

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (64K × 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f27k40t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8.12 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for selected oscillator source).
- 3. MCLR must be released (if enabled).

The total time out will vary based on oscillator configuration and Power-up Timer configuration. See Section 4.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator Start-up Timer will expire. Upon bringing MCLR high, the device will begin execution after 10 Fosc cycles (see Figure 8-4). This is useful for testing purposes or to synchronize more than one device operating in parallel.

FIGURE 8-4: RESET START-UP SEQUENCE

REGISTER 9-3: WDTPSL: WWDT PRESCALE SELECT LOW BYTE REGISTER (READ-ONLY)

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCN	IT<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unknow	'n	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cleared	d				

bit 7-0 **PSCNT<7:0>:** Prescale Select Low Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

REGISTER 9-4: WDTPSH: WWDT PRESCALE SELECT HIGH BYTE REGISTER (READ-ONLY)

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCNT	<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSCNT<15:8>:** Prescale Select High Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	_	—	TMR5GIF	TMR3GIF	TMR1GIF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-3	Unimplemen	ted: Read as '	0'				
bit 2	TMR5GIF: TN	/IR5 Gate Inter	rupt Flag bit				
	1 = TMR5 gat	te interrupt occ	urred (must be	e cleared in so	ftware)		
b :4	0 = NO TWR5	gate occurred					
DIT 1	TMR3GIF: TN	/IR3 Gate Inter	rupt Flag bit		6		
	1 = 1 MR3 gat0 = No TMR3	gate occurred	urred (must be	e cleared in so	ttware)		
bit 0	TMR1GIF: TN	/IR1 Gate Inter	rupt Flag bit				
	1 = TMR1 gat 0 = No TMR1	te interrupt occ gate occurred	urred (must be	e cleared in so	ftware)		
		0					

REGISTER 14-7: PIR5: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	
	—	_	—	_	_	CCP2IP	CCP1IP	
bit 7							bit 0	
Legend:								
R = Readable	oit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
bit 7-2	Unimplement	ted: Read as '	כ'					
bit 1	CCP2IP: ECC 1 = High prior 0 = Low prior	CP2 Interrupt P rity ity	riority bit					
bit 0	CCP1IP: ECC 1 = High prior 0 = Low prior	CP1 Interrupt P rity ity	riority bit					

REGISTER 14-24: IPR6: PERIPHERAL INTERRUPT PRIORITY REGISTER 6

15.3.3 RE3 WEAK PULL-UP

The port RE3 pin has an individually controlled weak internal pull-up. When set, the WPUE3 bit enables the RE3 pin pull-up. When the RE3 port pin is configured as MCLR, (CONFIG2L, MCLRE = 1 and CONFIG4H, LVP = 0), or configured for Low-Voltage Programming, (MCLRE = x and LVP = 1), the pull-up is always enabled and the WPUE3 bit has no effect.

15.3.4 INTERRUPT-ON-CHANGE

The interrupt-on-change feature is available only on the RE3 pin for all devices. For further details refer to **Section 14.11 "Interrupt-on-Change"**.

18.3 **Programmable Prescaler**

A software programmable prescaler is available for exclusive use with Timer0. There are 16 prescaler options for Timer0 ranging in powers of two from 1:1 to 1:32768. The prescaler values are selected using the T0CKPS<3:0> bits of the T0CON1 register.

The prescaler is not directly readable or writable. Clearing the prescaler register can be done by writing to the TMR0L register or the T0CON0, T0CON1 registers or by any Reset.

18.4 **Programmable Postscaler**

A software programmable postscaler (output divider) is available for exclusive use with Timer0. There are 16 postscaler options for Timer0 ranging from 1:1 to 1:16. The postscaler values are selected using the TOOUTPS<3:0> bits of the TOCON0 register.

The postscaler is not directly readable or writable. Clearing the postscaler register can be done by writing to the TMR0L register or the T0CON0, T0CON1 registers or by any Reset.

18.5 **Operation During Sleep**

When operating synchronously, Timer0 will halt. When operating asynchronously, Timer0 will continue to increment and wake the device from Sleep (if Timer0 interrupts are enabled) provided that the input clock source is active.

18.6 Timer0 Interrupts

The Timer0 interrupt flag bit (TMR0IF) is set when either of the following conditions occur:

- 8-bit TMR0L matches the TMR0H value
- 16-bit TMR0 rolls over from 'FFFFh'

When the postscaler bits (T0OUTPS<3:0>) are set to 1:1 operation (no division), the T0IF flag bit will be set with every TMR0 match or rollover. In general, the TMR0IF flag bit will be set every T0OUTPS +1 matches or rollovers.

If Timer0 interrupts are enabled (TMR0IE bit of the PIE0 register = '1'), the CPU will be interrupted and the device may wake from Sleep (see **Section 18.2 "Clock Source Selection"** for more details).

18.7 Timer0 Output

The Timer0 output can be routed to any I/O pin via the RxyPPS output selection register (see **Section 17.0 "Peripheral Pin Select (PPS) Module**" for additional information). The Timer0 output can also be used by other peripherals, such as the auto-conversion trigger of the Analog-to-Digital Converter. Finally, the Timer0 output can be monitored through software via the Timer0 output bit (TOOUT) of the TOCON0 register (Register 18-1).

TMR0_out will be a pulse of one postscaled clock period when a match occurs between TMR0L and PR0 (Period register for TMR0) in 8-bit mode, or when TMR0 rolls over in 16-bit mode. The Timer0 output is a 50% duty cycle that toggles on each TMR0_out rising clock edge.

24.7 Rising Edge and Reverse Dead Band

In Half-Bridge mode, the rising edge dead band delays the turn-on of the CWG1A output after the rising edge of the CWG data input. In Full-Bridge mode, the reverse dead-band delay is only inserted when changing directions from Forward mode to Reverse mode, and only the modulated output CWG1B is affected.

The CWG1DBR register determines the duration of the dead-band interval on the rising edge of the input source signal. This duration is from 0 to 64 periods of the CWG clock.

Dead band is always initiated on the edge of the input source signal. A count of zero indicates that no dead band is present.

If the input source signal reverses polarity before the dead-band count is completed, then no signal will be seen on the respective output.

The CWG1DBR register value is double-buffered. When EN = 0 (Register 24-1), the buffer is loaded when CWG1DBR is written. If EN = 1, then the buffer will be loaded at the rising edge following the first falling edge of the data input, after the LD bit (Register 24-1) is set. Refer to Figure 24-12 for an example.

24.8 Falling Edge and Forward Dead Band

In Half-Bridge mode, the falling edge dead band delays the turn-on of the CWG1B output at the falling edge of the CWG data input. In Full-Bridge mode, the forward dead-band delay is only inserted when changing directions from Reverse mode to Forward mode, and only the modulated output CWG1D is affected.

The CWG1DBF register determines the duration of the dead-band interval on the falling edge of the input source signal. This duration is from zero to 64 periods of CWG clock.

Dead-band delay is always initiated on the edge of the input source signal. A count of zero indicates that no dead band is present.

If the input source signal reverses polarity before the dead-band count is completed, then no signal will be seen on the respective output.

The CWG1DBF register value is double-buffered. When EN = 0 (Register 24-1), the buffer is loaded when CWG1DBF is written. If EN = 1, then the buffer will be loaded at the rising edge following the first falling edge of the data input after the LD (Register 24-1) is set. Refer to Figure 24-13 for an example.

24.9 Dead-Band Jitter

When the rising and falling edges of the input source are asynchronous to the CWG clock, it creates jitter in the dead-band time delay. The maximum jitter is equal to one CWG clock period. Refer to Equation 24-1 for more details.

EQUATION 24-1: DEAD-BAND DELAY TIME CALCULATION

 $T_{DEAD - BAND_MIN} = \frac{1}{F_{CWG} CLOCK} \bullet DBx < 4:0>$ $T_{DEAD - BANDMAX} = \frac{1}{F_{CWG} CLOCK} \bullet DBx < 4:0>+1$ $T_{JITTER} = T_{DEAD - BAND_MAX} - T_{DEAD - BAND_MIN}$ $T_{JITTER} = \frac{1}{F_{CWG_CLOCK}}$ $T_{DEAD - BAND_MAX} = T_{DEAD - BAND_MIN} + T_{JITTER}$ EXAMPLE DBR < 4:0>= 0x0A = 10 $F_{CWG_CLOCK} = 8 MHz$ $T_{JITTER} = \frac{1}{8MHz} = 125 \text{ ns}$ $T_{DEAD - BAND_MIN} = 125 \text{ ns} *10 = 125 \text{ µs}$ $T_{DEAD - BAND_MIN} = 1.25 \text{ µs} + 0.125 \text{ µs} = 1.37 \text{µs}$

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXxSTA)
- Receive Status and Control (RCxSTA)
- Baud Rate Control (BAUDxCON)

These registers are detailed in Register 27-1, Register 27-2 and Register 27-3, respectively.

The RXx/DTx and TXx/CKx input pins are selected with the RXxPPS and TXxPPS registers, respectively. TXx, CKx, and DTx output pins are selected with each pin's RxyPPS register. Since the RX input is coupled with the DT output in Synchronous mode, it is the user's responsibility to select the same pin for both of these functions when operating in Synchronous mode. The EUSART control logic will control the data direction drivers automatically.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDxCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	395
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	-	—	INT2EDG	INT1EDG	INT0EDG	170
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	182
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	174
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP	190
RCxREG			EL	JSARTx Rec	eive Registe	r			399*
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	394
RxyPPS		_				RxyPPS<4:0	>		218
RXxPPS	-	_				RXPPS<4:0>	>		216
SPxBRGH			EUSARTx	Baud Rate	Generator, H	igh Byte			404*
SPxBRGL	EUSARTx Baud Rate Generator, Low Byte						404*		
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	393

TABLE 27-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous reception.

Page provides register information.

27.3 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 4.3.2.3 "Internal Oscillator Frequency Adjustment"** for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 27.4.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

		SYNC = 0, BRGH = 0, BRG16 = 0										
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300		_	_	_	_	_	_	_	_	_	_	_
1200		—	_	1221	1.73	255	1200	0.00	239	1200	0.00	143
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8
57.6k	55.55k	-3.55	3	—	_	_	57.60k	0.00	7	57.60k	0.00	2
115.2k			_	—		_	—	_	_	—	_	_

TABLE 27-5: SAMPLE BAUD RATES FOR ASYNCHRONOUS MODES

					SYNC	C = 0, BRG	H = 0, BRO	G16 = 0					
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51	
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12	
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	_	—	
9600	9615	0.16	12	—	_	—	9600	0.00	5	—	_	—	
10417	10417	0.00	11	10417	0.00	5	—	_	_	_	_	—	
19.2k	_	_	_	—	_	_	19.20k	0.00	2	—	_	_	
57.6k	—	—	—	—	—	—	57.60k	0.00	0	—	—	—	
115.2k	—	_	—	—	_	—	—	_	—	—	_	—	

		SYNC = 0, BRGH = 1, BRG16 = 0										
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_		—	—			_	—	_	—	—
1200	—	—	—	—	—	—	—	—	—	—	—	—
2400	—	_	_	—	_	_	_	_	_	—	_	_
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

27.6 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

27.6.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCxSTA and TXxSTA Control registers must be configured for Synchronous Slave Reception (see Section 27.5.2.4 "Synchronous Slave Reception Setup:").
- If interrupts are desired, set the RCxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- The RCxIF interrupt flag must be cleared by reading RCxREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RXx/DTx and TXx/CKx pins, respectively. When the data word has been completely clocked in by the external device, the RCxIF interrupt flag bit of the PIR3 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

27.6.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- The RCxSTA and TXxSTA Control registers must be configured for synchronous slave transmission (see Section 27.5.2.2 "Synchronous Slave Transmission Setup").
- The TXxIF interrupt flag must be cleared by writing the output data to the TXxREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXxIE bit of the PIE3 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXxIE of the PIE3 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TXx/CKx pin and transmit data on the RXx/DTx pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXxREG will transfer to the TSR and the TXxIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXxREG is available to accept another character for transmission, which will clear the TXxIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

REGISTER 31-21: ADPREVL: ADC PREVIOUS RESULT REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			ADPR	EV<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable b	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unchang	ged	x = Bit is unkne	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets

bit 7-0	ADPREV<7:0>: Previous ADC Results bits
	If ADPSIS = 1:
	Lower byte of ADFLTR at the start of current ADC conversion
	If ADPSIS = 0:
	Lower bits of ADRES at the start of current ADC conversion ⁽¹⁾

'0' = Bit is cleared

'1' = Bit is set

Note 1: If ADPSIS = 0, ADPREVH and ADPREVL are formatted the same way as ADRES is, depending on the ADFM bit.

REGISTER 31-22: ADACCH: ADC ACCUMULATOR REGISTER HIGH

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
ADACC<15:8>										
bit 7										

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADACC<15:8>: ADC Accumulator MSB. Upper eight bits of accumulator value. See Table 31-2 for more details.

REGISTER 31-23: ADACCL: ADC ACCUMULATOR REGISTER LOW

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADAC	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	it	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkno	wn	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clear	ed				

bit 7-0 **ADACC<7:0>**: ADC Accumulator LSB. Lower eight bits of accumulator value. See Table 31-2 for more details.

© 2016-2017 Microchip Technology Inc.

PIC18(L)F27/47K40

	WF	AND W with f		вс		Branch if Carry				
Synta	IX:	ANDWF f {,d {,a}}		Syn	itax:	BC n	BC n			
Opera	ands:	$0 \leq f \leq 255$			Ope	erands:	$-128 \le n \le 127$			
		d ∈ [0,1] a ∈ [0,1]		Ope	eration:	if CARRY bit is '1' (PC) + 2 + 2n \rightarrow PC				
Opera	ation:	(W) .AND. (f) \rightarrow dest		Stat	tus Affected:	None				
Status	s Affected:	N, Z		End	odina:	1110	0010 nn	nn nnnn		
Enco	ding:	0001	01da ff:	ff ffff	Des	scription.	If the CARE	Y hit is '1' the	en the program	
Descr	ription:	The conten register 'f'. I in W. If 'd' is in register 'f' If 'a' is '0', tI If 'a' is '1', tI GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when tion 35.2.3 Oriented Ir eral Offset	The contents of W are AND'ed with egister 'f'. If 'd' is '0', the result is stored n W. If 'd' is '1', the result is stored back n register 'f' (default). f 'a' is '0', the Access Bank is selected. f 'a' is '1', the BSR is used to select the GPR bank. f 'a' is '0' and the extended instruction set is enabled, this instruction operates n Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Driented Instructions in Indexed Lit-		Wo Cyc Q (If J	rds: :les: Cycle Activity: lump: Q1	 will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then 2-cycle instruction. 1 1(2) Q2 Q3 Q4 			
Word	S:	1				Decode	Read literal	Process Data	Write to PC	
Cvcle	s:	1				No	No	No	No	
Q Cv	cle Activity:					operation	operation	operation	operation	
,	Q1	Q2	Q3	Q4	lf N	lo Jump:				
Γ	Decode	Read	Process	Write to]	Q1	Q2	Q3	Q4	
		register 'f'	Data	destination		Decode	Read literal 'n'	Process Data	No operation	
<u>Exam</u>	i <u>ple</u> :	ANDWF	REG, 0, 0		Exa	Imple:	HERE	BC 5	operation	
E	Before Instruc	tion				Before Instru	ction			
W = 17h $REG = C2h$ $After Instruction$ $W = 02h$				PC After Instructi If CARR PC	= ad on Y = 1; = ad	dress (HERE) + 12)			
	REG	= C2h				lf CARR PC	Y = 0; = ad	dress (HERE	+ 2)	

PIC18(L)F27/47K40

DEC	FSZ	Decrement f, skip if 0		DC	FSNZ	Decrement f, skip if not 0				
Synt	ntax: DECFSZ f		{,d {,a}}		Syn	tax:	DCFSNZ	f {,d {,a}}		
Oper	ands:	$\begin{array}{ll} \text{nds:} & 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$		i ≤ 255 [0,1] [0,1]		erands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			
Operation: $(f) - 1 \rightarrow de$ skip if result		dest, sult = 0			eration:	(f) – 1 \rightarrow d skip if resu	(f) – 1 → dest, skip if result \neq 0			
Status Affected:		None	None			us Affected:	None			
Enco	oding:	0010	11da ffi	ff ffff	Enc	oding:	0100	11da ffi	ff ffff	
Description: The conten decremente placed in W placed bacl lf the result which is alr and a NOP i it a 2-cycle lf 'a' is '0', tl GPR bank. lf 'a' is '0' a set is enabl in Indexed mode wher tion 35.2.3 Oriented Ir eral Offect			s of register 'f' are Descr d. If 'd' is '0', the result is . If 'd' is '1', the result is : in register 'f' (default). is '0', the next instruction, eady fetched, is discarded s executed instead, making nstruction. In Access Bank is selected. In BSR is used to select the Ind the extended instruction ed, this instruction operates .iteral Offset Addressing ever $f \le 95$ (5Fh). See Sec- "Byte-Oriented and Bit- Instructions in Indexed Lit- Made" for details			cription:	The contents of register 'f' are decremented. If 'd' is '0', the result placed in W. If 'd' is '1', the result placed back in register 'f' (default) If the result is not '0', the next instruction, which is already fetch discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is sele If 'a' is '1', the BSR is used to sele GPR bank. If 'a' is '0' and the extended instru- set is enabled, this instruction ope in Indexed Literal Offset Addressi mode whenever f ≤ 95 (5Fh). See tion 35.2.3 "Byte-Oriented and Oriented Instructions in Indexe			
Word	ds:	1					eral Offset	t Mode" for de	etails.	
Cycles:		1(2)			Wor	ds:	1			
•		Note: 3 cycles if skip and followed by a 2-word instruction.			Сус	les:	1(2) Note: 3 cycles if skip and followed by a 2-word instruction			
QC	ycle Activity:	~~		<i></i>	0.0	Svele Activity:	by			
	Q1 Decede	Q2 Bood	Q3 Brococc	Q4]	01	02	03	04	
	Decode	register 'f'	Data	destination		Decode	Read	Process	Write to	
lf sk	ip:				1		register 'f'	Data	destination	
	Q1	Q2	Q3	Q4	lf s	kip:				
	No	No	No	No		Q1	Q2	Q3	Q4	
	operation	operation	operation	operation		No	No	No	No	
lf sk	ip and followe	d by 2-word instruction:			operation	operation	operation	operation		
	Q1	Q2 Q3 Q4		lts 1	kip and followe	d by 2-word ir	istruction:	<u>.</u>		
	No	No	No	No		Q1	Q2	Q3	Q4	
	operation	operation	operation	operation		operation	operation	operation	operation	
	operation	operation	operation	operation		No	No	No	No	
					1	operation	operation	operation	operation	
<u>Exar</u>	n <u>ple</u> : Refere Instruc	HERE CONTINUE	DECFSZ GOTO	CNT, 1, 1 LOOP	Exa	mple:	HERE ZERO NZERO	DCFSNZ TEN :	MP, 1, 0	
	PC	= Address	uuu = Address (महरह)			Before Instruc	tion			
	After Instruction	on Address	(neke)			TEMP	=	?		
	CNT	= CNT - 1				After Instruction	on			
	It CNT PC	= 0; = Address	CONTINUE	:)		TEMP If TFMP	=	TEMP – 1, 0:		
		≠ 0;		, , ,		PC	=	Address (ZERO)	
	PC	= Address	5 (HERE + 2	<u>'</u>)		IT LEMP PC	≠ =	u; Address (1	NZERO)	

PIC18LF27/47K40					Standard Operating Conditions (unless otherwise stated)					
PIC18F27/47K40					Standard Operating Conditions (unless otherwise stated) VREGPM = 1					
Param.	Param.			Treat	Max.	Max.	Unite	Conditions		
No. Symbol	Device Characteristics	win.	тур.т	+85°C	+125°C	Units	VDD	Note		
D200	IPD	IPD Base	_	0.05	2	9	μΑ	3.0V		
D200	IPD	IPD Base	—	0.4	4	12	μΑ	3.0V		
D200A			_	20		_	μΑ	3.0V	VREGPM = 0	
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT	—	0.4	3	10	μΑ	3.0V		
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT	—	0.6	5	13	μA	3.0V		
D202	IPD_SOSC	Secondary Oscillator (SOSC)	_	0.6	5	13	μΑ	3.0V		
D202	IPD_SOSC	Secondary Oscillator (SOSC)	_	0.8	8.5	15	μΑ	3.0V		
D203	IPD_FVR	FVR	-	31		—	μΑ	3.0V	FVRCON = 0X81 or 0x84	
D203	IPD_FVR	FVR	-	32		_	μΑ	3.0V	FVRCON = 0X81 or 0x84	
D204	IPD_BOR	Brown-out Reset (BOR)	—	9	14	18	μΑ	3.0V		
D204	IPD_BOR	Brown-out Reset (BOR)	_	14	19	21	μΑ	3.0V		
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)		0.5		—	μΑ	3.0V		
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)	_	0.7		—	μΑ	3.0V		
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)	_	31	_	—	μΑ	3.0V		
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)		32	_	—	μΑ	3.0V		
D207	IPD_ADCA	ADC - Active	_	250		—	μΑ	3.0V	ADC is converting ⁽⁴⁾	
D207	IPD_ADCA	ADC - Active	_	280		—	μΑ	3.0V	ADC is converting (4)	
D208	IPD_CMP	Comparator	_	25	38	40	μΑ	3.0V		
D208	IPD_CMP	Comparator	_	28	50	60	μΑ	3.0V		

TABLE 37-3: POWER-DOWN CURRENT (IPD)^(1,2)

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to Vss.

3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.

4: ADC clock source is FRC.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Pins	N		44			
Pitch	е	0.65 BSC				
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.25	6.45	6.60		
Overall Length	D	8.00 BSC				
Exposed Pad Length	D2	6.25	6.45	6.60		
Terminal Width	b	0.20	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support