0', the result is stored in W. If is '1', the result is stored back in register 'f' (default).						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read 'k'	Process Data	Write to destination				
Example:	ADDWF	[OFST], 0					
Before Instructi	on						
W OFST FSR2 Contents of 0A2Ch After Instructior	= = = =	17h 2Ch 0A00h 20h					
W Contents of 0A2Ch	=	37h 20h					

BSF		Bit Set Indexed (Indexed Literal Offset mode)						
Synta	Syntax: BSF [k], b							
Oper	ands:	$ \begin{array}{ll} \text{nds:} & 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array} $						
Operation: $1 \rightarrow ((FSR2) + k) < b >$								
Statu	is Affected:	None	None					
Enco	Encoding: 1000 bbb0 kkkk kkk				kkkk			
Description: Bit 'b' of the register indicated by FSR offset by the value 'k', is set.						by FSR2,		
Word	ls:	1	1					
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2		Q3			Q4	
	Decode	Read register '	ť		Process Data		Vrite to stination	
Example: BSF [FLAG_OFST], 7								
Before Instruction								
FLAG_OFS FSR2 Contents		FST	=	0Ah 0A00h	ı			
of 0A0Ah			=	55h				
After Instruction Contents								
	of 0A0Ah		=	D5h				

SETF Set Indexed (Indexed Literal Offset mode)								
Synta	ax:	SETF [k]						
Oper	ands:	$0 \leq k \leq 95$	$0 \le k \le 95$					
Oper	ration:	FFh ightarrow ((F	SR2) + k))				
Statu	is Affected:	None	None					
Enco	oding:	0110 1000 kkkk kk				kkkk		
Desc	cription:	The contents of the register indicated b FSR2, offset by 'k', are set to FFh.						
Word	ds:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	Q3		Q4		
	Decode	Read 'k'		Process Data		Write register		
Exan	nple:	SETF	[OFST]					
	Before Instruc OFST FSR2 Contents of 0A2Ch After Instructio	= 20 = 0/	Ch A00h Dh					

Contents of 0A2Ch

= FFh

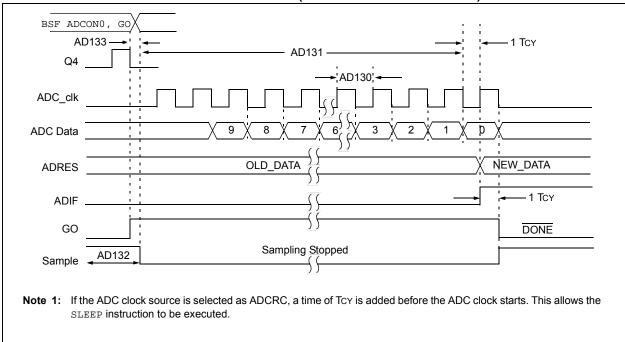


FIGURE 37-11: ADC CONVERSION TIMING (ADC CLOCK FROM ADCRC)

Standard (Operating C	onditions (unless othe	rwise stated)				
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	_		
SP101* TLow	TLOW	Clock low time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	—		
SP102*	TR	SDA and SCL rise time	100 kHz mode	_	1000	ns	
			400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF
SP103* TF	TF	SDA and SCL fall time	100 kHz mode	_	250	ns	
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF
SP106* THD:DAT	THD:DAT	Data input hold time	100 kHz mode	0		ns	
			400 kHz mode	0	0.9	μs	
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250		ns	(Note 2)
			400 kHz mode	100		ns	
SP109* TAA	Таа	AA Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
SP111	Св	Bus capacitive loading			400	pF	

TABLE 37-25: I²C BUS DATA REQUIREMENTS

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.