

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6К х 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f47k40-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.0 PERIPHERAL MODULE DISABLE (PMD)

Sleep, Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume some amount of power. There may be cases where the application needs what these modes do not provide: the ability to allocate limited power resources to the CPU while eliminating power consumption from the peripherals.

The PIC18(L)F2x/4xK40 family addresses this requirement by allowing peripheral modules to be selectively enabled or disabled, placing them into the lowest possible power mode.

For legacy reasons, all modules are ON by default following any Reset.

7.1 Disabling a Module

Disabling a module has the following effects:

- All clock and control inputs to the module are suspended; there are no logic transitions, and the module will not function.
- The module is held in Reset.
- · Any SFR becomes "unimplemented"
 - Writing is disabled
 - Reading returns 00h
- I/O functionality is prioritized as per Section 15.1, I/O Priorities
- All associated Input Selection registers are also disabled

7.2 Enabling a Module

When the PMD register bit is cleared, the module is re-enabled and will be in its Reset state (Power-on Reset). SFR data will reflect the POR Reset values.

Depending on the module, it may take up to one full instruction cycle for the module to become active. There should be no interaction with the module (e.g., writing to registers) for at least one instruction after it has been re-enabled.

7.3 Effects of a Reset

Following any Reset, each control bit is set to '0', enabling all modules.

7.4 System Clock Disable

Setting SYSCMD (PMD0, Register 7-1) disables the system clock (Fosc) distribution network to the peripherals. Not all peripherals make use of SYSCLK, so not all peripherals are affected. Refer to the specific peripheral description to see if it will be affected by this bit.

Register Definitions: Windowed Watchdog Timer Control 9.1

U-0	U-0	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W-0/0		
_	-			WDTPS<4:0>			SEN		
pit 7	·						bit		
_egend:									
R = Readat	ole bit	W = Writable b	bit	U = Unimplem	nented bit, read	as '0'			
u = Bit is ur	nchanged	x = Bit is unkno	own	-n/n = Value a	t POR and BO	R/Value at all oth	ner Resets		
'1' = Bit is set '0' = Bit is cleared		red	q = Value dep	ends on condit	ion				
bit 7-6	Unimpleme	ented: Read as '0	3						
oit 5-1	WDTPS<4:	0>: Watchdog Tin	ner Prescale S	elect bits ⁽¹⁾					
	Bit Value =	Prescale Rate							
	11111 = F	Reserved. Results	in minimum in	terval (1:32)					
	•								
	•								
	• 10011 = F	Reserved. Results	in minimum in	terval (1·32)					
	10011 1			(1.02)					
10010 =		1:8388608 (2 ²³) (Interval 256s nominal)							
	10001 = 1	1:4194304 (2 ²²) (Interval 128s nominal) 1:2097152 (2 ²¹) (Interval 64s nominal)							
	10000 = 1	1:2097152 (2 ⁻¹) (Interval 64s nominal)							
	01111 = 1	:1048576 (2 ²⁰) (Interval 32s nominal) :524288 (2 ¹⁹) (Interval 16s nominal)							
	01110 = 1 01101 = 1	1:262144 (2 ¹⁸) (Interval 8s nominal)							
	01100 = 1	1:131072 (2 ¹⁷) (Interval 4s nominal)							
		1:65536 (Interval 2s nominal) (Reset value)							
		1:32768 (Interval 1s nominal)							
		1:16384 (Interval 512 ms nominal)							
		1:8192 (Interval 256 ms nominal)							
		= 1:4096 (Interval 128 ms nominal) = 1:2048 (Interval 64 ms nominal)							
		:1024 (Interval 32							
		:512 (Interval 16)							
		:256 (Interval 8 m							
		1:128 (Interval 4 ms nominal)							
		:64 (Interval 2 ms	,						
		:32 (Interval 1 ms							
oit O		are Enable/Disab	le for Watchdo	g Timer bit					
		$\frac{\text{WDTE}<1:0>=1:x}{\text{WDTE}<1:0>=1:x}$							
		This bit is ignored. f WDTE<1:0> = 01:							
	1 = WDT is								
	0 = WDT is								
	If WDTE<1								
	This bit is ig								

WINTCOND, WATCHING TIMED CONTROL DEGISTED A DECISTED 0 1.

- - 2: When WDTCPS <4:0> in CONFIG3L = 11111, the Reset value of WDTPS<4:0> is 01011. Otherwise, the Reset value of WDTPS<4:0> is equal to WDTCPS<4:0> in CONFIG3L.
 - 3: When WDTCPS <4:0> in CONFIG3L \neq 11111, these bits are read-only.

U-0	R/W ⁽³⁾ -q/q ⁽¹⁾	R/W ⁽³⁾ -q/q ⁽¹⁾	R/W ⁽³⁾ -q/q ⁽¹⁾	U-0	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾
-		WDTCS<2:0>		-		WINDOW<2:0>	
bit 7				•			bit 0
Legend:							
R = Readable bit		W = Writable	e bit	U = Unimple	mented bit, read	as '0'	
u = Bit is unchanged		x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all othe	er Resets

q = Value depends on condition

REGISTER 9-2: WDTCON1: WATCHDOG TIMER CONTROL REGISTER 1

bit 7	Unimplemented: Read as '0'

'1' = Bit is set

bit 6-4 WDTCS<2:0>: Watchdog Timer Clock Select bits

'0' = Bit is cleared

111 = Reserved

•

•

- 010 = Reserved
- 001 = MFINTOSC 31.25 kHz
- 000 = LFINTOSC 31 kHz
- bit 3 Unimplemented: Read as '0'
- bit 2-0 WINDOW<2:0>: Watchdog Timer Window Select bits

WINDOW<2:0>	Window delay Percent of time	Window opening Percent of time
111	N/A	100
110	12.5	87.5
101	25	75
100	37.5	62.5
011	50	50
010	62.5	37.5
001	75	25
000	87.5	12.5

- Note 1: If WDTCCS <2:0> in CONFIG3H = 111, the Reset value of WDTCS<2:0> is 000.
 - 2: The Reset value of WINDOW<2:0> is determined by the value of WDTCWS<2:0> in the CONFIG3H register.
 - **3:** If WDTCCS<2:0> in CONFIG3H \neq 111, these bits are read-only.
 - 4: If WDTCWS<2:0> in CONFIG3H \neq 111, these bits are read-only.

9.7 Operation During Sleep

When the device enters Sleep, the WWDT is cleared. If the WWDT is enabled during Sleep, the WWDT resumes counting. When the device exits Sleep, the WWDT is cleared again.


The WWDT remains clear until the Oscillator Start-up Timer (OST) completes, if enabled. See **Section 4.3.1.3 "Oscillator Start-up Timer (OST)**" for more information on the OST.

When a WWDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON0 register can also be used. See **Section 10.0 "Memory Organization"** for more information.

TABLE 9-2: WWDT CLEARING CONDITIONS

Conditions	WWDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SEN = 0	
WDTE<1:0> = 10 and enter Sleep	Cleared
CLRWDT Command	Cleared
Oscillator Fail Detected	
Exit Sleep + System Clock = SOSC, EXTRC, INTOSC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST
Change INTOSC divider (IRCF bits)	Unaffected

FIGURE 9-2: WINDOW PERIOD AND DELAY

© 2016-2017 Microchip Technology Inc.

10.3.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as either two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of two and the LSb will always read '0' (see Section 10.1.1 "Program Counter").

Figure 10-3 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 10-3 shows how the instruction GOTO 0006h is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 35.0 "Instruction Set Summary" provides further details of the instruction set.

10.3.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LFSR. In all cases, the second word of the instruction always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 10-4 shows how this works.

Note: See Section 10.8 "PIC18 Instruction Execution and the Extended Instruction Set" for information on two-word instructions in the extended instruction set.

FIGURE 10-3: INSTRUCTIONS IN PROGRAM MEMORY

			LSB = 1	LSB = 0	Word Address \downarrow
	Program N	lemory			000000h
	Byte Locat	ions \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	0006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456	h C1h	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

EXAMPLE 10-4: TWO-WORD INSTRUCTIONS

CASE 1:			
Object Code	Source Code		
0110 0110 0000 0000	TSTFSZ REG	1 ;	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG	1, REG2 ;	; No, skip this word
1111 0100 0101 0110		;	Execute this word as a NOP
0010 0100 0000 0000	ADDWF REG	3;	continue code
CASE 2:			
Object Code	Source Code		
0110 0110 0000 0000	TSTFSZ REG	1 ;	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG	1, REG2 ;	Yes, execute this word
1111 0100 0101 0110		;	; 2nd word of instruction
0010 0100 0000 0000	ADDWF REG	3;	continue code

11.1.5 ERASING PROGRAM FLASH MEMORY

The minimum erase block is 32 or 64 words (refer to Table 11-3). Only through the use of an external programmer, or through ICSP™ control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported.

For example, when initiating an erase sequence from a microcontroller with erase row size of 32 words, a block of 32 words (64 bytes) of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. The TBLPTR<5:0> bits are ignored.

The NVMCON1 register commands the erase operation. The NVMREG<1:0> bits must be set to point to the Program Flash Memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

The NVM unlock sequence described in **Section 11.1.4 "NVM Unlock Sequence**" should be used to guard against accidental writes. This is sometimes referred to as a long write.

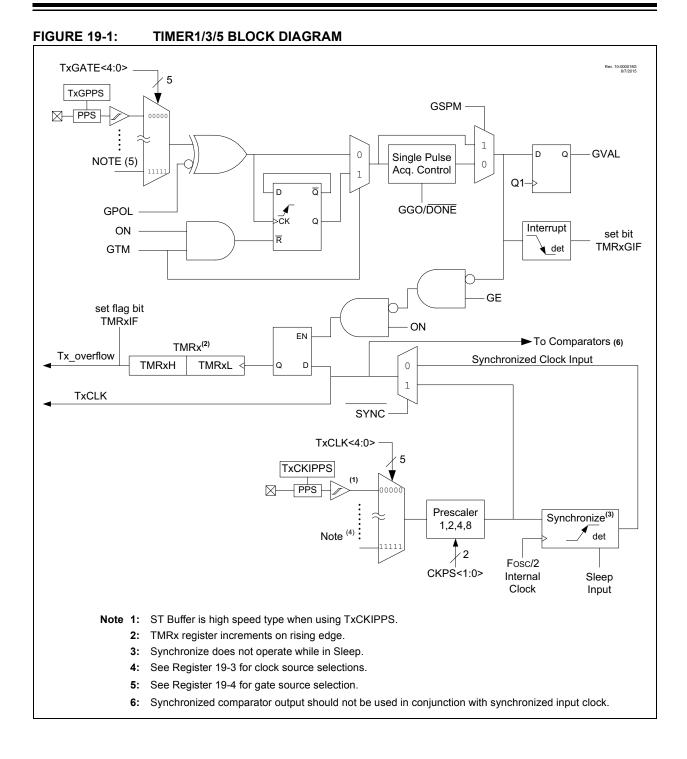
A long write is necessary for erasing the internal Flash. Instruction execution is halted during the long write cycle. The long write is terminated by the internal programming timer.

11.1.5.1 Program Flash Memory Erase Sequence

The sequence of events for erasing a block of internal program memory is:

- 1. NVMREG bits of the NVMCON1 register point to PFM
- 2. Set the FREE and WREN bits of the NVMCON1 register
- 3. Perform the unlock sequence as described in Section 11.1.4 "NVM Unlock Sequence"

If the PFM address is write-protected, the WR bit will be cleared and the erase operation will not take place, WRERR is signaled in this scenario.


The operation erases the memory row indicated by masking the LSBs of the current TBLPTR.

While erasing PFM, CPU operation is suspended and it resumes when the operation is complete. Upon completion the WR bit is cleared in hardware, the NVMIF is set and an interrupt will occur if the NVMIE bit is also set.

Write latch data is not affected by erase operations and WREN will remain unchanged.

Note 1: If a write or erase operation is terminated by an unexpected event, WRERR bit will be set which the user can check to decide whether a rewrite of the location(s) is needed.

- 2: WRERR is set if WR is written to '1' while TBLPTR points to a write-protected address.
- **3:** WRERR is set if WR is written to '1' while TBLPTR points to an invalid address location (Table 10-2 and Table 11-1).

19.9 Timer1/3/5 Interrupt

The Timer1/3/5 register pair (TMRxH:TMRxL) increments to FFFFh and rolls over to 0000h. When Timer1/3/5 rolls over, the Timer1/3/5 interrupt flag bit of the PIR4 register is set. To enable the interrupt-on-rollover, you must set these bits:

- TMRxON bit of the TxCON register
- TMRxIE bits of the PIE4 register
- PEIE/GIEL bit of the INTCON register
- · GIE/GIEH bit of the INTCON register

The interrupt is cleared by clearing the TMRxIF bit in the Interrupt Service Routine.

For more information on selecting high or low priority status for the Timer1/3/5 Overflow Interrupt, see **Section 14.0 "Interrupts"**.

Note: The TMRxH:TMRxL register pair and the TMRxIF bit should be cleared before enabling interrupts.

19.10 Timer1/3/5 Operation During Sleep

Timer1/3/5 can only operate during Sleep when set up in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMRxON bit of the TxCON register must be set
- TMRxIE bit of the PIE4 register must be set
- PEIE/GIEL bit of the INTCON register must be set
- TxSYNC bit of the TxCON register must be set
- Configure the TMRxCLK register for using secondary oscillator as the clock source
- Enable the SOSCEN bit of the OSCEN register (Register 4-7)

The device will wake-up on an overflow and execute the next instruction. If the GIE/GIEH bit of the INTCON register is set, the device will call the Interrupt Service Routine.

The secondary oscillator will continue to operate in Sleep regardless of the $\overline{\text{TxSYNC}}$ bit setting.

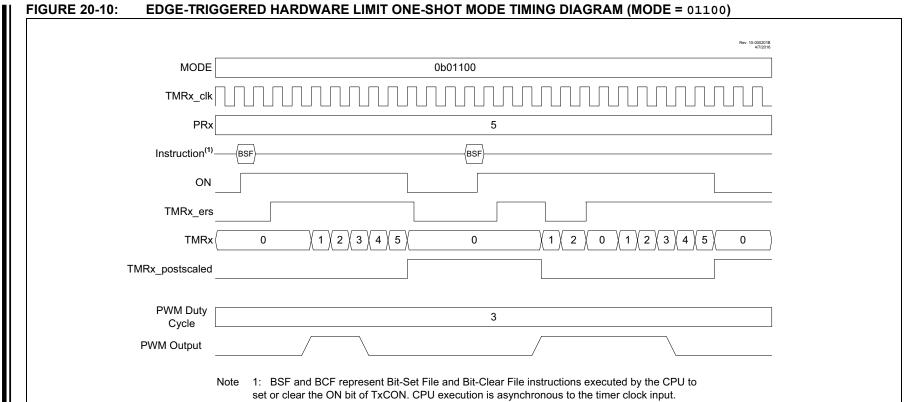
19.11 CCP Capture/Compare Time Base

The CCP modules use the TMRxH:TMRxL register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMRxH:TMRxL register pair is copied into the CCPRxH:CCPRxL register pair on a configured event.

In Compare mode, an event is triggered when the value in the CCPRxH:CCPRxL register pair matches the value in the TMRxH:TMRxL register pair. This event can be a Special Event Trigger.

For more information, see Section 21.0 "Capture/Compare/PWM Module".


19.12 CCP Special Event Trigger

When any of the CCP's are configured to trigger a special event, the trigger will clear the TMRxH:TMRxL register pair. This special event does not cause a Timer1/3/5 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPRxH:CCPRxL register pair becomes the period register for Timer1/3/5.

Timer1/3/5 should be synchronized and FOSC/4 should be selected as the clock source in order to utilize the Special Event Trigger. Asynchronous operation of Timer1/3/5 can cause a Special Event Trigger to be missed.

In the event that a write to TMRxH or TMRxL coincides with a Special Event Trigger from the CCP, the write will take precedence.

© -2017 Microchip Technology Inc.

PIC18(L)F27/47K40

SHUTDOWN bit 7 Legend: R = Readable bit	REN	LSBD)<1:0>	LSAC			
Legend:				20/10	<1:0>	—	—
							bit C
		W = Writable	bit	II = Unimplem	ented bit, read	as '0'	
u = Bit is unchang		x = Bit is unk			t POR and BOF		thar Resets
'1' = Bit is set	geu	0' = Bit is cle			set/cleared by		
q = Value depend	ls on condition		areu		sercleared by	naruware	
bit 7 bit 6	<pre>SHUTDOWN: Auto-Shutdown Event Status bit^(1,2) 1 = An auto-shutdown state is in effect 0 = No auto-shutdown event has occurred</pre>						
טונס	REN: Auto-Restart Enable bit 1 = Auto-restart is enabled 0 = Auto-restart is disabled						
bit 5-4	 LSBD<1:0>: CWG1B and CWG1D Auto-Shutdown State Control bits 11 = A logic '1' is placed on CWG1B/D when an auto-shutdown event occurs. 10 = A logic '0' is placed on CWG1B/D when an auto-shutdown event occurs. 01 = Pin is tri-stated on CWG1B/D when an auto-shutdown event occurs. 00 = The inactive state of the pin, including polarity, is placed on CWG1B/D after the require dead-band interval when an auto-shutdown event occurs. 						he required
bit 3-2	LSAC<1:0>: CWG1A and CWG1C Auto-Shutdown State Control bits 11 = A logic '1' is placed on CWG1A/C when an auto-shutdown event occurs. 10 = A logic '0' is placed on CWG1A/C when an auto-shutdown event occurs. 01 = Pin is tri-stated on CWG1A/C when an auto-shutdown event occurs. 00 = The inactive state of the pin, including polarity, is placed on CWG1A/C after the requir dead-band interval when an auto-shutdown event occurs.					he required	
bit 1-0	Unimplemen	ted: Read as	' 0'				

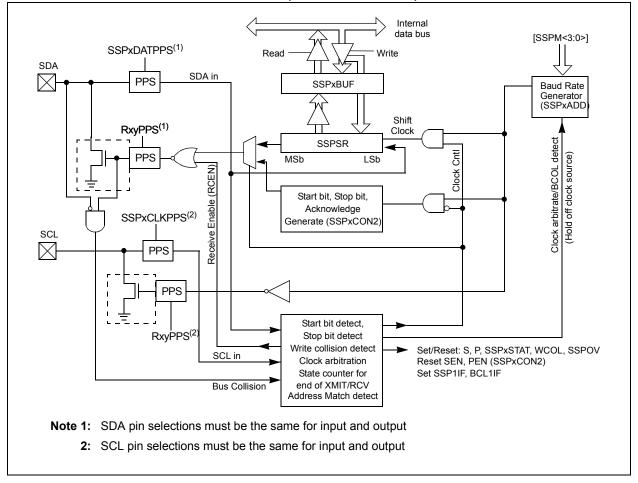
2: The outputs will remain in auto-shutdown state until the next rising edge of the CWG data input after this bit is cleared.

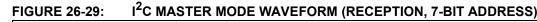
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CWG1CON0	EN	LD	—	—	—		MODE<2:0>	•	315
CWG1CON1	_	—	IN	_	POLD	POLC	POLB	POLA	316
CWG1CLKCON	_	—	_	_	_	—	—	CS	317
CWG1ISM	—	—	—	—			ISM<2:0>		317
CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	318
CWG1AS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC			319	
CWG1AS1	_	—	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	320
CWG1DBR	_	—			DBR<	<5:0>			321
CWG1DBF	_	—			DBF<	:5:0>			321
PIE7	SCANIE	CRCIE	NVMIE	_	_	_		CWG1IE	186
PIR7	SCANIF	CRCIF	NVMIF	_	_	_	_	CWG1IF	178
IPR7	SCANIP	CRCIP	NVMIP	_	_	_	—	CWG1IP	194
PMD4	UART2MD	UART1MD	MSSP2MD	MSSP1MD		_	—	CWG1MD	72

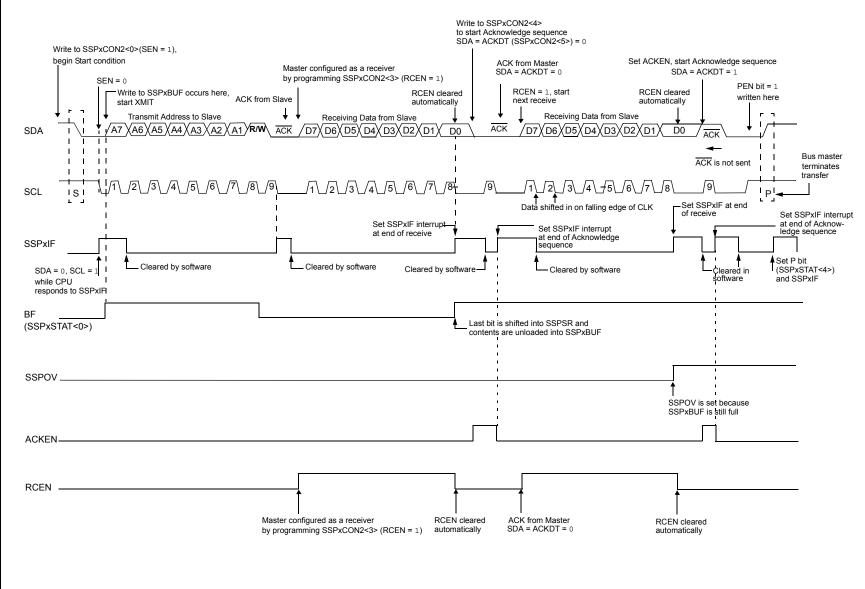
TABLE 24-3: SUMMARY OF REGISTERS ASSOCIATED WITH CWG

Legend: -= unimplemented locations read as '0'. Shaded cells are not used by CWG.

controlled through addressing. Figure 26-9 is a block diagram of the I²C interface module in Master mode.

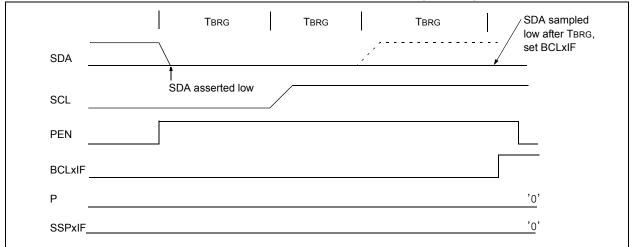

Figure 26-10 is a diagram of the I^2C interface module


in Slave mode.

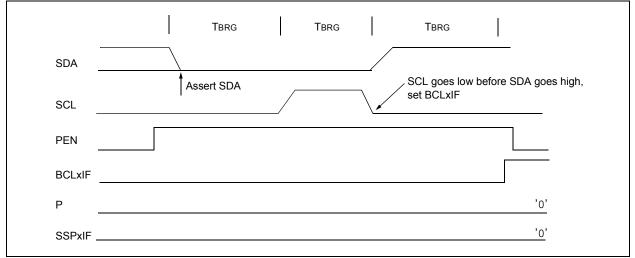

26.6 I²C Mode Overview

The Inter-Integrated Circuit (I²C) bus is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A slave device is

FIGURE 26-9: MSSP BLOCK DIAGRAM (I²C MASTER MODE)


26.10.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out (Case 1).
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high (Case 2).

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 26-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 26-39).

FIGURE 26-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 26-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

28.3 Register Definitions: FVR Control

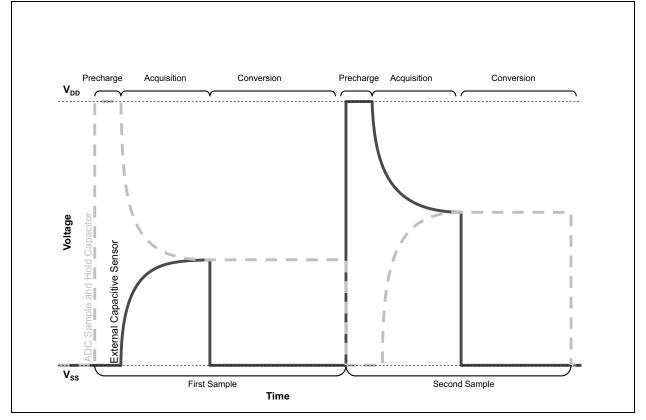
R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAF	VR<1:0>	ADFV	R<1:0>	
bit 7	·		•				bit	
Legend:								
R = Readable		W = Writable		•	mented bit, read			
u = Bit is unc	hanged	x = Bit is unk	nown		at POR and BO		other Resets	
'1' = Bit is set	t	'0' = Bit is cle	ared	q = Value dep	pends on condit	ion		
bit 7	1 Fixed Vo	d Voltage Refe Itage Referenc Itage Referenc	e is enabled	bit				
bit 6	FVRRDY: Fixed Voltage Reference Ready Flag bit ⁽¹⁾ 1 = Fixed Voltage Reference output is ready for use 0 = Fixed Voltage Reference output is not ready or not enabled							
bit 5	TSEN: Temperature Indicator Enable bit ⁽³⁾ 1 = Temperature Indicator is enabled 0 = Temperature Indicator is disabled							
bit 4	TSRNG: Temperature Indicator Range Selection bit ⁽³⁾ 1 = VOUT = VDD - 4VT (High Range) 0 = VOUT = VDD - 2VT (Low Range)							
bit 3-2	CDAFVR<1:0>: Comparator FVR Buffer Gain Selection bits 11 = Comparator FVR Buffer Gain is 4x, (4.096V) ⁽²⁾ 10 = Comparator FVR Buffer Gain is 2x, (2.048V) ⁽²⁾ 01 = Comparator FVR Buffer Gain is 1x, (1.024V) 00 = Comparator FVR Buffer is off							
bit 1-0	ADFVR<1:0>: ADC FVR Buffer Gain Selection bit 11 = ADC FVR Buffer Gain is 4x, $(4.096V)^{(2)}$ 10 = ADC FVR Buffer Gain is 2x, $(2.048V)^{(2)}$ 01 = ADC FVR Buffer Gain is 1x, $(1.024V)$ 00 = ADC FVR Buffer is off							
	VRRDY is always '1'.							

REGISTER 28-1.	FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER
REGISTER 20-1.	FURGON. FIXED VOLTAGE REFERENCE CONTROL REGISTER

2: Fixed Voltage Reference output cannot exceed VDD.

3: See Section 29.0 "Temperature Indicator Module" for additional information.

_		-							
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	423
ADCON0	ADON	ADCONT	_	ADCS		ADFM	_	ADGO	448
CMxNCH	_	—	_	—			CxNCH<2:0	>	469
CMxPCH	_	—	_	—		CxPCH<2:0>		470	
DAC1CON1			_			DAC1R<4	:0>		429


TABLE 28-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

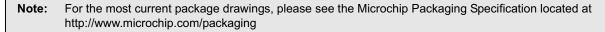
Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

31.4.1 CVD OPERATION

A CVD operation begins with the ADC's internal and hold capacitor sample (С_{НОГD}) being disconnected from the path which connects it to the external capacitive sensor node. While disconnected, CHOLD is precharged to VDD or Vss, while the path to the sensor node is also discharged to VDD or VSS. Typically, this node is discharged to the level opposite that of CHOLD. When the precharge phase is complete, the VDD/VSS bias paths for the two nodes are shut off and CHOLD and the path to the external sensor node are re-connected, at which time the acquisition phase of the CVD operation begins. During acquisition, a capacitive voltage divider is formed between the precharged CHOLD and sensor nodes, which results in a final voltage level setting on CHOLD which is determined by the capacitances and precharge levels of the two nodes. After acquisition, the ADC converts the voltage level on CHOLD. This process is then repeated with the selected precharge levels for both the CHOLD and the inverted sensor nodes. Figure 31-7 shows the waveform for two inverted CVD measurements, which is known as differential CVD measurement.

Field	Description				
a	RAM access bit a = 0: RAM location in Access RAM (BSR register is ignored) a = 1: RAM bank is specified by BSR register				
bbb	Bit address within an 8-bit file register (0 to 7).				
BSR	Bank Select Register. Used to select the current RAM bank.				
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.				
d	Destination select bit d = 0: store result in WREG d = 1: store result in file register f				
dest	Destination: either the WREG register or the specified register file location.				
f	8-bit Register file address (00h to FFh) or 2-bit FSR designator (0h to 3h).				
fs	12-bit Register file address (000h to FFFh). This is the source address.				
fd	12-bit Register file address (000h to FFFh). This is the destination address.				
GIE	Global Interrupt Enable bit.				
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).				
label	Label name.				
mm	The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions:				
*	No change to register (such as TBLPTR with table reads and writes)				
*+	Post-Increment register (such as TBLPTR with table reads and writes)				
*_	Post-Decrement register (such as TBLPTR with table reads and writes)				
+*	Pre-Increment register (such as TBLPTR with table reads and writes)				
n	The relative address (2's complement number) for relative branch instructions or the direct address for CALL/BRANCH and RETURN instructions.				
PC	Program Counter.				
PCL	Program Counter Low Byte.				
PCH	Program Counter High Byte.				
PCLATH	Program Counter High Byte Latch.				
PCLATU	Program Counter Upper Byte Latch.				
PD	Power-down bit.				
PRODH	Product of Multiply High Byte.				
PRODL	Product of Multiply Low Byte.				
S	Fast Call/Return mode select bit s = 0: do not update into/from shadow registers s = 1: certain registers loaded into/from shadow registers (Fast mode)				
TBLPTR	21-bit Table Pointer (points to a Program Memory location).				
TABLAT	8-bit Table Latch.				
TO	Time-out bit.				
TOS	Top-of-Stack.				
u	Unused or unchanged.				
WDT	Watchdog Timer.				
WREG	Working register (accumulator).				
x	Don't care ('0' or '1'). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.				
Zs	7-bit offset value for indirect addressing of register files (source).				
z _d	7-bit offset value for indirect addressing of register files (destination).				
{ }	Optional argument.				
[text]	Indicates an indexed address.				
(text)	The contents of text.				
[expr] <n></n>	Specifies bit n of the register indicated by the pointer $expr$.				
\rightarrow	Assigned to.				
< >	Register bit field.				
∈	In the set of.				

TABLE 35-1: OPCODE FIELD DESCRIPTIONS


PIC18(L)F27/47K40

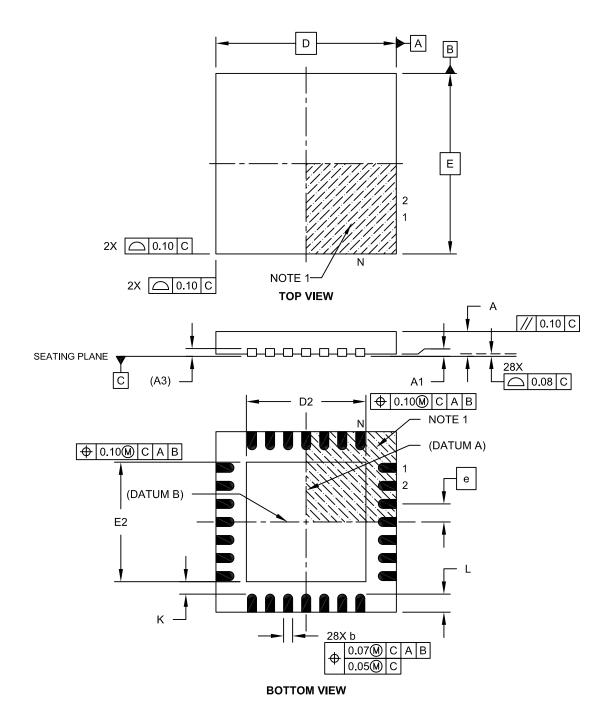
if ZERO bit	27							
if ZERO bit	27							
		$-128 \le n \le 127$						
	if ZERO bit is '1' (PC) + 2 + 2n \rightarrow PC							
None	None							
1110	1110 0000 nnnn nnnn							
will branch. The 2's com added to the have increm instruction, PC + 2 + 2r	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a							
1								
1(2)								
Q2	Q3	Q4						
Read literal 'n'	Process Data	Write to PC						
No operation	No operation	No operation						
Q2	Q3	Q4						
Read literal 'n'	Process Data	No operation						
		oporation						
Before Instruction PC = address (HERE) After Instruction If ZERO = 1; PC = address (Jump) If ZERO = 0;								
	If the ZERC will branch. The 2's com added to the have increm instruction, PC + 2 + 2r 2-cycle instru- 1 1(2) Q2 Read literal 'n' No operation Q2 Read literal 'n' HERE on = add = 1; = add = 0;	If the ZERO bit is '1', ther will branch. The 2's complement num added to the PC. Since the have incremented to fetch instruction, the new addree PC + 2 + 2n. This instruct 2-cycle instruction. 1 1(2) Q2 Q3 Read literal 'Process 'n' Data No No Q2 Q3 Read literal 'Process 'n' Data Q2 Q3 Read literal 'Process Data No No Q2 Q3 Read literal 'Process Data No No Q2 Q3 Read literal 'Process Data No No Q2 Q3 Read literal 'Process Data Process Data HERE BZ Jump on = address (HERE') = 1; = address (Jump) = 0;						

	Subroutin					
Syntax:	CALL k {,s	•				
Operands:	$0 \le k \le 1048575$ s $\in [0,1]$					
Operation:	$\begin{array}{l} (\text{PC}) + 4 \rightarrow \text{TOS}, \\ k \rightarrow \text{PC}<20:1>, \\ \text{if s} = 1 \\ (\text{W}) \rightarrow \text{WS}, \\ (\text{Status}) \rightarrow \text{STATUSS}, \\ (\text{BSR}) \rightarrow \text{BSRS} \end{array}$					
Status Affected:	None					
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111	110s k ₁₉ kkk	k ₇ k] kkk		kkkk kkkk	
	(PC + 4) is					
	stack. If 's' registers ar respective STATUSS a update occ 20-bit value CALL is a	= 1, the ' re also pu shadow r and BSR urs (defa e 'k' is loa	W, Sta ushed registe S. If 's ult). T ided in	itus a into ers, V s' = c hen, ito P	and BS their VS,), no the	
Words:	stack. If 's' registers ar respective STATUSS a update occ 20-bit value	= 1, the ' re also pu shadow r and BSR urs (defa e 'k' is loa	W, Sta ushed registe S. If 's ult). T ided in	itus a into ers, V s' = c hen, ito P	and BS their VS,), no the	
Words: Cycles:	stack. If 's' registers ar respective STATUSS a update occ 20-bit value CALL is a	= 1, the ' re also pu shadow r and BSR urs (defa e 'k' is loa	W, Sta ushed registe S. If 's ult). T ided in	itus a into ers, V s' = c hen, ito P	and BS their VS,), no the	
	stack. If 's' registers ar respective STATUSS a update occ 20-bit value CALL is a 2	= 1, the ' re also pu shadow r and BSR urs (defa e 'k' is loa	W, Sta ushed registe S. If 's ult). T ided in	itus a into ers, V s' = c hen, ito P	and BS their VS,), no the	
Cycles:	stack. If 's' registers ar respective STATUSS a update occ 20-bit value CALL is a 2	= 1, the ' re also pu shadow r and BSR urs (defa e 'k' is loa	W, Sta ushed registe S. If 's ult). T ded in nstruct	itus a into ers, V s' = c hen, ito P	and BS their VS,), no the	
Cycles: Q Cycle Activity:	stack. If 's' registers ar respective STATUSS a update occ 20-bit value CALL is a 2 2	= 1, the ' re also pu shadow r and BSR urs (defa e 'k' is loa 2-cycle ir	W, Sta ushed registe S. If 's ult). T ided in histruct	itus a into ers, V s' = 0 hen, hen, ito P tion.	and BS their WS, 0, no the C<20: ⁻ Q4 ad liter <19:8>	
Cycles: Q Cycle Activity: Q1 Decode No	stack. If 's' registers ar respective STATUSS a update occ 20-bit value CALL is a 2 2 2 Q2 Read literal 'k'<7:0>,	= 1, the ¹ re also pu shadow r and BSR urs (defa e 'k' is loa 2-cycle ir Q3 PUSHF stac	W, Sta ushed registe S. If 's oult). T ded in nstruct	tus a into ers, V s' = 0 hen, ito P tion. Ke 'k' Wri	and BS their VS, o, no the C<20: ⁻ ad liter <19:8> ite to P No	
Cycles: Q Cycle Activity: Q1 Decode	stack. If 's' registers ar respective STATUSS a update occ 20-bit value CALL is a 2 2 2 Q2 Read literal 'k'<7:0>,	= 1, the ¹ re also pu shadow r and BSR urs (defa e 'k' is loa 2-cycle ir Q3 PUSHF stac	W, Sta ushed registe S. If 's oult). T ded in nstruct	tus a into ers, V s' = 0 hen, ito P tion. Ke 'k' Wri	and BS their VS, o, no the C<20: ⁻ ad liter <19:8> ite to P No	
Cycles: Q Cycle Activity: Q1 Decode No	stack. If 's' registers ar respective STATUSS a update occ 20-bit value CALL is a 2 2 2 Q2 Read literal 'k'<7:0>,	= 1, the ¹ re also pu shadow r and BSR urs (defa e 'k' is loa 2-cycle ir Q3 PUSHF stac	W, Sta ushed registe S. If 's oult). T ded in nstruct	itus a into ers, V s' = 0 hen, to P tion. Re 'k' Wri	And BS their VS, 0, no the C<20:1 Ad liter <19:8> No peration	

After Instruct	ion			
PC	=	address	(THERE)	
TOS	=	address	(HERE +	4)
WS	=	W		
BSRS	=	BSR		
STATUS	SS =	Status		

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	Units		MILLIMETERS	6	
Dimension	MIN	NOM	MAX		
Number of Pins	28				
Pitch	е	0.65 BSC			
Overall Height	Α	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	Е	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
otprint L1		1.25 REF			
Lead Thickness	с	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2