

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f47k40-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

2.4 ICSP[™] Pins

The PGC and PGD pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 36.0 "Development Support"**.

R/W/HC-0)/0 R/W-0/0	U-0	R-0/0	R-0/0	U-0	U-0	U-0	
CSWHOL	D SOSCPWR	—	ORDY	NOSCR	—	—	—	
bit 7		·					bit 0	
Legend:								
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets	
'1' = Bit is s	set	'0' = Bit is clea	ared	HC = Bit is cl	eared by hardw	/are		
bit 7	CSWHOLD:	Clock Switch H	old bit					
	1 = Clock sv	witch will hold (with interrupt)	when the oscil	lator selected b	y NOSC is rea	dy	
	0 = Clock s	witch may proc	eed when the c	scillator select	ed by NOSC is	ready; NOSCF	र	
	become	es '1', the switcl	n will occur					
bit 6	SOSCPWR:	Secondary Oso	cillator Power N	Aode Select bit	t			
	1 = Second	ary oscillator o	perating in Hig	h-Power mode	1			
		0 = Secondary oscillator operating in Low-Power mode						
bit 5	Unimplemen	ted: Read as '	0'					
bit 4	ORDY: Oscill	ator Ready bit	(read-only)					
	1 = OSCCC	N1 = OSCCOI	N2; the current	system clock	is the clock spe	cified by NOS	C	
	0 = A CIOCK	switch is in pro	gress	(1)				
bit 3	NOSCR: Nev	v Oscillator is F	Ready bit (read	-only)(')				
	1 = A clock	switch is in pro	gress and the	oscillator selec	ted by NOSC i	ndicates a "rea	idy" condition	
h:4 0 0		SWITCH IS NOT IN	progress, or u	TE NUSC-Sele		s not yet ready		
DIT 2-0	Unimplemen	tea: Read as '	0.					
Note 1:	If CSWHOLD = 0,	the user may	not see this bit	set because, v	when the oscilla	ator becomes r	eady there	

Note 1: If CSWHOLD = 0, the user may not see this bit set because, when the oscillator becomes ready there may be a delay of one instruction clock before this bit is set. The clock switch occurs in the next instruction cycle and this bit is cleared.

5.0 REFERENCE CLOCK OUTPUT MODULE

The reference clock output module provides the ability to send a clock signal to the clock reference output pin (CLKR). The reference clock output can also be used as a signal for other peripherals, such as the Data Signal Modulator (DSM), Memory Scanner and Timer module.

The reference clock output module has the following features:

- Selectable clock source using the CLKRCLK register
- Programmable clock divider
- · Selectable duty cycle

FIGURE 5-1: CLOCK REFERENCE BLOCK DIAGRAM

6.2.3.2 Peripheral Usage in Sleep

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-out Reset (BOR)
- Windowed Watchdog Timer (WWDT)
- External interrupt pin/Interrupt-On-Change pins
- Peripherals that run off external secondary clock source

It is the responsibility of the end user to determine what is acceptable for their application when setting the VREGPM settings in order to ensure operation in Sleep.

Note:	The PIC18LF2x/4xK40 devices do not
	have a configurable Low-Power Sleep
	mode. PIC18LF2x/4xK40 devices are
	unregulated and are always in the lowest
	power state when in Sleep, with no wake-
	up time penalty. These devices have a
	lower maximum VDD and I/O voltage than
	the PIC18F2x/4xK40. See Section
	37.0 "Electrical Specifications" for
	more information.

6.2.4 IDLE MODE

When IDLEN is set (IDLEN = 1), the SLEEP instruction will put the device into Idle mode. In Idle mode, the CPU and memory operations are halted, but the peripheral clocks continue to run. This mode is similar to Doze mode, except that in IDLE both the CPU and PFM are shut off.

Note: If CLKOUTEN is enabled (CLKOUTEN = 0, Configuration Word 1H), the output will continue operating while in Idle.

6.2.4.1 Idle and Interrupts

IDLE mode ends when an interrupt occurs (even if GIE = 0), but IDLEN is not changed. The device can reenter IDLE by executing the SLEEP instruction.

If Recover-On-Interrupt is enabled (ROI = 1), the interrupt that brings the device out of Idle also restores full-speed CPU execution when doze is also enabled.

6.2.4.2 Idle and WWDT

When in Idle, the WWDT Reset is blocked and will instead wake the device. The WWDT wake-up is not an interrupt, therefore ROI does not apply.

Note: The WDT can bring the device out of Idle, in the same way it brings the device out of Sleep. The DOZEN bit is not affected.

6.3 Peripheral Operation in Power Saving Modes

All selected clock sources and the peripherals running off them are active in both IDLE and DOZE mode. Only in Sleep mode, both the Fosc and Fosc/4 clocks are unavailable. All the other clock sources are active, if enabled manually or through peripheral clock selection before the part enters Sleep.

REGISTER 9-3: WDTPSL: WWDT PRESCALE SELECT LOW BYTE REGISTER (READ-ONLY)

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0		
PSCNT<7:0>									
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
u = Bit is uncha	anged	x = Bit is unknow	'n	-n/n = Value at POR and BOR/Value at all other Re					
'1' = Bit is set		'0' = Bit is cleared	d						

bit 7-0 **PSCNT<7:0>:** Prescale Select Low Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

REGISTER 9-4: WDTPSH: WWDT PRESCALE SELECT HIGH BYTE REGISTER (READ-ONLY)

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	
PSCNT<15:8>								
bit 7								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSCNT<15:8>:** Prescale Select High Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

20.5.5 SOFTWARE START ONE-SHOT MODE

In One-Shot mode the timer resets and the ON bit is cleared when the timer value matches the PRx period value. The ON bit must be set by software to start another timer cycle. Setting MODE<4:0> = 01000 selects One-Shot mode which is illustrated in Figure 20-8. In the example, ON is controlled by BSF and BCF instructions. In the first case, a BSF instruction sets ON and the counter runs to completion and clears ON. In the second case, a BSF instruction starts the cycle, BCF/BSF instructions turn the counter off and on during the cycle, and then it runs to completion.

When One-Shot mode is used in conjunction with the CCP PWM operation the PWM pulse drive starts concurrent with setting the ON bit. Clearing the ON bit while the PWM drive is active will extend the PWM drive. The PWM drive will terminate when the timer value matches the CCPRx pulse width value. The PWM drive will remain off until software sets the ON bit to start another cycle. If software clears the ON bit after the CCPRx match but before the PRx match then the PWM drive will be extended by the length of time the ON bit remains cleared. Another timing cycle can only be initiated by setting the ON bit after it has been cleared by a PRx period count match.

FIGURE 20-8: SOFTWARE START ONE-SHOT MODE TIMING DIAGRAM (MODE = 01000)

© -2017 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCPTMRS	P4TSE	L<1:0>	P3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	EL<1:0>	286
PWM3CON	EN	_	OUT	POL	_	_	-	_	285
PWM3DCH		DC<7:0>							287
PWM3DCL	DC<	9:8>>	_	—	_	_	_	—	287
PWM4CON	EN	_	OUT	POL	—	_	-	—	285
PWM4DCH	DC<7:0>								287
PWM4DCL	DC<	<9:8>	_	—	_	_	_	—	287
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	170
PIE4	—	_	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	183
PIR4	—	_	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	175
IPR4	_	_	TMR6IP	TMR5IP	TMR4IP	TMR3IP	TMR2IP	TMR1IP	191
RxyPPS	—	_	—		R	xyPPS<4:0>			218
TMR2				TMR2<	7:0>				244*
PR2				PR2<7	':0>				244*
T2CON	T2ON		T2CKPS<2:0>			T2OUTF	PS<3:0>		262
T2HLT	T2PSYNC	T2CPOL	T2CSYNC		T2	2MODE<4:0>			263
T2CLKCON	_	_	_	_		T2CS	<3:0>		264
T2RST	_	_	_	_		T2RSE	L<3:0>		265
PMD3	_	_	_	_	PWM4MD	PWM3MD	CCP2MD	CCP1MD	71

TABLE 22-4: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM. * Not a physical location.

EQUATION 23-2: R-C CALCULATIONS

- VPEAK = External voltage source peak voltage
- f = External voltage source frequency
- C = Series capacitor
- R = Series resistor
- V_{c} = Peak capacitor voltage
- Φ = Capacitor induced zero crossing phase advance in radians
- $T_\Phi\,$ = Time ZC event occurs before actual zero crossing

$$Z = \frac{VPEAK}{3 \times 10^{-4}}$$
$$XC = \frac{1}{2\pi fC}$$
$$R = \sqrt{Z^2 - Xc^2}$$
$$VC = XC(3 \times 10^{-4})$$
$$\Phi = Tan^{-1}\left(\frac{XC}{R}\right)$$
$$T\Phi = \frac{\Phi}{2\pi f}$$

EXAMPLE 23-1: R-C CALCULATIONS

VRMS = 120
VPEAK = VRMS *
$$\sqrt{2}$$
 = 169.7
f = 60 Hz
C = 0.1 µF

$$Z = \frac{VPEAK}{3 \times 10^{-4}} = \frac{169.7}{3 \times 10^{-4}} = 565.7 k\Omega$$
XC = $\frac{1}{2\pi fC} = \frac{1}{(2\pi \times 60 \times 1 \times 10^{-7})} = 26.53 k\Omega$
R = $\sqrt{(Z^2 \times Xc^2)} = 565.1 k\Omega$ (computed)
R = 560k Ω (used)
ZR = $\sqrt{R^2 + Xc^2} = 560.6 k\Omega$ (using actual resistor)
IPEAK = $\frac{VPEAK}{ZR} = 302.7 \times 10^{-6}$
VC = XC × Ipeak = 8.0V
 $\Phi = Tan^{-1}(\frac{XC}{R}) = 0.047$ radians
T $\Phi = \frac{\Phi}{2\pi f} = 125.6 \mu s$

23.5.2 CORRECTION BY OFFSET CURRENT

When the waveform is varying relative to Vss, then the zero cross is detected too early as the waveform falls and too late as the waveform rises. When the waveform is varying relative to VDD, then the zero cross is detected too late as the waveform rises and too early as the waveform falls. The actual offset time can be determined for sinusoidal waveforms with the corresponding equations shown in Equation 23-3.

EQUATION 23-3: ZCD EVENT OFFSET

When External Voltage Source is relative to Vss:

$$TOFFSET = \frac{\operatorname{asin}\left(\frac{VCPINV}{VPEAK}\right)}{2\pi \bullet Freq}$$

When External Voltage Source is relative to VDD:

$$TOFFSET = \frac{\operatorname{asin}\left(\frac{VDD - VCPINV}{VPEAK}\right)}{2\pi \bullet Freq}$$

This offset time can be compensated for by adding a pull-up or pull-down biasing resistor to the ZCD pin. A pull-up resistor is used when the external voltage source is varying relative to Vss. A pull-down resistor is used when the voltage is varying relative to VDD. The resistor adds a bias to the ZCD pin so that the target external voltage source must go to zero to pull the pin voltage to the VCPINV switching voltage. The pull-up or pull-down value can be determined with the equations shown in Equation 23-4.

EQUATION 23-4: ZCD PULL-UP/DOWN

When External Signal is relative to Vss:

$$R_{PULLUP} = \frac{R_{SERIES}(V_{PULLUP} - V_{CPINV})}{V_{CPINV}}$$

When External Signal is relative to VDD:

$$R_{PULLDOWN} = \frac{R_{SERIES}(VCPINV)}{(VDD - VCPINV)}$$

FIGURE 25-3: No Synchronization (MDSHSYNC = 0, MDCLSYNC = 0)

FIGURE 25-4: Carrier High Synchronization (MDSHSYNC = 1, MDCLSYNC = 0)

carrier_high	
carrier_low	
modulator	
MDCHSYNC = 1 MDCLSYNC = 0	
Active Carrier State	carrier_high /_both\carrier_low \ / carrier_high / both \ carrier_low

controlled through addressing. Figure 26-9 is a block diagram of the I²C interface module in Master mode.

Figure 26-10 is a diagram of the I^2C interface module

in Slave mode.

26.6 I²C Mode Overview

The Inter-Integrated Circuit (I²C) bus is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A slave device is

FIGURE 26-9: MSSP BLOCK DIAGRAM (I²C MASTER MODE)

26.10.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

26.10.11 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

26.10.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

26.10.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF and reset the I²C port to its Idle state (Figure 26-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 26-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

TABLE 27-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDxCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	395
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	_	INT2EDG	INT1EDG	INT0EDG	170
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	174
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	174
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP	190
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	394
RxyPPS	—	—	_			RxyPPS<4:0	>		218
TXxPPS	—	—	_			TXPPS<4:0	>		216
SPxBRGH			EUSARTx	Baud Rate	Generator, H	ligh Byte			404*
SPxBRGL			EUSARTx	Baud Rate	Generator, I	_ow Byte			404*
TXxREG			EU	SARTx Trar	ismit Registe	er			396*
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	393

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission. * Page provides register information.

29.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, *"Use and Calibration of the Internal Temperature Indicator"* (DS00001333) for more details regarding the calibration process.

29.1 Circuit Operation

Figure 29-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 29-1 describes the output characteristics of the temperature indicator.

EQUATION 29-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT

The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 28.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 29-1: TEMPERATURE CIRCUIT DIAGRAM

29.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 29-1 shows the recommended minimum VDD vs. range setting.

TABLE 29-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0				
3.6V	1.8V				

29.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to **Section 31.0 "Analog-to-Digital Converter with Computation (ADC2) Module"** for detailed information.

© 2016-2017 Microchip Technology Inc.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
—	—			ADCS<5:0>						
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other						
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7-6	Unimplemer	nted: Read as '	כי							
bit 5-0	ADCS<5:0>:	ADC Conversi	on Clock Sele	ect bits						
	111111 = F c	osc/128								
	111110 = F c	osc/126								
111101 = Fosc/124										
	•									
	•									
	•									
	000000 = Fosc/2									

REGISTER 31-6: ADCLK: ADC CLOCK SELECTION REGISTER

REGISTER 31-7: ADREF: ADC REFERENCE SELECTION REGISTER

U-0	U-0	U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	ADNREF	—	—	ADPRE	F<1:0>
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 bit 4	Unimplemented: Read as '0' ADNREF: ADC Negative Voltage Reference Selection bit 1 = VREF- is connected to external VREF- 0 = VREF- is connected to AVss
bit 3-2	Unimplemented: Read as '0'
bit 1-0	ADPREF: ADC Positive Voltage Reference Selection bits 11 = VREF+ is connected to internal Fixed Voltage Reference (FVR) module 10 = VREF+ is connected to external VREF+ 01 = Reserved 00 = VREF+ is connected to VDD

PIC18(L)F27/47K40

DAV	v	D	Decimal Adjust W Register							
Synt	ax:	DA	٩W							
Oper	rands:	No	None							
Operation:		lf (V els (V	If [W<3:0> > 9] or [DC = 1] then (W<3:0>) + 6 \rightarrow W<3:0>; else (W<3:0>) \rightarrow W<3:0>;							
		lf (V els (V	If [W<7:4> + DC > 9] or [C = 1] then (W<7:4>) + 6 + DC \rightarrow W<7:4> ; else (W<7:4>) + DC \rightarrow W<7:4>							
Statu	is Affected:	С								
Enco	oding:		0000	0000	000	00	0111			
Description:			DAW adjusts the 8-bit value in W, result- ing from the earlier addition of two vari- ables (each in packed BCD format) and produces a correct packed BCD result.							
Word	Words:									
Cycle	es:	1								
QC	ycle Activity:									
	Q1	1	Q2	Q	3		Q4			
	Decode	rec	Read uister W	Proce Dat	ess a		Write W			
Exar	nple1:			200						
		DÆ	W							
	Before Instruc	tion								
	W C DC	= = =	A5h 0 0							
	After Instruction	n								
W = C = DC =		= = =	05h 1 0							
Before Instruction										
	W C DC	= = =	CEh 0 0							
	After Instruction	n								
	W C DC	= = =	34h 1 0							

DECF	Decrement f						
Syntax:	DECF f {,d {,a}}						
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]						
Operation:	$(f) - 1 \rightarrow dest$						
Status Affected:	C, DC, N, OV, Z						
Encoding:	0000 01da ffff ffff						
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit-						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2 Q3 Q4						
Decode	ReadProcessWrite toregister 'f'Datadestination						
Example:DECFCNT,1,0Before Instruction $CNT = 01h$ $Z = 0$ After Instruction $CNT = 00h$ $Z = 1$							

37.3 DC Characteristics

TABLE 37-1:SUPPLY VOLTAGE

PIC18LF27/47K40				Standard Operating Conditions (unless otherwise stated)					
PIC18F27/47K40									
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions		
Supply V	Voltage								
D002	Vdd		1.8 2.5 3.0		3.6 3.6 3.6	V V V	$Fosc \le 16 MHz$ Fosc > 16 MHz Fosc > 32 MHz		
D002	Vdd		2.3 2.5 3.0		5.5 5.5 5.5	V V V	$Fosc \le 16 MHz$ Fosc > 16 MHz Fosc > 32 MHz		
RAM Da	ta Retent	tion ⁽¹⁾							
D003	Vdr		1.5		_	V	Device in Sleep mode		
D003	Vdr		1.7		—	V	Device in Sleep mode		
Power-o	on Reset	Release Voltage ⁽²⁾							
D004	VPOR		—	1.6	—	V	BOR or LPBOR disabled ⁽³⁾		
D004	VPOR			1.6	_	V	BOR or LPBOR disabled ⁽³⁾		
Power-c	on Reset	Rearm Voltage ⁽²⁾							
D005	VPORR		_	0.8	_	V	BOR or LPBOR disabled ⁽³⁾		
D005	VPORR		_	1.5		V	BOR or LPBOR disabled ⁽³⁾		
VDD Ris	e Rate to	ensure internal Power-on F	Reset sig	Inal ⁽²⁾					
D006	SVDD		0.05	_	_	V/ms	BOR or LPBOR disabled ⁽³⁾		
D006	SVDD		0.05			V/ms	BOR or LPBOR disabled ⁽³⁾		

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 37-3, POR and POR REARM with Slow Rising VDD.

3: Please see Table 37-11 for BOR and LPBOR trip point information.

TABLE 37-13: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS^(1,2):

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C, TAD = 1μs								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD01	NR	Resolution	—		10	bit		
AD02	EIL	Integral Error	—	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V	
AD03	Edl	Differential Error	—	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V	
AD04	EOFF	Offset Error	—	0.5	±2.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V	
AD05	Egn	Gain Error	—	±0.2	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V	
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-)	1.8		Vdd	V		
AD07	VAIN	Full-Scale Range	ADREF-		ADREF+	V		
AD08	ZAIN	Recommended Impedance of Analog Voltage Source		10	_	kΩ		
AD09	RVREF	ADC Voltage Reference Ladder Impedance	_	50	—	kΩ	Note 3	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

3: This is the impedance seen by the VREF pads when the external reference pads are selected.

TABLE 37-23:	SPI MODE REQUIREMENTS
--------------	-----------------------

Standard Operating Conditions (unless otherwise stated)							
Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	2.25*TCY	—	—	ns	
SP71*	TscH	SCK input high time (Slave mode)	Tcy + 20	—	-	ns	
SP72*	TscL	SCK input low time (Slave mode)	Tcy + 20		_	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge	100	_	—	ns	
SP74*	TscH2DIL, TscL2DIL	Hold time of SDI data input to SCK edge	100	—	—	ns	
SP75*	TDOR	SDO data output rise time		10	25	ns	$3.0V \le V\text{DD} \le 5.5V$
				25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP76*	TDOF	SDO data output fall time	_	10	25	ns	
SP77*	TssH2doZ	SS [↑] to SDO output high-impedance	10		50	ns	
SP78*	TscR	SCK output rise time		10	25	ns	$3.0V \leq V\text{DD} \leq 5.5V$
		(Master mode)	_	25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP79*	TscF	SCK output fall time (Master mode)	_	10	25	ns	
SP80*	TscH2doV,	SDO data output valid after SCK edge	_	_	50	ns	$3.0V \leq V\text{DD} \leq 5.5V$
	TscL2doV			_	145	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge	1 Tcy	_	_	ns	
SP82*	TssL2DoV	SDO data output valid after $\overline{SS}\downarrow$ edge	_	_	50	ns	
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5 Tcy + 40	—	—	ns	

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		0.40 BSC		
Overall Height	A	0.45	0.50	0.55	
Standoff	A1	0.00 0.02 0.05			
Contact Thickness	A3	0.127 REF			
Overall Width	E	4.00 BSC			
Exposed Pad Width	E2	2.55 2.65 2.75			
Overall Length	D	4.00 BSC			
Exposed Pad Length	D2	2.55	2.65	2.75	
Contact Width	b	0.15 0.20 0.25			
Contact Length	L	0.30 0.40 0.50			
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2 Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2