

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K × 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f47k40-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	<u></u>				301		
R/W-1	R/W-1	R/W-1	U-1	U-1	U-1	R/W-1	R/W-1
BOF	REN<1:0>	LPBOREN	_	_	_	PWRTE	MCLRE
bit 7							bit C
Legend:							
R = Readabl	e bit	W = Writable b	it	U = Unimple	mented bit, rea	ad as '1'	
-n = Value fo	r blank device	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 7-6		Brown-out Reserved, Brown-out Reserved, Brown-out Reserved.			v BORV bit		
		out Reset enabled	•		,		
		out Reset enabled		0.	n Sleep; SBOF	REN is ignored	
		out Reset enabled		to SBOREN			
=		out Reset disable	-				
bit 5		Low-Power BOR E ower Brown-out Re		blod			
		ower Brown-out Re					
bit 4-2		nted: Read as '1'					
bit 1	PWRTE: Pov	wer-up Timer Enal	ole bit				
	1 = PWRT	disabled					
	0 = PWRT	enabled					
bit 0		ster Clear (MCLR)	Enable bit	t			
	<u>If LVP = 1</u>						
	•	unction is MCLR					
	$\frac{\text{If LVP} = 0}{1000}$	<u>-</u> · · 					
		R pin is MCLR		<i>c</i>			
	0 = MCL	R pin function is p	ort defined	function			

REGISTER 3-3: Configuration Word 2L (30 0002h): Supervisor

PIC18(L)F27/47K40

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_			HFTU	N<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is se	t	'0' = Bit is clea	ared				
bit 5-0	01 1111 = • •	D>: HFINTOSC F Maximum freque Center frequenc (default value).	ency	-	g at the calibra	ted frequency	

5.1 Clock Source

The input to the reference clock output can be selected using the CLKRCLK register.

5.1.1 CLOCK SYNCHRONIZATION

Once the reference clock enable (EN) is set, the module is ensured to be glitch-free at start-up.

When the reference clock output is disabled, the output signal will be disabled immediately.

Clock dividers and clock duty cycles can be changed while the module is enabled, but glitches may occur on the output. To avoid possible glitches, clock dividers and clock duty cycles should be changed only when the CLKREN is clear.

5.2 Programmable Clock Divider

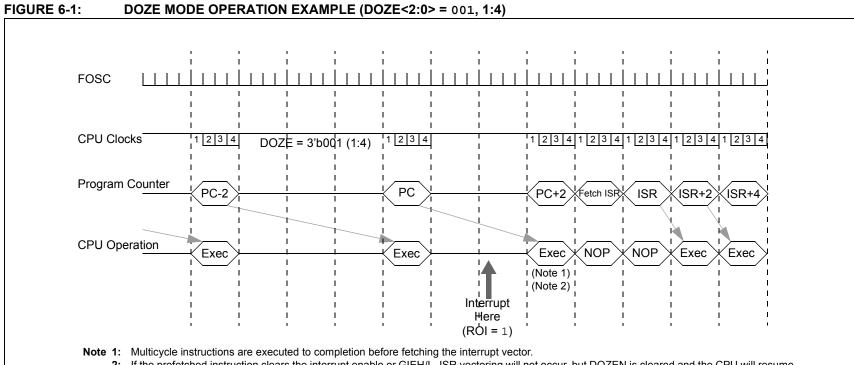
The module takes the clock input and divides it based on the value of the DIV<2:0> bits of the CLKRCON register (Register 5-1).

The following configurations can be made based on the DIV<2:0> bits:

- · Base Fosc value
- Fosc divided by 2
- Fosc divided by 4
- Fosc divided by 8
- Fosc divided by 16
- · Fosc divided by 32
- Fosc divided by 64
- Fosc divided by 128

The clock divider values can be changed while the module is enabled; however, in order to prevent glitches on the output, the DIV<2:0> bits should only be changed when the module is disabled (EN = 0).

5.3 Selectable Duty Cycle


The DC<1:0> bits of the CLKRCON register can be used to modify the duty cycle of the output clock. A duty cycle of 25%, 50%, or 75% can be selected for all clock rates, with the exception of the undivided base Fosc value.

The duty cycle can be changed while the module is enabled; however, in order to prevent glitches on the output, the DC<1:0> bits should only be changed when the module is disabled (EN = 0).

Note: The DC1 bit is reset to '1'. This makes the default duty cycle 50% and not 0%.

5.4 Operation in Sleep Mode

The reference clock output module clock is based on the system clock. When the device goes to Sleep, the module outputs will remain in their current state. This will have a direct effect on peripherals using the reference clock output as an input signal. No change should occur in the module from entering or exiting from Sleep.

2: If the prefetched instruction clears the interrupt enable or GIEH/L, ISR vectoring will not occur, but DOZEN is cleared and the CPU will resume execution at full speed.

bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 OSCFIF: Oscillator Fail Interrupt Flag bit 1 = Device oscillator failed, clock input has changed to HFINTOSC (must be cleared by softwore) 0 = Device clock operating bit 6 CSWIF: Clock-Switch Interrupt Flag bit(¹⁾ 1 = New oscillator is ready for switch (must be cleared by software) (see Figure 4-6 and Figure 0 = New oscillator is not ready for switch or has not been started bit 5-2 Unimplemented: Read as '0' bit 1 ADTIF: ADC Threshold Interrupt Flag bit 1 = ADC Threshold interrupt Has occurred (must be cleared by software) 0 = ADC Threshold event is not complete or has not been started bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software)	R/W-0/0) R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 OSCFIF: Oscillator Fail Interrupt Flag bit 1 = Device oscillator failed, clock input has changed to HFINTOSC (must be cleared by softwore) bit 6 CSWIF: Clock-Switch Interrupt Flag bit ⁽¹⁾ 1 = New oscillator is ready for switch (must be cleared by software) (see Figure 4-6 and Figure 0 = New oscillator is not ready for switch or has not been started bit 5-2 Unimplemented: Read as '0' bit 1 ADTIF: ADC Threshold Interrupt Flag bit 1 = ADC Threshold interrupt has occurred (must be cleared by software) 0 = ADC Threshold interrupt Flag bit 1 = ADC Threshold interrupt Has occurred (must be cleared by software) 0 = ADC Threshold interrupt Flag bit 1 = ADC Threshold interrupt Has occurred (must be cleared by software) 0 = ADC Threshold interrupt Flag bit 1 = ADC Interrupt Flag bit 1 = ANC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software)	OSCFIF	CSWIF ⁽¹⁾	—	_	_	_	ADTIF	ADIF
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 OSCFIF: Oscillator Fail Interrupt Flag bit 1 = Device oscillator failed, clock input has changed to HFINTOSC (must be cleared by softwore) bit 6 CSWIF: Clock-Switch Interrupt Flag bit ⁽¹⁾ 1 = New oscillator is ready for switch (must be cleared by software) (see Figure 4-6 and Figure 0 = New oscillator is not ready for switch or has not been started bit 5-2 Unimplemented: Read as '0' bit 1 ADTIF: ADC Threshold Interrupt Flag bit 1 = ADC Threshold interrupt has occurred (must be cleared by software) 0 = ADC Threshold interrupt Flag bit 1 = ADC Threshold event is not complete or has not been started bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software)	bit 7	·						bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 OSCFIF: Oscillator Fail Interrupt Flag bit 1 = Device oscillator failed, clock input has changed to HFINTOSC (must be cleared by softwore) bit 6 CSWIF: Clock-Switch Interrupt Flag bit ⁽¹⁾ 1 = New oscillator is ready for switch (must be cleared by software) (see Figure 4-6 and Figure 0 = New oscillator is not ready for switch or has not been started bit 5-2 Unimplemented: Read as '0' bit 1 ADTIF: ADC Threshold Interrupt Flag bit 1 = ADC Threshold interrupt has occurred (must be cleared by software) 0 = ADC Threshold interrupt Flag bit 1 = ADC Threshold event is not complete or has not been started bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software)								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 OSCFIF: Oscillator Fail Interrupt Flag bit 1 = Device oscillator failed, clock input has changed to HFINTOSC (must be cleared by softwork) bit 6 CSWIF: Clock-Switch Interrupt Flag bit ⁽¹⁾ 1 = New oscillator is ready for switch (must be cleared by software) (see Figure 4-6 and Figure 0 = New oscillator is not ready for switch or has not been started bit 5-2 Unimplemented: Read as '0' bit 1 ADTIF: ADC Threshold Interrupt Flag bit 1 = ADC Threshold interrupt has occurred (must be cleared by software) 0 = ADC Threshold event is not complete or has not been started bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software)	Legend:							
bit 7 OSCFIF: Oscillator Fail Interrupt Flag bit 1 = Device oscillator failed, clock input has changed to HFINTOSC (must be cleared by softwork) 0 = Device clock operating bit 6 CSWIF: Clock-Switch Interrupt Flag bit ⁽¹⁾ 1 = New oscillator is ready for switch (must be cleared by software) (see Figure 4-6 and Figure 0 = New oscillator is not ready for switch or has not been started bit 5-2 Unimplemented: Read as '0' bit 1 ADTIF: ADC Threshold Interrupt Flag bit 1 = ADC Threshold interrupt has occurred (must be cleared by software) 0 = ADC Threshold event is not complete or has not been started bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software)	R = Reada	ble bit	W = Writable b	it	U = Unimpler	mented bit, read	d as '0'	
 1 = Device oscillator failed, clock input has changed to HFINTOSC (must be cleared by softwore) = Device clock operating bit 6 CSWIF: Clock-Switch Interrupt Flag bit⁽¹⁾ 1 = New oscillator is ready for switch (must be cleared by software) (see Figure 4-6 and Figure 0 = New oscillator is not ready for switch or has not been started bit 5-2 Unimplemented: Read as '0' bit 1 ADTIF: ADC Threshold Interrupt Flag bit 1 = ADC Threshold interrupt has occurred (must be cleared by software) 0 = ADC Threshold event is not complete or has not been started bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software) 	-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
 1 = Device oscillator failed, clock input has changed to HFINTOSC (must be cleared by softwore) = Device clock operating bit 6 CSWIF: Clock-Switch Interrupt Flag bit⁽¹⁾ 1 = New oscillator is ready for switch (must be cleared by software) (see Figure 4-6 and Figure 0 = New oscillator is not ready for switch or has not been started bit 5-2 Unimplemented: Read as '0' bit 1 ADTIF: ADC Threshold Interrupt Flag bit 1 = ADC Threshold interrupt has occurred (must be cleared by software) 0 = ADC Threshold event is not complete or has not been started bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software) 								
0 = Device clock operating bit 6 CSWIF: Clock-Switch Interrupt Flag bit ⁽¹⁾ 1 = New oscillator is ready for switch (must be cleared by software) (see Figure 4-6 and Figure 0 = New oscillator is not ready for switch or has not been started bit 5-2 Unimplemented: Read as '0' bit 1 ADTIF: ADC Threshold Interrupt Flag bit 1 = ADC Threshold interrupt has occurred (must be cleared by software) 0 = ADC Threshold event is not complete or has not been started bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software)	bit 7	OSCFIF: Osc	cillator Fail Interro	upt Flag bit				
bit 6 CSWIF: Clock-Switch Interrupt Flag bit ⁽¹⁾ 1 = New oscillator is ready for switch (must be cleared by software) (see Figure 4-6 and Figure 0 = New oscillator is not ready for switch or has not been started bit 5-2 Unimplemented: Read as '0' bit 1 ADTIF: ADC Threshold Interrupt Flag bit 1 = ADC Threshold Interrupt Has occurred (must be cleared by software) 0 = ADC Threshold event is not complete or has not been started bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software)		1 = Device o	scillator failed, c	lock input ha	s changed to I	HFINTOSC (mu	ist be cleared b	y software)
1 = New oscillator is ready for switch (must be cleared by software) (see Figure 4-6 and Figure 0 = New oscillator is not ready for switch or has not been started bit 5-2 Unimplemented: Read as '0' bit 1 ADTIF: ADC Threshold Interrupt Flag bit 1 = ADC Threshold Interrupt has occurred (must be cleared by software) 0 = ADC Threshold event is not complete or has not been started bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software)								
0 = New oscillator is not ready for switch or has not been started bit 5-2 Unimplemented: Read as '0' bit 1 ADTIF: ADC Threshold Interrupt Flag bit 1 = ADC Threshold interrupt has occurred (must be cleared by software) 0 = ADC Threshold event is not complete or has not been started bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software)	bit 6		-	-				
bit 5-2 Unimplemented: Read as '0' bit 1 ADTIF: ADC Threshold Interrupt Flag bit 1 = ADC Threshold interrupt has occurred (must be cleared by software) 0 = ADC Threshold event is not complete or has not been started bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software)							e Figure 4-6 ar	nd Figure 4-7)
bit 1 ADTIF: ADC Threshold Interrupt Flag bit 1 = ADC Threshold interrupt has occurred (must be cleared by software) 0 = ADC Threshold event is not complete or has not been started bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software)				•	or has not bee	n started		
1 = ADC Threshold interrupt has occurred (must be cleared by software) 0 = ADC Threshold event is not complete or has not been started bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software)	bit 5-2	Unimplemen	ited: Read as '0'					
0 = ADC Threshold event is not complete or has not been started bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software)	bit 1							
bit 0 ADIF: ADC Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software)					•	•	e)	
1 = An A/D conversion completed (must be cleared by software)				not complete	or has not bee	en started		
	bit 0							
0 = 1 ne A/D conversion is not complete or has not been started			•	•	-	,		
		0 = 1 ne A/D	conversion is not	complete or	r nas not been	started		
Note 1: The CSWIF interrupt will not wake the system from Sleep. The system will sleep until another i	Note 1:	The CSWIF inter	rupt will not wak	e the systen	n from Sleep.	The system wil	I sleep until an	other interrupt

REGISTER 14-3: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

Note 1: The CSWIF interrupt will not wake the system from Sleep. The system will sleep until another interrupt causes the wake-up.

R/W-0/0	R/W-0/0	R/W-0/0	R-/W0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE
bit 7		·				·	bit (
• • • • • •							
Legend:							
R = Readable		W = Writable		U = Unimplen			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 7	RC2IE: EUS	ART2 Receive	Interrupt Enab	le bit			
	1 = Enabled 0 = Disabled						
bit 6		ART2 Transmit	Interrupt Enab	le bit			
	1 = Enabled 0 = Disabled	1					
bit 5	RC1IE: EUS	ART1 Receive	Interrupt Enab	le bit			
	1 = Enabled 0 = Disabled	ł					
bit 4		ART1 Transmit	Interrupt Enab	ole bit			
	1 = Enabled 0 = Disabled						
bit 3	BCL2IE: MS	SP2 Bus Collisi	on Interrupt E	nable bit			
	1 = Enabled						
h # 0	0 = Disabled			unt Enchla bit			
bit 2	1 = Enabled	chronous Seria	II Port 2 Intern	upt Enable bit			
	0 = Disabled						
bit 1	BCL1IE: MS	SP1 Bus Collisi	on Interrupt E	nable bit			
	1 = Enabled 0 = Disabled						
bit 0		' Ichronous Seria	Il Port 1 Interru	upt Enable bit			
	1 = Enabled						
	0 = Disabled	1					

REGISTER 14-13: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
WPUx7	WPUx6	WPUx5	WPUx4	WPUx3	WPUx2	WPUx1	WPUx0		
bit 7				-			bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
-n/n = Value at POR and BOR/Value at all other Resets									

REGISTER 15-5: WPUx: WEAK PULL-UP REGISTER

bit 7-0

WPUx<7:0>: Weak Pull-up PORTx Control bits

1 = Weak Pull-up enabled

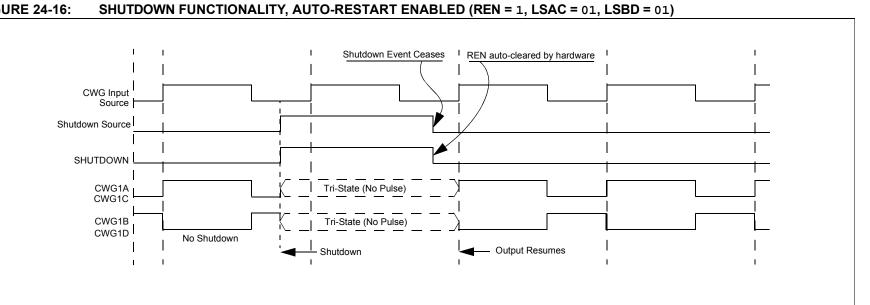
0 = Weak Pull-up disabled

	Dev	/ice								
Name	28 Pins	40/44 Pins	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WPUA	Х	Х	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0
WPUB	Х	Х	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
WPUC	Х	Х	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
WPUD	Х		_	_	_	_	—	_	_	_
		Х	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0
WPUE	Х		—	_	—	_	WPUE3 ⁽¹⁾	_	_	_
		Х	_	_	_	_	WPUE3 ⁽¹⁾	WPUE2	WPUE1	WPUE0

TABLE 15-6: WEAK PULL-UP PORT REGISTERS

Note 1: If MCLRE = 1, the weak pull-up in RE3 is always enabled; bit WPUE3 is not affected.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PIE2	HLVDIE	ZCDIE	_	_	_	—	C2IE	C1IE	181
PIR2	HLVDIF	ZCDIF	_	_	_	—	C2IF	C1IF	173
IPR2	HLVDIP	ZCDIP				—	C2IP	C1IP	189
ZCDCON	ZCDSEN	_	ZCDOUT	ZCDPOL	_	_	ZCDINTP	ZCDINTN	294
PMD2	_	DACMD	ADC MD	_	_	CMP2MD	CMP1MD	ZCDMD	70


TABLE 23-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

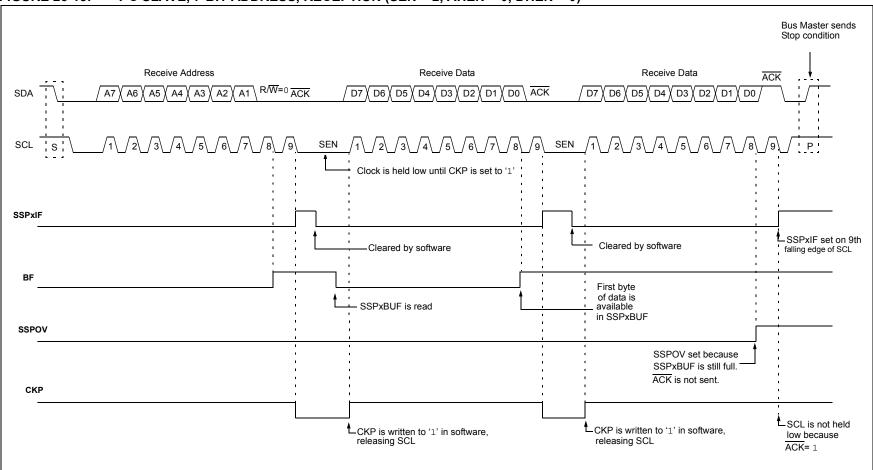

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

TABLE 23-2: SUMMARY OF CONFIGURATION WORD WITH THE ZCD MODULE

Name	Bits	Bit 15/7	Bit 14/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG2	15:8	XINST	_	DEBUG	STVREN	PPS1WAY	ZCD	BORV1	BORV0	24
	7:0	BOREN1	BOREN0	LPBOREN	_	_	_	PWRTE	MCLRE	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the ZCD module.

FIGURE 26-15: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)

PIC18(L)F27/47K40

27.3 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 4.3.2.3 "Internal Oscillator Frequency Adjustment"** for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 27.4.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

27.4 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDxCON register selects 16-bit mode.

The SPxBRGH, SPxBRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXxSTA register and the BRG16 bit of the BAUDxCON register. In Synchronous mode, the BRGH bit is ignored.

Table 27-3 contains the formulas for determining the baud rate. Example 27-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various asynchronous modes have been computed for your convenience and are shown in Table 27-5. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPxBRGH, SPxBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is idle before changing the system clock.

EXAMPLE 27-1: CALCULATING BAUD RATE ERROR

For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

Desired Baud Rate = $\frac{Fosc}{64([SPxBRGH:SPxBRGL] + 1)}$

Solving for SPxBRGH:SPxBRGL:

 $SPBRGH:SPBRGL = \frac{Fosc}{Desired Baud Rate} - 1$ $= \frac{16000000}{9600} - 1$ = [25.042] = 25Calculated Baud Rate = $\frac{16000000}{64(25+1)}$ = 9615Error = $\frac{Calc. Baud Rate - Desired Baud Rate}{Desired Baud Rate}$ $= \frac{(9615 - 9600)}{9600} = 0.16\%$

28.3 Register Definitions: FVR Control

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAF	VR<1:0>	ADFV	R<1:0>
bit 7	·		•				bit
Legend:							
R = Readable		W = Writable		•	mented bit, read		
u = Bit is unc	hanged	x = Bit is unk	nown		at POR and BO		other Resets
'1' = Bit is set	t	'0' = Bit is cle	ared	q = Value dep	pends on condit	ion	
bit 7	1 Fixed Vo	d Voltage Refe Itage Referenc Itage Referenc	e is enabled	bit			
bit 6	1 = Fixed Vo	ed Voltage Re Itage Referenc Itage Referenc	e output is rea	-	enabled		
bit 5	1 = Tempera	erature Indicato ture Indicator i ture Indicator i	s enabled)			
bit 4	1 = VOUT = V	perature Indica /DD - 4VT (Higł /DD - 2VT (Low	n Range)	lection bit ⁽³⁾			
bit 3-2	11 = Compar 10 = Compar 01 = Compar	D>: Comparato ator FVR Buffe ator FVR Buffe ator FVR Buffe ator FVR Buffe	er Gain is 4x, (4 er Gain is 2x, (2 er Gain is 1x, (2.048V) ⁽²⁾	bits		
bit 1-0	11 = ADC FV 10 = ADC FV 01 = ADC FV	: ADC FVR Bu 'R Buffer Gain 'R Buffer Gain 'R Buffer Gain 'R Buffer is off	is 4x, (4.096V is 2x, (2.048V) ⁽²⁾) ⁽²⁾			
	/RRDY is always		cannot exceed	Vdd.			

REGISTER 28-1.	FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER
REGISTER 20-1.	FURGON. FIXED VOLTAGE REFERENCE CONTROL REGISTER

2: Fixed Voltage Reference output cannot exceed VDD.

3: See Section 29.0 "Temperature Indicator Module" for additional information.

_		-							
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	423
ADCON0	ADON	ADCONT	_	ADCS		ADFM	_	ADGO	448
CMxNCH	_	—	_	—			CxNCH<2:0	>	469
CMxPCH	—	—	_	—	_		CxPCH<2:0	>	470
DAC1CON1			_			DAC1R<4	:0>		429

TABLE 28-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

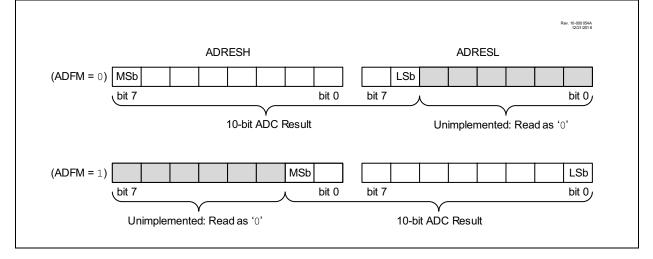
Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

31.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

The ADIF bit is set at the completion of
every conversion, regardless of whether
or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.


This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the ADIE bit of the PIE1 register and the PEIE bit of the INTCON register must both be set and the GIE bit of the INTCON register must be cleared. If all three of these bits are set, the execution will switch to the Interrupt Service Routine.

31.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bits of the ADCON0 register controls the output format.

Figure 31-3 shows the two output formats.

FIGURE 31-3: 10-BIT ADC CONVERSION RESULT FORMAT

PIC18(L)F27/47K40

CLRF	Clear f			CLRWDT	Clear Wat	chdog Time	er
Syntax:	CLRF f {,a}			Syntax:	CLRWDT		
Operands:	$0 \leq f \leq 255$			Operands:	None		
	a ∈ [0,1]			Operation:	$000h \rightarrow WE$	DT,	
Operation:	$\begin{array}{l} 000h \rightarrow f \\ 1 \rightarrow Z \end{array}$				$1 \rightarrow \overline{\text{TO}}$,	OT postscaler,	
Status Affected:	Z				$1 \rightarrow PD$		
Encoding:	0110	101a fff:	f ffff	Status Affected:	TO, PD		
Description:	Clears the co	ontents of the	specified	Encoding:	0000		00 0100
register. If 'a' is '0', the Acces If 'a' is '1', the BSR is GPR bank.		e BSR is used			Watchdog 1	e WDT. Status	esets the pos
		d the extended		Words:	1		
		d, this instruct teral Offset Ac	•	Cycles:	1		
	mode whene	ver f ≤ 95 (5F	h). See Sec-	Q Cycle Activity:			
		Byte-Oriente tructions in I		Q1	Q2	Q3	Q4
		Node " for deta		Decode	No	Process	No
Words:	1				operation	Data	operation
Cycles:	1			Example:	CLRWDT		
Q Cycle Activity:				Before Instruc			
Q1	Q2	Q3	Q4	WDT Co		?	
Decode	Read register 'f'	Process Data	Write register 'f'	After Instructi WDT Co <u>WD</u> T Po	unter =	00h 0	
Example:	CLRF	FLAG REG,	1	TO PD	=	1 1	
Before Instruc FLAG_RI	tion EG = 5Ah						
After Instructic FLAG_RI							

PIC18(L)F27/47K40

NEGF	Negate f						
Syntax:	NEGF f {,a}						
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]						
Operation:	$(\overline{f}) + 1 \rightarrow f$						
Status Affected:	N, OV, C, DC, Z						
Encoding:	0110 110a ffff ffff						
	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.						
Words:	1						
Cycles:	1						
O Cycle Activity							

NOF	•	No Operation						
Synta	ax:	NOP	NOP					
Oper	ands:	None	None					
Oper	ation:	No operati	on					
Statu	s Affected:	None						
Encoding:		0000 1111	0000 xxxx	000 xxx	-	0000 xxxx		
Desc	ription:	No operati	on.					
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
Q1		Q2	Q	Q3		Q4		
	Decode	No	No		No			
		operation	operation operation operation			ration		

Example:

None.

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example: NEGF REG, 1

> Before Instruction REG = 0011 1010 [3Ah] After Instruction REG = 1100 0110 [C6h]

© 2016-2017 Microchip Technology Inc.

35.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, PIC18(L)F2x/4xK40 devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment indirect and indexed addressing operations and the implementation of Indexed Literal Offset Addressing mode for many of the standard PIC18 instructions.

The additional features of the extended instruction set are disabled by default. To enable them, users must set the XINST Configuration bit.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers, or use them for indexed addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- function pointer invocation
- software Stack Pointer manipulation
- manipulation of variables located in a software stack

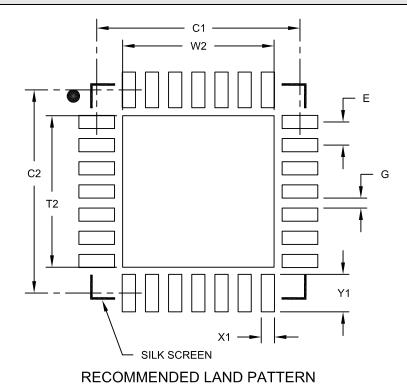
A summary of the instructions in the extended instruction set is provided in Table 35-3. Detailed descriptions are provided in **Section 35.2.2** "**Extended Instruction Set**". The opcode field descriptions in Table 35-1 apply to both the standard and extended PIC18 instruction sets.

Note:	The instruction set extension and the					
	Indexed Literal Offset Addressing mode					
	were designed for optimizing applications					
	written in C; the user may likely never use					
	these instructions directly in assembler.					
	The syntax for these commands is pro-					
	vided as a reference for users who may be					
	reviewing code that has been generated					
	by a compiler.					

35.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of indexed addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. MPASM[™] Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byteoriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 35.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".


Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

Mnemonic, Operands		Description	Cycles	16-Bit Instruction Word				Status
		nds		MSb			LSb	Affected
ADDFSR	f, k	Add literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add literal to FSR2 and return	2	1110	1000	11kk	kkkk	None
CALLW		Call subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z _s , f _d	Move z _s (source) to 1st word	2	1110	1011	0zzz	ZZZZ	None
		f _d (destination) 2nd word		1111	ffff	ffff	ffff	
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	lzzz	ZZZZ	None
		z _d (destination) 2nd word		1111	xxxx	XZZZ	ZZZZ	
PUSHL	k	Store literal at FSR2,	1	1110	1010	kkkk	kkkk	None
		decrement FSR2						
SUBFSR	f, k	Subtract literal from FSR	1	1110	1001	ffkk	kkkk	None
SUBULNK	k	Subtract literal from FSR2 and	2	1110	1001	11kk	kkkk	None
		return						

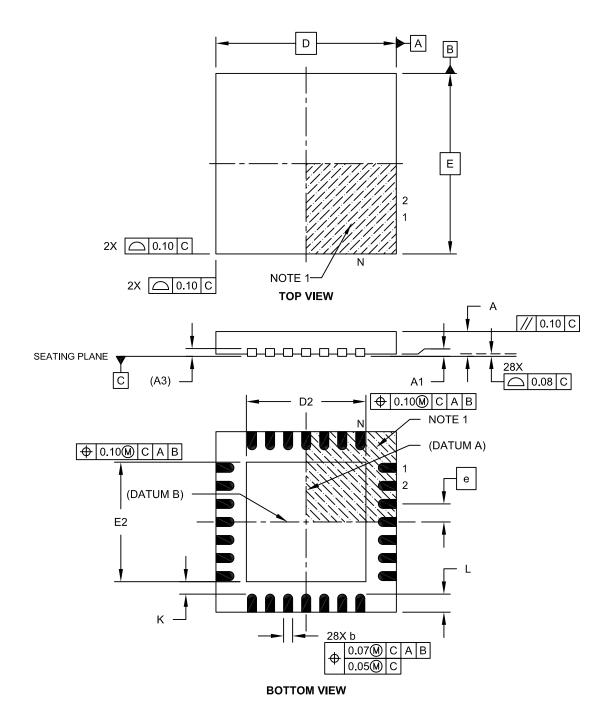
TABLE 35-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		MILLIM	ETERS	
Dimensior	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

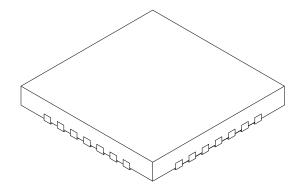
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	ľ	MILLIMETER	S		
Dimens	MIN	NOM	MAX		
Number of Pins	N		28		
Pitch	е		0.40 BSC		
Overall Height	A	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.127 REF			
Overall Width	E	4.00 BSC			
Exposed Pad Width	E2	2.55 2.65 2.75			
Overall Length	D	4.00 BSC			
Exposed Pad Length	D2	2.55	2.65	2.75	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30 0.40 0.50			
Contact-to-Exposed Pad	K	0.20			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2 Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2