

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K × 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f47k40-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-1	R/W-1	R/W-1	U-1	U-1	U-1	R/W-1	R/W-1		
BORE	N<1:0>	LPBOREN			_	PWRTE	MCLRE		
bit 7		•			•		bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '1'			
-n = Value for b	blank device	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 7-6 BOREN<1:0>: Brown-out Reset Enable bits When enabled, Brown-out Reset Voltage (VBOR) is set by BORV bit 11 = Brown-out Reset enabled, SBOREN bit is ignored 10 = Brown-out Reset enabled while running, disabled in Sleep; SBOREN is ignored 01 = Brown-out Reset enabled according to SBOREN 00 = Brown-out Reset disabled									
bit 5	LPBOREN : Lo 1 = Low-Pow 0 = Low-Pow	w-Power BOR ver Brown-out F ver Brown-out F	Enable bit Reset is disab Reset is enab	led led					
bit 4-2	Unimplemente	ed: Read as '1	,						
bit 1	PWRTE : Powe 1 = PWRT di 0 = PWRT er	er-up Timer Ena sabled nabled	able bit						
bit 0	MCLRE: Master If LVP = 1 RE3 pin fur If LVP = 0 1 = MCLR 0 = MCLR	er Clear (MCLF nction is MCLR pin is MCLR pin function is	Provide the second state Port defined f	unction					

REGISTER 3-3: Configuration Word 2L (30 0002h): Supervisor

REGISTER 3-13	REVI	SION ID: REVIS	SION ID R	EGISTER						
R	R	R	R	R	R	R	R			
1	0	1	0		MJRREV<5:2>					
bit 15		·		·			bit 8			
R	R	R	R	R	R	R	R			
MJRREV<	1:0>			MNRR	EV<5:0>					
bit 7							bit 0			
Legend:										
R = Readable bit		'1' = Bit is set		0' = Bit is clea	ared	x = Bit is unki	nown			
bit 15-12 R	ead as '1	010'								

 bit 11-6
 MJRREV<5:0>: Major Revision ID bits

 These bits are used to identify a major revision. A major revision is indicated by an all-layer revision (A0, B0, C0, etc.).

 Revision A = 6 'b00_0000

 bit 5-0
 MNRREV<5:0>: Minor Revision ID bits

These bits are used to identify a minor revision.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0					
EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	—	_					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'						
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all	other Resets					
'1' = Bit is set		'0' = Bit is clea	ared									
bit 7	EXTOEN: Ex	ternal Oscillato	r Manual Requ	lest Enable bit								
	1 = EXTOSC is explicitly enabled, operating as specified by FEXTOSC											
	0 = EXTOSC could be enabled by requesting peripheral											
bit 6	HFOEN: HFI	NTOSC Oscilla	tor Manual Re	quest Enable b	pit							
	1 = HFINIC	SC is explicitly	enabled, oper	ating as specif		Q (Register 4-	5)					
6.4 F					idi Ianual Daguag	t Enchla hit i	Derived from					
DIL D	HEINTOSC)	1030 (500	КП2/31.23 КП2	c) Oscillator iv	ianuai Reques							
	1 = MFINTC	DSC is explicitly	enabled									
	0 = MFINTC	SC could be e	nabled by requ	lesting periphe	eral							
bit 4	LFOEN: LFIN	ITOSC (31 kHz) Oscillator Ma	anual Request	Enable bit							
	1 = LFINTO	SC is explicitly	enabled									
	0 = LFINTO	SC could be er	nabled by requ	esting peripher	ral							
bit 3	SOSCEN: Se	condary Oscill	ator Manual Re	equest Enable	bit							
	1 = Seconda	ary Oscillator is	explicitly enabled	oled, operating	as specified by	y SOSCPWR						
	0 = Seconda	ary Oscillator c	ould be enable	d by requestin	g peripheral							
bit 2	ADOEN: ADO	C Oscillator Ma	nual Request I	Enable bit								
	1 = ADC os	cillator is explic	atly enabled	aucotina norin	horal							
h# 4 0				equesting penp								
dit 1-0	Unimplemen	tea: Read as '	0.									

REGISTER 4-7: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER

5.0 REFERENCE CLOCK OUTPUT MODULE

The reference clock output module provides the ability to send a clock signal to the clock reference output pin (CLKR). The reference clock output can also be used as a signal for other peripherals, such as the Data Signal Modulator (DSM), Memory Scanner and Timer module.

The reference clock output module has the following features:

- Selectable clock source using the CLKRCLK register
- Programmable clock divider
- · Selectable duty cycle

FIGURE 5-1: CLOCK REFERENCE BLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0			
—	—	—		—	—		DSMMD			
bit 7 bit 0										
Legend:										
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all oth					ther Resets					
'1' = Bit is set '0' = Bit is cleared q = Value depends on condition										

REGISTER 7-6: PMD5: PMD CONTROL REGISTER 5

bit 7-1	Unimplemented:	Read as '	0'
	o i i i pio i i o i i o a i	r toud do	0

bit 0 DSMMD: Disable Data Signal Modulator bit

1 = DSM module disabled

0 = DSM module enabled

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH PMD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	68
PMD1	—	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	69
PMD2	_	DACMD	ADCMD			CMP2MD	CMP1MD	ZCDMD	70
PMD3	—	_	—	_	PWM4MD	PWM3MD	CCP2MD	CCP1MD	71
PMD4	UART2MD	UART1MD	MSSP2MD	MSSP1MD	_	—	_	CWG1MD	72
PMD5			-			—		DSMMD	73

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the PMD.

	SPOREN	Davias Mada	BOB Mode	Instruction Execution upon:				
DURENTI.02	SBOREN	Device Mode	BOR WOUL	Release of POR	Wake-up from Sleep			
11	X	х	Active	Wait for release of BOR (BORRDY = 1)	Begins immediately			
10	v	Awake	Active	Wait for release of BOR (BORRDY = 1)	N/A			
10	X	Sleep	Hibernate	N/A	Wait for release of BOR (BORRDY = 1)			
0.1	1	Х	Active	Wait for release of BOR	Pogina immodiately			
UL	0	Х	Hibernate	(BORRDY = 1)				
00	Х	Х	Disabled	Begins in	mediately			

TABLE 8-1: BOR OPERATING MODES

FIGURE 8-3: BROWN-OUT SITUATIONS

13.3 CRC Functional Overview

The CRC module can be used to detect bit errors in the Flash memory using the built-in memory scanner or through user input RAM memory. The CRC module can accept up to a 16-bit polynomial with up to a 16-bit seed value. A CRC calculated check value (or checksum) will then be generated into the CRCACC<15:0> registers for user storage. The CRC module uses an XOR shift register implementation to perform the polynomial division required for the CRC calculation.

EXAMPLE 13-1: CRC EXAMPLE

15.3.3 RE3 WEAK PULL-UP

The port RE3 pin has an individually controlled weak internal pull-up. When set, the WPUE3 bit enables the RE3 pin pull-up. When the RE3 port pin is configured as MCLR, (CONFIG2L, MCLRE = 1 and CONFIG4H, LVP = 0), or configured for Low-Voltage Programming, (MCLRE = x and LVP = 1), the pull-up is always enabled and the WPUE3 bit has no effect.

15.3.4 INTERRUPT-ON-CHANGE

The interrupt-on-change feature is available only on the RE3 pin for all devices. For further details refer to **Section 14.11 "Interrupt-on-Change"**.

16.0 INTERRUPT-ON-CHANGE

PORTA, PORTB, PORTC and pin RE3 of PORTE can be configured to operate as Interrupt-on-Change (IOC) pins on PIC18(L)F2x/4xK40 family devices. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual port pin, or combination of port pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- Individual pin interrupt flags

Figure 16-1 is a block diagram of the IOC module.

16.1 Enabling the Module

To allow individual port pins to generate an interrupt, the IOCIE bit of the PIE0 register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

16.2 Individual Pin Configuration

For each port pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both associated bits of the IOCxP and IOCxN registers, respectively.

16.3 Interrupt Flags

The IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits located in the IOCAF, IOCBF, IOCCF and IOCEF registers respectively, are status flags that correspond to the interrupt-on-change pins of the associated port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the PIR0 register reflects the status of all IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits.

16.4 Clearing Interrupt Flags

The individual status flags, (IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 16-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW	0xff	
XORWF	IOCAF,	W
ANDWF	IOCAF,	F

16.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCxF register will be updated prior to the first instruction executed out of Sleep.

20.5.3 EDGE-TRIGGERED HARDWARE LIMIT MODE

In Hardware Limit mode the timer can be reset by the TMRx_ers external signal before the timer reaches the period count. Three types of Resets are possible:

- Reset on rising or falling edge (MODE<4:0>= 00011)
- Reset on rising edge (MODE<4:0> = 00100)
- Reset on falling edge (MODE<4:0> = 00101)

FIGURE 20-6: EDGE-TRIGGERED HARDWARE LIMIT MODE TIMING DIAGRAM (MODE = 00100)

When the timer is used in conjunction with the CCP in PWM mode then an early Reset shortens the period and restarts the PWM pulse after a two clock delay. Refer to Figure 20-6.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PIE2	HLVDIE	ZCDIE	—	_	_	—	C2IE	C1IE	181
PIR2	HLVDIF	ZCDIF	—	_	_	—	C2IF	C1IF	173
IPR2	HLVDIP	ZCDIP	—			—	C2IP	C1IP	189
ZCDCON	ZCDSEN	-	ZCDOUT	ZCDPOL	—	—	ZCDINTP	ZCDINTN	294
PMD2	_	DACMD	ADCMD	_	_	CMP2MD	CMP1MD	ZCDMD	70

TABLE 23-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

TABLE 23-2: SUMMARY OF CONFIGURATION WORD WITH THE ZCD MODULE

Name	Bits	Bit 15/7	Bit 14/6	Bit 13/5	Bit 12/4	3it 12/4 Bit 11/3		Bit 9/1	Bit 8/0	Register on Page
CONFIG2	15:8	XINST		DEBUG	STVREN	PPS1WAY	ZCD	BORV1	BORV0	24
	7:0	BOREN1	BOREN0	LPBOREN	_	_	_	PWRTE	MCLRE	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the ZCD module.

DEAD-BAND OPERATION, CWG1DBR = 0x01, CWG1DBF = 0x02

PIC18(L)F27/47K40

FIGURE 26-4:

26.5.2 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as external clock pulses appear on SCK. When the last bit is latched, the SSPxIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit of the SSPxCON1 register.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. The shift register is clocked from the SCK pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake-up from Sleep.

26.5.3 DAISY-CHAIN CONFIGURATION

The SPI bus can sometimes be connected in a daisy-chain configuration. The first slave output is connected to the second slave input, the second slave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisy-chain feature only requires a single Slave Select line from the master device.

Figure 26-5 shows the block diagram of a typical daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSPxCON3 register will enable writes to the SSPxBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

31.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Result formatting
- Conversion Trigger Selection
- ADC Acquisition Time
- ADC Precharge Time
- Additional Sample and Hold Capacitor
- Single/Double Sample Conversion
- Guard Ring Outputs

31.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 15.0 "I/O Ports"** for more information.

Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current.

31.1.2 CHANNEL SELECTION

There are several channel selections available:

- Eight PORTA pins (RA<7:0>)
- Eight PORTB pins (RB<7:0>)
- Eight PORTC pins (RC<7:0>)
- Eight PORTD pins (RD<7:0>), PIC18(L)F45/46K40PIC18(L)F47K40 only)
- Three PORTE pins (RE<2:0>), PIC18(L)F47K40 only
- Temperature Indicator
- DAC output
- Fixed Voltage Reference (FVR)
- AVss (ground)

The ADPCH register determines which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. 0

Refer to **Section 31.2 "ADC Operation**" for more information.

Note: It is recommended that when switching from an ADC channel of a higher voltage to a channel of a lower voltage, the software selects the Vss channel before switching. If the ADC does not have a dedicated Vss input channel, the Vss selection (DAC1R<4:0> = b'00000') through the DAC output channel can be used. If the DAC is in use, a free input channel can be connected to Vss, and can be used in place of the DAC.

Mnemo	onic.		,	16-	Bit Instr	uction W	/ord	Status	
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BIT-ORIEN	TED OP	ERATIONS							
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERA	TIONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	k, s	Call subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	k	Go to address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	XXXX	XXXX	XXXX	None	4
POP	—	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH,	
								PEIE/GIEL	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	—	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 35-2: INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

PIC18(L)F27/47K40

CPF	SEQ	Compare	Compare f with W, skip if f = W						
Synta	ax:	CPFSEQ	CPFSEQ f {,a}						
Operands:		0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]						
Operation:		(f) – (W), skip if (f) = ((unsigned c	(f) – (W), skip if (f) = (W) (unsigned comparison)						
Statu	s Affected:	None							
Enco	ding:	0110	0110 001a ffff ffff						
Desc	ription:	Compares to location 'f to performing If 'f' = W, the discarded as instead, mas instruction. If 'a' is '0', the If 'a' is '0', the If 'a' is '0', the GPR bank. If 'a' is '0' as set is enable in Indexed I mode when tion 35.2.3 Oriented In	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If 'f' = W, then the fetched instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Literal						
		eral Offset	eral Offset Mode" for details.						
Word	IS:	1	1						
QC	vcle Activitv:	Note: 3 cy by a	Note: 3 cycles if skip and followed by a 2-word instruction.						
	Q1	Q2	Q3	Q4					
	Decode	Read	Process	No					
		register 'f'	Data	operation					
If skip:		02	03	04					
	No	No	No	No					
	operation	operation	operation	operation					
lf sk	ip and followed	d by 2-word in:	by 2-word instruction:						
	No	No	No	No					
	operation	operation	operation	operation					
	No	No	No	No					
	operation	operation	operation	operation					
Example:		HERE CPFSEQ REG, 0 NEQUAL : EQUAL :							
Before Instruction									
	PC Addre	S = HERE							
	W	= ?	= ?						
	After Instruction	= ?							
	If REG	= W·							
	PC	= Ad	W; Address (EQUAL)						
	If REG PC	≠ W; = Ad	\neq W; = Address (NEQUAL)						

PIC18(L)F27/47K40

CALLW		Subroutine Call Using WREG			мс	MOVSF		Move Indexed to f			
Syntax:		CALLW			Syr	ntax:	MOVSF [
Operands:		None	None			erands:	$0 \le z_s \le 12$	7			
Operation:		$(PC + 2) \rightarrow$ $(W) \rightarrow PCL$ (PCLATH) - (PCLATU) -	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATU) \rightarrow PCU$			eration: tus Affected:	$\label{eq:generalized_states} \begin{split} 0 &\leq f_d \leq 4095 \\ ((FSR2) + z_s) \rightarrow f_d \\ None \end{split}$				
Status Affected: Encoding:		None			End 1st 2nd	coding: word (source) d word (destin.)	1110 1111	1011 Oz: ffff ff:	zz zzzz _s ff ffffd		
Description		First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while the new next instruction is fetched. Unlike CALL, there is no option to update W, Status or BSR.			De	scription:	The conter moved to c actual add determined offset 'z _s ' in FSR2. The register is 'f _d ' in the s can be any space (000 The MOVSE	The contents of the source register are moved to destination register ' f_d '. The actual address of the source register is determined by adding the 7-bit literal offset ' z_s ' in the first word to the value o FSR2. The address of the destination register is specified by the 12-bit literal ' f_d ' in the second word. Both addresses can be anywhere in the 4096-byte data space (000h to FFFh). The MOVSF instruction cannot use the			
Word	ls:	1					PCL, TOS destination	J, TOSH or TC 1 reaister.	OSL as the		
Cycle	es:	2					If the resul	tant source add	dress points to		
QC	ycle Activity:						an indirect	addressing reg	gister, the		
	Q1	Q2	Q3	Q4	Wo	irde:	2				
	Decode	Read WREG	PUSH PC to stack	No operation	Cvi	nus. Nes	2				
	No	No	No	No	0, 0	Cvcle Activity	-				
	operation	operation	operation	operation	~	Q1	Q2	Q3	Q4		
						Decode	Determine	Determine	Read		
Exan	<u>nple</u> :	HERE	CALLW			Decede	source addr	source addr	source reg		
	Before Instruc	tion				Decode	operation	operation	register 'f'		
	PC PCLATH	= address (HERE) = 10h					oporation	(dest)			
	PCLATU W	= 00h = 06h					read				
	After Instructic PC TOS PCLATH PCLATU W	= 001006 = address = 10h = 00h = 06h	h S (HERE + 2)	Exa	ample: Before Instruct FSR2 Contents of 85h REG2 After Instructio FSR2 Contents of 85h REG2	MOVSF ction = 80 = 33 = 11 on = 80 = 33 = 33	[05h], REG2)h 3h h)h 3h 3h	2		

37.0 ELECTRICAL SPECIFICATIONS

37.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on pins with respect to Vss	
on VDD pin	
PIC18F27/47K40	0.3V to +6.5V
PIC18LF27/47K40	0.3V to +4.0V
on MCLR pin	-0.3V to +9.0V
on all other pins	0.3V to (VDD + 0.3V)
Maximum current	
on Vss pin ⁽¹⁾	
$-40^{\circ}C \leq TA \leq +85^{\circ}C$	350 mA
$85^{\circ}C < TA \leq +125^{\circ}C$	120 mA
on VDD pin for 28-Pin devices ⁽¹⁾	
-40°C \leq TA \leq +85°C	250 mA
$85^{\circ}C < TA \leq +125^{\circ}C$	85 mA
on VDD pin for 40-Pin devices ⁽¹⁾	
$-40^{\circ}C \leq TA \leq +85^{\circ}C$	350 mA
$85^{\circ}C < TA \leq +125^{\circ}C$	120 mA
on any standard I/O pin	±50 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	±20 mA
Total power dissipation ⁽²⁾	800 mW

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 37-6 to calculate device specifications.

2: Power dissipation is calculated as follows:

PDIS = VDD x {IDD - Σ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOI x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

37.2 Standard Operating Conditions

The standard operating of	conditions for any device are defined as:	
Operating Voltage: Operating Temperature:	$\label{eq:VDDMAX} \begin{array}{l} VDDMIN \leq VDD \leq VDDMAX \\ TA_MIN \leq TA \leq TA_MAX \end{array}$	
VDD — Operating Supp	ly Voltage ⁽¹⁾	
PIC18LF27/47K40)	
Vddmin (Fosc ≤ 16 MHz)	+1.8V
VDDMIN (Fosc \leq 32 MHz)	+2.5V
VDDMIN (Fosc ≤ 64 MHz)	+3.0V
VDDMAX.	· · · · · · · · · · · · · · · · · · ·	+3.6V
PIC18F27/47K40		
VDDMIN (Fosc ≤ 16 MHz)	+2.3V
VDDMIN (Fosc ≤ 32 MHz)	+2.5V
VDDMIN (Fosc ≤ 64 MHz)	+3.0V
VDDMAX.	·	+5.5V
TA — Operating Ambier	nt Temperature Range	
Industrial Tempera	ature	
TA MIN		40°C
		+85°C
Extended Tempera	ature	
TA MIN		-40°C
TA_MAX		+125°C
Note 1: See Paramet	er Supply Voltage, DS Characteristics: Supply Voltage	3.

TABLE 37-24: I²C BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param No.	Symbol	Charact	Min.	Тур	Max.	Units	Conditions	
SP90*	TSU:STA	Start condition	100 kHz mode	4700	_	_	ns	Only relevant for Repeated Start
		Setup time	400 kHz mode	600		_		condition
SP91*	THD:STA	Start condition	100 kHz mode	4000		_	ns	After this period, the first clock
		Hold time	400 kHz mode	600		-		pulse is generated
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700		_	ns	
		Setup time	400 kHz mode	600		_		
SP93	THD:STO	Stop condition	100 kHz mode	4000		_	ns	
		Hold time	400 kHz mode	600	_	_		

* These parameters are characterized but not tested.

FIGURE 37-21: I²C BUS DATA TIMING

