

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K × 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f47k40-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-5: CONFIGURATION WORD 3L (30 0004h): WINDOWED WATCHDOG TIMER

U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	WDTE	<1:0>		WDTCPS<4:0>			
bit 7							bit 0

Legend: P = Peadable bit W = W

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '1'
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 Unimplemented: Read as '1'

bit 6-5 **WDTE<1:0>:** WDT Operating Mode bits

- 11 = WDT enabled regardless of Sleep; SEN bit in WDTCON0 is ignored
- 10 = WDT enabled while Sleep = 0, suspended when Sleep = 1; SEN bit in WDTCON0 is ignored
- 01 = WDT enabled/disabled by SEN bit in WDTCON0
- 00 = WDT disabled, SEN bit in WDTCON0 is ignored

bit 4-0 WDTCPS<4:0>: WDT Period Select bits

		0				
WDTCPS	Value	Divider Ra	tio	Typical Time Out (Fɪʌ = 31 kHz)	of WDTPS?	
11111	01011	1:65536	2 ¹⁶	2s	Yes	
10011	10011		-			
 11110	 11110	1:32	2 ⁵	1 ms	No	
10010	10010	1:8388608	2 ²³	256s		
10001	10001	1:4194304	2 ²²	128s		
10000	10000	1:2097152	2 ²¹	64s		
01111	01111	1:1048576	2 ²⁰	32s		
01110	01110	1:524299	2 ¹⁹	16s		
01101	01101	1:262144	2 ¹⁸	8s		
01100	01100	1:131072	2 ¹⁷	4s		
01011	01011	1:65536	2 ¹⁶	2s		
01010	01010	1:32768	2 ¹⁵	1s		
01001	01001	1:16384	2 ¹⁴	512 ms	No	
01000	01000	1:8192	2 ¹³	256 ms		
00111	00111	1:4096	2 ¹²	128 ms		
00110	00110	1:2048	2 ¹¹	64 ms		
00101	00101	1:1024	2 ¹⁰	32 ms		
00100	00100	1:512	2 ⁹	16 ms		
00011	00011	1:256	2 ⁸	8 ms		
00010	00010	1:128	2 ⁷	4 ms		
00001	00001	1:64	2 ⁶	2 ms		
00000	00000	1:32	2 ⁵	1 ms		

R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	U-0	R-q/q	
EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'		
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value	at POR and BC	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared	q = Reset va	lue is determine	ed by hardware	•	
bit 7	EXTOR: EXT	OSC (external)	Oscillator Re	ady bit				
	1 = The os	cillator is ready	to be used					
	0 = Ine osc	Toologies not en	abled, or is no	t yet ready to t	be used			
bit 6	HFOR: HFIN	TOSC Oscillato	or Ready bit					
	0 = The oscillation	cillator is not ena	abled, or is no	t vet readv to b	be used			
bit 5	MFOR: MFIN	ITOSC Oscillato	or Ready	- , , ,				
	1 = The osc	llator is ready to be used						
	0 = The osc	illator is not ena	abled, or is no	t yet ready to b	be used			
bit 4	LFOR: LFINT	FOSC Oscillator	r Ready bit					
	1 = The oscillation	cillator is ready	to be used	t vot roodv to b				
hit 2		dony (Timor1) O	ableu, or is no	i yel reauy lo i. Whit	le useu			
DIL 3	1 = The ose	cillator is ready	to be used	y Dit				
	0 = The oscillation	cillator is not en	abled, or is no	ot yet ready to	be used			
bit 2	ADOR: ADC	Oscillator Read	dy bit					
	1 = The os	cillator is ready	to be used					
	0 = The osc	cillator is not en	abled, or is no	ot yet ready to	be used			
bit 1	Unimplemen	nted: Read as '	0'					
bit 0	PLLR: PLL is	Ready bit						
	1 = Ine PL	L IS ready to be	e used I the required	input source is	a not ready or t	he PLL is not k	ocked	
			, the required		Shot ready, of t		Juneu.	

REGISTER 4-4: OSCSTAT: OSCILLATOR STATUS REGISTER 1

	SPOREN	Davias Mada	BOB Mode	Instruction Execution upon:			
DURENTI.02	SBOREN	Device Mode	BOR WOUL	Release of POR	Wake-up from Sleep		
11	X	х	Active	Wait for release of BOR (BORRDY = 1)	Begins immediately		
10	x	Awake	Active	Wait for release of BOR (BORRDY = 1)	N/A		
10		Sleep	Hibernate	N/A	Wait for release of BOR (BORRDY = 1)		
0.1	1	Х	Active	Wait for release of BOR	Pogina immodiately		
UL	0	X Hibernate	Hibernate	(BORRDY = 1)	begins infinediately		
00	Х	Х	Disabled	Begins immediately			

TABLE 8-1: BOR OPERATING MODES

FIGURE 8-3: BROWN-OUT SITUATIONS

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form of indexed addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

10.6.3.3 Operations by FSRs on FSRs

Indirect addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that FSR0H:FSR0L contains FE7h, the address of INDF1. Attempts to read the value of the INDF1 using INDF0 as an operand will return 00h. Attempts to write to INDF1 using INDF0 as the operand will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to either the INDF2 or POSTDEC2 register will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, particularly if their code uses indirect addressing.

Similarly, operations by indirect addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution that they do not inadvertently change settings that might affect the operation of the device.

10.7 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different; this is due to the introduction of a new addressing mode for the data memory space.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect addressing with FSR0 and FSR1 also remain unchanged.

10.7.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of indirect addressing using the FSR2 register pair within Access RAM. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented instructions – can invoke a form of indexed addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset, or Indexed Literal Offset mode.

When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0) and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in direct addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

10.7.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use direct addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they do not use the Access Bank (Access RAM bit is '1'), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is shown in Figure 10-7.

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 35.2.1 "Extended Instruction Syntax"**.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
WPUx7	WPUx6	WPUx5	WPUx4	WPUx3	WPUx2	WPUx1	WPUx0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
'1' = Bit is set	1' = Bit is set '0' = Bit is cleared			x = Bit is unknown					
-n/n = Value at POR and BOR/Value at all other Resets									

REGISTER 15-5: WPUx: WEAK PULL-UP REGISTER

bit 7-0

WPUx<7:0>: Weak Pull-up PORTx Control bits

1 = Weak Pull-up enabled

0 = Weak Pull-up disabled

	De	vice								
Name	28 Pins	40/44 Pins	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WPUA	Х	Х	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0
WPUB	Х	Х	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
WPUC	Х	Х	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
WPUD	Х		—	—	—	—	—	_	—	—
		Х	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0
WPUE	Х		_	—	—	—	WPUE3 ⁽¹⁾	—	—	_
		Х	_				WPUE3 ⁽¹⁾	WPUE2	WPUE1	WPUE0

TABLE 15-6: WEAK PULL-UP PORT REGISTERS

Note 1: If MCLRE = 1, the weak pull-up in RE3 is always enabled; bit WPUE3 is not affected.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0
IOCEP	—	—	—	—	IOCEP3 ⁽¹⁾	—	—	_
IOCEN					IOCEN3 ⁽¹⁾			
IOCEF	—	—	—	—	IOCEF3 ⁽¹⁾	—	—	_

TABLE 16-1: IOC REGISTERS

Note 1: If MCLRE = 1 or LVP = 1, RE3 port functionality is disabled and IOC on RE3 is not available.

TABLE 16-2:	SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	170
IOCxF	IOCxF7	IOCxF6	IOCxF5	IOCxF4	IOCxF3	IOCxF2	IOCxF1	IOCxF0	211
IOCxN	IOCxN7	IOCxN6	IOCxN5	IOCxN4	IOCxN3	IOCxN2	IOCxN1	IOCxN0	211
IOCxP	IOCxP7	IOCxP6	IOCxP5	IOCxP4	IOCxP3	IOCxP2	IOCxP1	IOCxP0	211

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

PIC18(L)F27/47K40

PIC18(L)F27/47K40

18.0 TIMER0 MODULE

Timer0 module is an 8/16-bit timer/counter with the following features:

- 16-bit timer/counter
- 8-bit timer/counter with programmable period
- Synchronous or asynchronous operation
- Selectable clock sources
- · Programmable prescaler
- · Programmable postscaler
- · Operation during Sleep mode
- · Interrupt on match or overflow
- Output on I/O pin (via PPS) or to other peripherals

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PSYNC	CPOL	CSYNC			MODE<4:0>		
bit 7	L.						bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimpler	nented bit, read	d as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is s	set	'0' = Bit is clea	ared				
L:1 7				. En abla bij(1 2)		
Dit 7	1 = TMRx Pr	erx Prescaler S rescaler Output	synchronization	h Enable bit ^{(*, -} ed to Fosc/4	,		
	0 = TMRx Pr	rescaler Output	is not synchro	onized to Fosc/4	4		
bit 6	CPOL: Timer	x Clock Polarit	y Selection bit	(3)			
	1 = Falling e	dge of input clo	ock clocks time	r/prescaler			
bit 5		ary Clock Sync	hronization Er	bable bit(4, 5)			
DIL J	1 = ON regis	ster bit is synch	ronized to TMI	R2 clk input			
	0 = ON regis	ster bit is not sy	nchronized to	TMR2_clk inpu	t		
bit 4-0	MODE<4:0>:	Timerx Contro	Mode Select	ion bits ^(6, 7)			
	See Table 20-	1 for all operatin	ng modes.				
Note 1:	Setting this bit er	sures that read	ding TMRx will	return a valid o	lata value.		
2:	When this bit is ':	1', Timer2 cann	ot operate in S	Sleep mode.			
3:	CKPOL should n	ot be changed	while ON = 1.				
4:	Setting this bit er	nsures glitch-fre	e operation w	hen the ON is e	enabled or disa	bled.	
5:	When this bit is se	et then the time	r operation will	be delayed by t	wo TMRx input	clocks after the	e ON bit is set.
6:	Unless otherwise affecting the value	e indicated, all e of TMRx).	modes start u	ipon ON = 1 a	nd stop upon (ON = 0 (stops	occur without
7:	When TMRx = P	Rx, the next clo	ock clears TMF	Rx, regardless o	of the operating	mode.	

REGISTER 20-2: TxHLT: TIMERx HARDWARE LIMIT CONTROL REGISTER

22.0 PULSE-WIDTH MODULATION (PWM)

The PWM module generates a Pulse-Width Modulated signal determined by the duty cycle, period, and resolution that are configured by the following registers:

- PRx
- TxCON
- PWMxDCH
- PWMxDCL
- PWMxCON

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the PWMx pin. Each PWM module can select the timer source that controls the module. Each module has an independent timer selection which can be accessed using the CCPTMRS register (Register 21-2). Please note that the PWM mode operation is described with respect to TMR2 in the following sections.

Figure 22-1 shows a simplified block diagram of PWM operation.

Figure 22-2 shows a typical waveform of the PWM signal.

FIGURE 22-1: SIMPLIFIED PWM BLOCK DIAGRAM

FIGURE 22-2:

PWM OUTPUT

For a step-by-step procedure on how to set up this module for PWM operation, refer to Section 22.1.9 "Setup for PWM Operation using PWMx Pins".

In Forward Full-Bridge mode (MODE<2:0> = 010), CWG1A is driven to its active state, CWG1B and CWG1C are driven to their inactive state, and CWG1D is modulated by the input signal, as shown in Figure 24-7.

In Reverse Full-Bridge mode (MODE<2:0> = 011), CWG1C is driven to its active state, CWG1A and CWG1D are driven to their inactive states, and CWG1B is modulated by the input signal, as shown in Figure 24-7. In Full-Bridge mode, the dead-band period is used when there is a switch from forward to reverse or viceversa. This dead-band control is described in Section 24.6 "Dead-Band Control", with additional details in Section 24.7 "Rising Edge and Reverse Dead Band" and Section 24.8 "Falling Edge and Forward Dead Band". Steering modes are not used with either of the Full-Bridge modes. The mode selection may be toggled between forward and reverse toggling the MODE<0> bit of the CWG1CON0 while keeping MODE<2:1> static, without disabling the CWG module.

DEAD-BAND OPERATION, CWG1DBR = 0x01, CWG1DBF = 0x02

PIC18(L)F27/47K40

26.8.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDA from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 26-12 shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the module samples the SDA line low before asserting it low. This does not conform to the I^2C Specification that states no bus collision can occur on a Start.

26.8.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low-to-high state while the SCL line is high.

Note: At least one SCL low time must appear before a Stop is valid, therefore, if the SDA line goes low then high again while the SCL line stays high, only the Start condition is detected.

26.8.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 26-13 shows the wave form for a Restart condition.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/\overline{W} bit set. The slave logic will then hold the clock and prepare to clock out data.

After a full match with R/\overline{W} clear in 10-bit mode, a prior match flag is set and maintained until a Stop condition, a high address with R/\overline{W} clear, or high address match fails.

26.8.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPxCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

FIGURE 27-10: SYNCHRONOUS TRANSMISSION

28.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- · ADC positive reference
- Comparator input
- Digital-to-Analog Converter (DAC)

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

Note: Fixed Voltage Reference output cannot exceed VDD.

28.1 Independent Gain Amplifiers

The output of the FVR, which is connected to the ADC, Comparators, and DAC, is routed through two independent programmable gain amplifiers. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels. The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 31.0 "Analog-to-Digital Converter with Computation (ADC2) Module"** for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and comparator module. Reference **Section 30.0 "5-Bit Digital-to-Analog Converter (DAC) Module**" and **Section 32.0 "Comparator Module**" for additional information.

28.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set.

FIGURE 28-1: VOLTAGE REFERENCE BLOCK DIAGRAM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	170
PIE1	OSCFIE	CSWIE	_	_	_	_	ADTIE	ADIE	180
PIR1	OSCFIF	CSWIF	_	_	_	_	ADTIF	ADIF	172
ADCON0	ADON	ADCON	-	ADCS	_	ADFM	—	ADGO	448
ADCON1	ADPPOL	ADIPEN	ADGPOL	—	_	—	—	ADDSEN	449
ADCON2	ADPSIS	A	DCRS<2:0	>	ADACLR		ADMD<2:0>	>	450
ADCON3	—	A	DCALC<2:0	>	ADSOI	A	DTMD<2:0	>	451
ADACT	—	—	—	—		ADAC	T<4:0>		450
ADRESH				ADRES	SH<7:0>				458, 458
ADRESL				ADRES	SL<7:0>				458, 459
ADPREVH				ADPRE	V<15:8>				459
ADPREVL				ADPRE	EV<7:0>				460
ADACCH				ADACO	C<15:8>				460
ADACCL				ADAC	C<7:0>				460
ADSTPTH				ADSTP	T<15:8>				461
ADSTPT				ADSTR	PT<7:0>				461
ADERRL				ADER	R<7:0>				462
ADLTHH	ADLTH<15:8>								462
ADLTHL	ADLTH<7:0>								462
ADUTHH	ADUTH<15:8>							463	
ADUTHL	ADUTH<7:0>						463		
ADSTAT	ADAOV	ADUTHR	ADLTHR	ADLTHR ADMATH ADSTAT<3:0>					
ADCLK	—	—			ADCS	S<5:0>			453
ADREF	—	—	—	ADNREF	—	—	ADPRE	F<1:0>	453
ADPCH	—	—			ADPC	H<5:0>			454
ADPRE				ADPR	E<7:0>				455
ADACQ				ADAC	Q<7:0>				455
ADCAP	— — — ADCAP<4:0>						456		
ADRPT				ADRP	T<7:0>				456
ADCNT				ADCN	T<7:0>				457
				ADFLT	R<15:8>				457
			TOEN	ADELT	K :U	(D<1.0)			457
	FVREN	FVRRUY	ISEN	ISRNG	CDAFV	NC1P-4-0		<<1:0>	423
		HEOR	MEOR	LEOR	SOR			DIID	429
00001A1	LATOR	TH UK		LIUK	50K	ADON			39

TABLE 31-5:	SUMMARY OF REGISTERS ASSOCIATED WITH ADC
-------------	--

Legend: - = unimplemented read as '0'. Shaded cells are not used for the ADC module.

32.9 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 37-15 and Table 37-17 for more details.

32.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 32-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

35.1.1 STANDARD INSTRUCTION SET

ADD	DLW	ADD litera	al to W					
Synta	ax:	ADDLW	ADDLW k					
Oper	ands:	$0 \leq k \leq 255$						
Oper	ation:	$(W) + k \rightarrow V$	$(W) + k \to W$					
Statu	is Affected:	N, OV, C, D	N, OV, C, DC, Z					
Enco	oding:	0000	1111	kkkk	kkkk			
Desc	ription:	The conten 8-bit literal ' W.	The contents of W are added to the 8-bit literal 'k' and the result is placed in W.					
Word	ls:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Proce Data	ess a	Write to W			
<u>Exan</u>	nple: Before Instruc W = After Instructic W =	ADDLW 1 tion 10h on 25h	.5h					

ADDWF	ADD W to f					
Syntax:	ADDWF f {,d {,a}}					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$					
Operation:	(W) + (f) \rightarrow dest					
Status Affected:	N, OV, C, DC, Z					
Encoding:	0010 01da ffff ffff					
Description:	Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '0', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.					
Words:	1					
Cycles:	1					

Q Cycle Activity:								
	Q1	Q2		G	23	Q4		
	Decode		Read register 'f'		ess ita	Write to destination		
Example:		AI	DDWF	REG,	0, 0			
	Before Instruc	tion						
	W REG After Instructio	= = 0n	17h 0C2h					
	W REG	= =	0D9h 0C2h					

Note:	All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for us	se in
	symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argumen	t(s).

PIC18(L)F27/47K40

LFSR		Load FSF	R		MOVF	Move f				
Synta	ax:	LFSR f, k Syntax: MOVF f {,d {,a}}								
$\begin{array}{llllllllllllllllllllllllllllllllllll$			Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$					
Oper	ation:	$k\toFSRf$				a ∈ [0,1]				
Statu	s Affected:	None			Operation:	$f \to dest$	$f \rightarrow dest$			
Enco	ding:	1110 1111	1110 00 0000 k ₇ k	ff k ₁₁ kkk kk kkkk	Status Affected: Encoding:	N, Z	00da ff	ff ffff		
Desc	ription:	The 12-bit File Select	literal 'k' is loa Register poin	ded into the ted to by 'f'.	Description:	The contents of register 'f' are moved to a destination dependent upon the				
Word	ls:	2				status of 'd'	. If 'd' is '0', th	e result is		
Cycle	es:	2				placed in vv. if 'd' is '1', the res placed back in register 'f' (def:				
QC	ycle Activity:					Location 'f'	can be anywh	ere in the		
	Q1	Q2	Q3	Q4		256-byte ba	ank. he Access Ba	nk is selected		
	Decode	Read literal 'k' MSB	Process Data	Write literal 'k' MSB to FSRfH		If 'a' is '1', ti GPR bank. If 'a' is '0' a set is enabl	If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction			
Decode Read literal Process Write literal 'k' LSB Data 'k' to FSRfL				in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 35.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Lit-						
	After Instruction	on,				eral Offset	Mode" for de	tails.		
	FSR2H	= 03	h		Words:	1				
	FSR2L	= AE	3h		Cycles:	1				
					Q Cycle Activity:					
					Q1	Q2	Q3	Q4		
					Decode	Read register 'f'	Process Data	Write W		
					Example:	MOVF RI	EG, 0, 0			
					Before Instru REG W	ction = 22 = FF	h 'n			
					After Instruct REG W	ion = 22 = 22	h h			

37.4 AC Characteristics

