

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f47k40t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Allocation Tables

TABLE 1: 28-PIN ALLOCATION TABLE (PIC18(L)F27K40)

IADEL				ION IABLE (I	(– ,	,									
I/O ⁽²⁾	28-Pin SPDIP, SOIC, SSOP	28-Pin QFN	A/D	Reference	Comparator	Timers	doo	cwe	ZCD	Interrupt	EUSART	DSM	MSSP	Pull-up	Basic
RA0	2	27	ANA0	_	C1IN0- C2IN0-		-	_	_	IOCA0	_	_	_	Y	_
RA1	3	28	ANA1	_	C1IN1- C2IN1-	-	_	_	_	IOCA1	_	_	_	Y	_
RA2	4	1	ANA2	DAC1OUT1 VREF- (DAC) VREF- (ADC)	C1IN0+ C2IN0+	1	-	-	_	IOCA2	-	-	-	Y	_
RA3	5	2	ANA3	VREF+ (DAC) VREF+ (ADC)	C1IN1+	_	_	_	_	IOCA3	_	MDCIN1 ⁽¹⁾	_	Υ	_
RA4	6	3	ANA4	_	_	T0CKI ⁽¹⁾	_	_	_	IOCA4	_	MDCIN2 ⁽¹⁾	_	Υ	_
RA5	7	4	ANA5	_	_	_	_	_	_	IOCA5	_	MDMIN ⁽¹⁾	SS1 ⁽¹⁾	Υ	_
RA6	10	7	ANA6	_	_	_	_	_	_	IOCA6	_	_	_	Y	CLKOUT OSC2
RA7	9	6	ANA7	_	_	-	_	_	_	IOCA7	_	_	_	Y	OSC1 CLKIN
RB0	21	18	ANB0	_	C2IN1+	1	_	CWG1 ⁽¹⁾	ZCDIN	IOCB0 INT0 ⁽¹⁾	_	_	SS2 ⁽¹⁾	Y	_
RB1	22	19	ANB1	_	C1IN3- C2IN3-	_	_	_	_	IOCB1 INT1 ⁽¹⁾	_	_	SCK2 ⁽¹⁾ SCL2 ^(3,4)	Y	_
RB2	23	20	ANB2	_	_	_	_	_	_	IOCB2 INT2 ⁽¹⁾	_	_	SDI2 ⁽¹⁾ SDA2 ^(3,4)	Y	_
RB3	24	21	ANB3	_	C1IN2- C2IN2-	_		_	_	IOCB3	_	_	_	Υ	_
RB4	25	22	ANB4	_	_	T5G ⁽¹⁾	_	_	_	IOCB4	_	_	_	Υ	_
RB5	26	23	ANB5	_	_	T1G ⁽¹⁾		_	_	IOCB5	_	_		Υ	_
RB6	27	24	ANB6	_	_	_	_	_	_	IOCB6	CK2 ⁽¹⁾	_	_	Υ	ICSPCLK
RB7	28	25	ANB7	DAC1OUT2	_	T6AIN ⁽¹⁾	-	_	_	IOCB7	RX2/DT2 ⁽¹⁾	_		Υ	ICSPDAT

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers (Register 17-1).

^{2:} All pin outputs default to PORT latch data. Any pin can be selected as a peripheral digital output with the PPS output selection registers.

^{3:} These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

^{4:} These pins are configured for I²C logic levels; The SCLx/SDAx signals may be assigned to any of these pins. PPS assignments to the other pins (e.g., RB1) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

REGISTER 4-5: OSCFRQ: HFINTOSC FREQUENCY SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-q/q	R/W-q/q	R/W-q/q	R/W-q/q
_	_	_	_	HFFRQ<3:0>			
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets'1' = Bit is set'0' = Bit is clearedq = Reset value is determined by hardware

bit 7-4 **Unimplemented:** Read as '0'

bit 3-0 **HFFRQ<3:0>:** HFINTOSC Frequency Selection bits

HFFRQ<3:0>	Nominal Freq (MHz)					
1001						
1010						
1111						
1110	Reserved					
1101						
1100						
1011						
1000(3)	64					
0111	48					
0110	32					
0101 ⁽⁴⁾	16					
0100	12					
0011	8					
0010 ^(1,2)	4					
0001	2					
0000	1					

Note 1: Refer to Table 4-1 for more information.

REGISTER 5-2: CLKRCLK: CLOCK REFERENCE CLOCK SELECTION MUX

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	_	_		CLK<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

'1' = Bit is set '0' = Bit is cleared

bit 7-3 **Unimplemented:** Read as '0'

bit 2-0 CLK<2:0>: CLKR Clock Selection bits

111 = Unimplemented

110 = Unimplemented
101 = Unimplemented

100 = SOSC

011 = MFINTOSC (500 kHz)

010 = LFINTOSC (31 kHz)

001 = HFINTOSC

000 = FOSC

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK REFERENCE OUTPUT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
CLKRCON	EN	-	_	DC<	DC<1:0>		DIV<2:0>			DIV<2:0>		
CLKRCLK	_	_	_	_	_	CLK<2:0>			57			
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	68			
RxyPPS	_		_		RxyPPS<4:0>							

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the CLKR module.

REGISTER 6-2: CPUDOZE: DOZE AND IDLE REGISTER

R/W-0/u	R/W/HC/HS-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
IDLEN	DOZEN	ROI	DOE	_		DOZE<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Bit is cleared by hardware

bit 7	IDLEN: Idle Enable bit 1 = A SLEEP instruction inhibits the CPU clock, but not the peripheral clock(s) 0 = A SLEEP instruction places the device into full Sleep mode
bit 6	DOZEN: Doze Enable bit ^(1,2) 1 = The CPU executes instruction cycles according to DOZE setting 0 = The CPU executes all instruction cycles (fastest, highest power operation)
bit 5	 ROI: Recover-On-Interrupt bit 1 = Entering the Interrupt Service Routine (ISR) makes DOZEN = 0 bit, bringing the CPU to full-speed operation 0 = Interrupt entry does not change DOZEN
bit 4	DOE : Doze-On-Exit bit 1 = Executing RETFIE makes DOZEN = 1, bringing the CPU to reduced speed operation 0 = RETFIE does not change DOZEN
bit 3	Unimplemented: Read as '0'
bit 2-0	DOZE<2:0>: Ratio of CPU Instruction Cycles to Peripheral Instruction Cycles 111 =1:256 110 =1:128 101 =1:64 100 =1:32 011 =1:16 010 =1:8 001 =1:4 000 =1:2

- **Note 1:** When ROI = 1 or DOE = 1, DOZEN is changed by hardware interrupt entry and/or exit.
 - 2: Entering ICD overrides DOZEN, returning the CPU to full execution speed; this bit is not affected.

REGISTER 9-5: WDTTMR: WDT TIMER REGISTER (READ-ONLY)

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
	WDTTMR<4:0>					PSCNT	<17:16>
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets'1' = Bit is set'0' = Bit is cleared

bit 7-3 WDTTMR<4:0>: Watchdog Window Value bits

MINDOM	WDT Win	Onen Bereent	
WINDOW	Closed	Open	Open Percent
111	N/A	00000-11111	100
110	00000-00011	00100-11111	87.5
101	00000-00111	01000-11111	75
100	00000-01011	01100-11111	62.5
011	00000-01111	10000-11111	50
010	00000-10011	10100-11111	37.5
001	00000-10111	11000-11111	25
000	00000-11011	11100-11111	12.5

bit 2 STATE: WDT Armed Status bit

1 = WDT is armed 0 = WDT is not armed

bit 1-0 **PSCNT<17:16>:** Prescale Select Upper Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F27/47K40 DEVICES (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	
FC1h	TMR5L	Holding Registe	er for the Least	Significant Byte	e of the 16-bit T	MR5 Register				00000000	
FC0h	T2RST	_	_	_	_		RSEL	.<3:0>		0000	
FBFh	T2CLKCON	_	_	_	_		0000				
FBEh	T2HLT	PSYNC	CPOL	CSYNC		•	MODE<4:0>			00000000	
FBDh	T2CON	ON		CKPS<2:0>			OUTP	S<3:0>		00000000	
FBCh	T2PR	TMR2 Period R	Register			•				11111111	
FBBh	T2TMR	Holding Registe	er for the 8-bit T	MR2 Register						00000000	
FBAh	T4RST	_	RSEL<3:0>					0000			
FB9h	T4CLKCON	_	_	_	_		CS<	:3:0>		0000	
FB8h	T4HLT	PSYNC	CPOL	CSYNC			MODE<4:0>			00000000	
FB7h	T4CON	ON		CKPS<2:0>			OUTP	S<3:0>		00000000	
FB6h	T4PR	TMR4 Period R	Register			•				11111111	
FB5h	T4TMR	Holding Registe	er for the 8-bit T	MR4 Register						00000000	
FB4h	T6RST	_	_	_	_		RSEL	.<3:0>		0000	
FB3h	T6CLKCON	_	_	_	_		CS<	:3:0>		0000	
FB2h	T6HLT	PSYNC	CPOL	CSYNC		•	MODE<4:0>			00000000	
FB1h	T6CON	ON		CKPS<2:0>			OUTPS<3:0>				
FB0h	T6PR	TMR6 Period R	Register			•				11111111	
FAFh	T6TMR	Holding Registe	er for the 8-bit T	MR6 Register						00000000	
FAEh	CCPTMRS	P4TSEL	_<1:0>	P3TSE	EL<1:0>	C2TSE	EL<1:0>	C1TS	SEL<1:0>	01010101	
FADh	CCP1CAP	_	_	_	_	_	_	CTS	S<1:0>	00	
FACh	CCP1CON	EN	_	OUT	FMT		MODE	E<3:0>		0-000000	
FABh	CCPR1H	Capture/Compa	are/PWM Regis	ster 1 (MSB)						xxxxxxxx	
FAAh	CCPR1L	Capture/Compa	are/PWM Regis	ster 1 (LSB)						xxxxxxxx	
FA9h	CCP2CAP	_	_	_	_	_	_	CTS	S<1:0>	00	
FA8h	CCP2CON	EN	_	OUT	FMT		MODE	<3:0>		0-000000	
FA7h	CCPR2H	Capture/Compa	are/PWM Regis	ster 2 (MSB)		•				xxxxxxx	
FA6h	CCPR2L	Capture/Compa	are/PWM Regis	ster 2 (LSB)						xxxxxxxx	
FA5h	PWM3CON	EN	_	OUT	POL	_	_	_	_	0-00	
FA4h	PWM3DCH				DC	<7:0>				xxxxxxxx	
FA3h	PWM3DCL	DC<	9:8>	_	_	_	_	_	_	xx	
FA2h	PWM4CON	EN	_	OUT	POL	_	_	_	_	0-00	
FA1h	PWM4DCH				DC	7:0>				xxxxxxxx	
FA0h	PWM4DCL	DC<9	9:8>	_	_	_	_	_	_	xx	
F9Fh	BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-00-00	
F9Eh	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	00000010	
F9Dh	RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	00000000	
F9Ch	SP1BRGH			EUSA	RT1 Baud Rat	e Generator, Hi	igh Byte		•	00000000	

 $\textbf{Legend:} \qquad x = \text{unknown}, \ u = \text{unchanged}, \\ \textbf{—} = \text{unimplemented}, \ q = \text{value depends on condition}$

Note 1: Not available on LF devices.

2: Not available on PIC18(L)F27K40 (28-pin variants).

11.1.2 CONTROL REGISTERS

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the following registers:

- NVMCON1 register
- NVMCON2 register
- · TABLAT register
- · TBLPTR registers

11.1.2.1 NVMCON1 and NVMCON2 Registers

The NVMCON1 register (Register 11-1) is the control register for memory accesses. The NVMCON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading NVMCON2 will read all '0's.

The NVMREG<1:0> control bits determine if the access will be to Data EEPROM Memory locations. PFM locations or User IDs, Configuration bits, Rev ID and Device ID. When NVMREG<1:0> = 00, any subsequent operations will operate on the Data EEPROM Memory. When NVMREG<1:0> = 10, any subsequent operations will operate on the program memory. When NVMREG<1:0> = x1, any subsequent operations will operate on the Configuration bits, User IDs, Rev ID and Device ID.

The FREE bit allows the program memory erase operation. When the FREE bit is set, an erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled. This bit is applicable only to the PFM and not to data EEPROM.

When set, the WREN bit will allow a program/erase operation. The WREN bit is cleared on power-up.

The WRERR bit is set by hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is successfully complete.

The WR control bit initiates erase/write cycle operation when the NVMREG<1:0> bits point to the Data EEPROM Memory location, and it initiates a write operation when the NVMREG<1:0> bits point to the PFM location. The WR bit cannot be cleared by firmware; it can only be set by firmware. Then the WR bit is cleared by hardware at the completion of the write operation.

The NVMIF Interrupt Flag bit of the PIR7 register is set when the write is complete. The NVMIF flag stays set until cleared by firmware.

11.1.2.2 TABLAT – Table Latch Register

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

11.1.2.3 TBLPTR – Table Pointer Register

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the User ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations on the TBLPTR affect only the low-order 21 bits.

11.1.2.4 Table Pointer Boundaries

TBLPTR is used in reads, writes and erases of the Program Flash Memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory directly into the TABLAT register.

When a TBLWT is executed the byte in the TABLAT register is written, not to Flash memory but, to a holding register in preparation for a program memory write. The holding registers constitute a write block which varies depending on the device (see Table 11-3). The 3, 4, or 5 LSbs of the TBLPTRL register determine which specific address within the holding register block is written to. The MSBs of the Table Pointer have no effect during TBLWT operations.

When a program memory write is executed the entire holding register block is written to the Flash memory at the address determined by the MSbs of the TBLPTR. The 3, 4, or 5 LSBs are ignored during Flash memory writes. For more detail, see **Section 11.1.6** "Writing to **Program Flash Memory**".

Figure 11-3 describes the relevant boundaries of TBLPTR based on Program Flash Memory operations.

REGISTER 13-14: SCANLADRL: SCAN LOW ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			LADR<	7:0> ^(1, 2)			
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets'1' = Bit is set'0' = Bit is cleared

bit 7-0 LADR<7:0>: Scan Start/Current Address bits^(1, 2)

Least Significant bits of the current address to be fetched from, value increments on each fetch of memory

Note 1: Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).

2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 13-15: SCANHADRU: SCAN HIGH ADDRESS UPPER BYTE REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
_	_			HADR	<21:16>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 HADR<21:16>: Scan End Address bits^(1, 2)

Upper bits of the address at the end of the designated scan

Note 1: Registers SCANHADRU/H/L form a 22-bit value but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).

2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 15-7: SLRCONX: SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRx7 | SLRx6 | SLRx5 | SLRx4 | SLRx3 | SLRx2 | SLRx1 | SLRx0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'1' = Bit is set 0' = Bit is cleared x = Bit is unknown

-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0 **SLRx<7:0>**: Slew Rate Control on Pins Rx<7:0>, respectively

1 = Port pin slew rate is limited0 = Port pin slews at maximum rate

TABLE 15-8: SLEW RATE CONTROL REGISTERS

	Device									
Name	28 Pins	40/44 Pins	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SLRCONA	Х	Х	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0
SLRCONB	Х	Х	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0
SLRCONC	Х	Х	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0
SLRCOND	Х		_	_	_	_	_	_	_	_
		Х	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0
SLRCONE	Х		_	_	_	_	_	_	_	_
		Х	_	_	_	_	_	SLRE2	SLRE1	SLRE0

REGISTER 15-8: INLVLx: INPUT LEVEL CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
INLVLx7	INLVLx6	INLVLx5	INLVLx4	INLVLx3	INLVLx2	INLVLx1	INLVLx0
bit 7	IINLVLXO	INLVLXS	IINLVLX4	IINLVLXS	IINLVLXZ	IINLVLXI	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'1' = Bit is set 0' = Bit is cleared 0' = Bit is unknown

-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0 **INLVLx<7:0>**: Input Level Select on Pins Rx<7:0>, respectively

1 = ST input used for port reads and interrupt-on-change

0 = TTL input used for port reads and interrupt-on-change

TABLE 15-9: INPUT LEVEL PORT REGISTERS

	Dev	/ice								
Name	28 Pins	40/44 Pins	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INLVLA	Х	Х	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0
INLVLB	Χ	Х	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2 ⁽¹⁾	INLVLB1 ⁽¹⁾	INLVLB0
INLVLC	Χ	Х	INLVLC7	INLVLC6	INLVLC5	INLVLC4 ⁽¹⁾	INLVLC3 ⁽¹⁾	INLVLC2	INLVLC1	INLVLC0
INLVLD	Χ			-	_	_	_	_	-	_
		Х	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1 ⁽¹⁾	INLVLD0 ⁽¹⁾
INLVLE	Χ				1	1	INLVLE3	_		1
		Х		1	1	1	INLVLE3	INLVLE2	INLVLE1	INLVLE0

Note 1: Pins read the I²C ST inputs when MSSP inputs select these pins, and I²C mode is enabled.

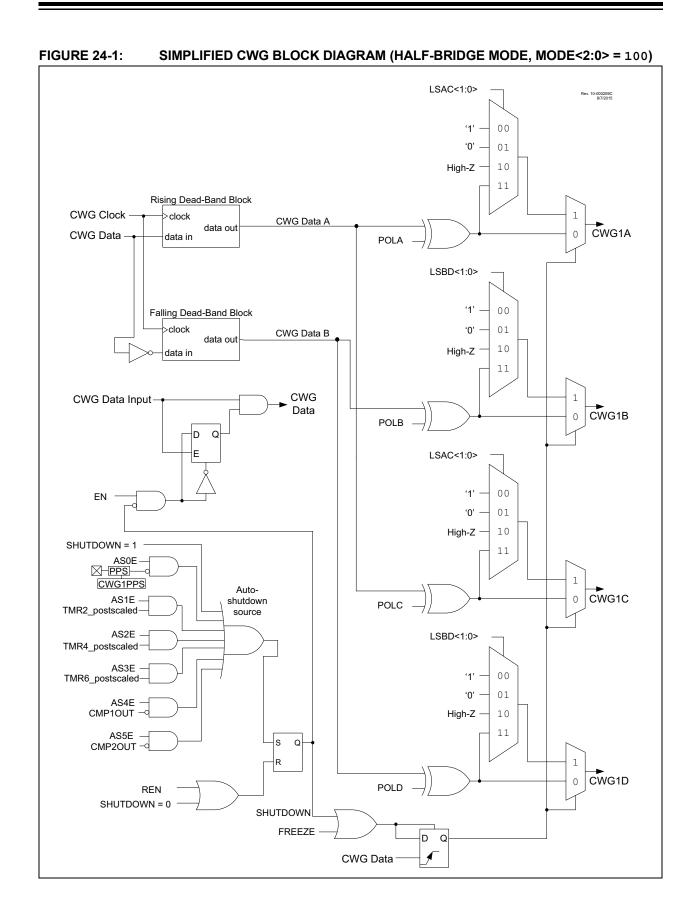
REGISTER 17-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	
_	_	_			RxyPPS<4:0>	•		
bit 7			bi					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets


'1' = Bit is set '0' = Bit is cleared

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 RxyPPS<4:0>: Pin Rxy Output Source Selection bits⁽¹⁾

D DDO 44.05	Bin Danie Outroot Occurs			Devi	ce Cor	nfigura	tion		
RxyPPS<4:0>	Pin Rxy Output Source	PIC1	8(L)F2	7K40		PIC1	8(L)F4	7K40	
5'b1 0111	ADGRDB	Α	_	С	Α	_	С	_	_
5'b1 0110	ADGRDA	Α	_	С	Α	_	С	_	_
5'b1 0101	DSM	Α	_	С	Α	_	_	D	_
5'b1 0100	CLKR	_	В	С	_	В	С	_	_
5'b1 0011	TMR0	_	В	С	_	В	С	_	_
5'b1 0010	MSSP2 (SDO/SDA)	_	В	С	_	В	_	D	_
5'b1 0001	MSSP2 (SCK/SCL)	_	В	С	_	В	_	D	_
5'b1 0000	MSSP1 (SDO/SDA)	_	В	С	_	В	С	_	_
5'b0 1111	MSSP1 (SCK/SCL)	_	В	С	_	В	С	_	_
5'b0 1110	CMP2	Α	_	С	Α	_	_	_	Е
5'b0 1101	CMP1	Α	_	С	Α	_	_	D	_
5'b0 1100	EUSART2 (RX)	_	В	С	_	В	_	D	_
5'b0 1011	EUSART2 (TX)	_	В	С	_	В	_	D	_
5'b0 1010	EUSART1 (RX)	_	В	С	_	В	С	_	_
5'b0 1001	EUSART1 (TX)	_	В	С	_	В	С	_	_
5'b0 1000	PWM4	Α	_	С	Α	_	С	_	_
5'b0 0111	PWM3	Α	_	С	Α	_	_	D	_
5'b0 0110	CCP2	_	В	С	_	В	С	_	_
5'b0 0101	CCP1	_	В	С	_	В	С	_	_
5'b0 0100	CWG1D	_	В	С	_	В	_	D	_
5'b0 0011	CWG1C	_	В	С	_	В	_	D	_
5'b0 0010	CWG1B	_	В	С	_	В	_	D	_
5'b0 0001	CWG1A	_	В	С	_	В	С	_	_
5'b0 0000	LATxy	Α	В	С	Α	В	С	D	Е

Note 1: PORTD is present only on the PIC18(L)F45/46K40 devices.

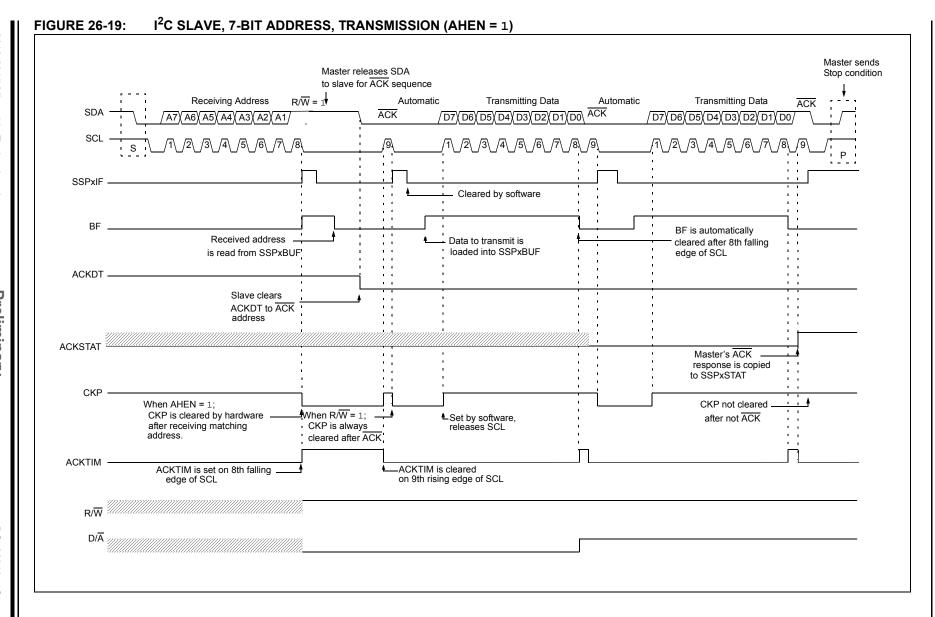

Data Bus Read Write SSPxBUF Rea **SSPxDATPPS** SDI **PPS** SSPSR Reg bit 0 Shift SDO **PPS RxyPPS** SS Control 2 (CKP, CKE) Enable **PPS** Clock Select Edge **SSPxSSPPS** Select SSPxCLKPPS(2) SSPM<3:0> T2_match SCK **PPS** Prescaler Tosc Edge PPS 4, 16, 64 Select RxyPPS⁽¹⁾ **Baud Rate** TRIS bit Generator (SSPxADD) Note 1: Output selection for master mode 2: Input selection for slave mode

FIGURE 26-1: MSSP BLOCK DIAGRAM (SPI MODE)

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 26-2 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

PIC18(L)F27/47K40

REGISTER 30-2: DAC1CON1: DAC DATA REGISTER

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_			DAC1R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

'1' = Bit is set '0' = Bit is cleared

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 DAC1R<4:0>: Data Input Register for DAC bits

TABLE 30-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DAC1CON0	EN	_	OE1	OE2	PSS•	<1:0>	_	NSS	428
DAC1CON1	_	_	_			DAC1R<4:0	>		429
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFVF	R<1:0>	423

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

31.2.6 ADC CONVERSION PROCEDURE (BASIC MODE)

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRISx register)
 - Configure pin as analog (Refer to the ANSELx register)
- 2. Configure the ADC module:
 - · Select ADC conversion clock
 - · Configure voltage reference
 - Select ADC input channel (precharge+acquisition)
 - · Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - · Clear ADC interrupt flag
 - · Enable ADC interrupt
 - Enable peripheral interrupt (PEIE bit)
 - Enable global interrupt (GIE bit)⁽¹⁾
- If ADACQ = 0, software must wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the ADGO bit.
- Wait for ADC conversion to complete by one of the following:
 - · Polling the ADGO bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).
 - **Note 1:** The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.
 - 2: Refer to Section 31.3 "ADC Acquisition Requirements".

EXAMPLE 31-1: ADC CONVERSION

```
; This code block configures the ADC
; for polling, VDD and Vss references, FRC
; oscillator and ANO input.
;Conversion start & polling for completion
; are included.
BANKSEL ADCON1
         B'11110000' ; Right justify,
MOVLW
                    ;FRC oscillator
MOVWF
         ADCON1
                    ;Vdd and Vss Vref
BANKSEL TRISA
BSF
         TRISA,0
                    ;Set RAO to input
BANKSEL
        ANSEL
BSF
         ANSEL, 0 ; Set RAO to analog
BANKSEL
         ADCON0
         B'00000001' ;Select channel AN0
MOVLW
MOVWF
         ADCON0
                     ;Turn ADC On
         SampleTime ;Acquisiton delay
CALL
         ADCON0, ADGO ; Start conversion
BSF
BTFSC
         ADCON0, ADGO ; Is conversion done?
GOTO
         $-1
                    ;No, test again
BANKSEL
         ADRESH
         ADRESH,W ;Read upper 2 bits
MOVF
MOVWF
         RESULTHI
                     ;store in GPR space
BANKSEL
         ADRESL
MOVF
         ADRESL,W
                     ;Read lower 8 bits
MOVWE
         RESULTIO
                     ;Store in GPR space
```

PIC18(L)F27/47K40

BCF	Bit Clear	·f		
Syntax:	BCF f, b	o {,a}		
Operands:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$	5		
Operation:	$0 \rightarrow f < b >$			
Status Affected:	None			
Encoding:	1001	bbba	ffff	ffff
Description:	Bit 'b' in re	0	s cleared.	aalaatad

If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the

GPR bank.

If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See **Sec**tion 35.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.

Words: Cycles: 1

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

C7h

Example: BCF FLAG_REG, 7, 0

Before Instruction FLAG_REG =

After Instruction

FLAG_REG = 47h

BN **Branch if Negative**

Syntax: BN n

Operands: $-128 \le n \le 127$

Operation: if NEGATIVE bit is '1' $(PC) + 2 + 2n \rightarrow PC$

Status Affected: None

Encoding: 1110 0110 nnnn nnnn

Description: If the NEGATIVE bit is '1', then the program will branch.

> The 2's complement number '2n' is added to the PC. Since the PC will have

incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a

2-cycle instruction.

Words: 1 Cycles: 1(2)

Q Cycle Activity: If Jump:

Q1	Q2	Q3	Q4
Decode	Read literal	Process	Write to PC
	'n'	Data	
No	No	No	No
operation	operation	operation	operation

If No Jump:

Q1	Q2	Q3	Q4
Decode	Read literal	Process	No
	'n'	Data	operation

Example: HERE BN Jump

Before Instruction

PC address (HERE)

After Instruction

If NEGATIVE

address (Jump)

address (HERE + 2)

36.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

36.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

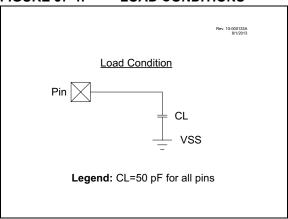
The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

36.8 MPLAB ICD 3 In-Circuit Debugger System

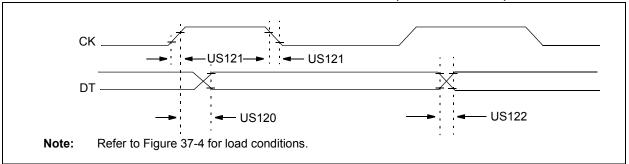
The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

36.9 PICkit 3 In-Circuit Debugger/ Programmer


The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a full-speed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming™ (ICSP™).

36.10 MPLAB PM3 Device Programmer


The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

37.4 AC Characteristics

FIGURE 37-4: LOAD CONDITIONS

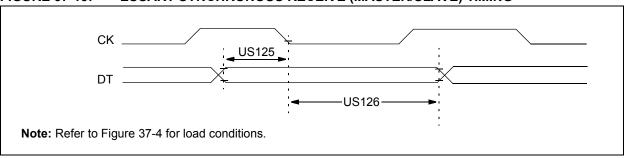

FIGURE 37-14: EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 37-21: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)						
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120 TCKH2	TCKH2DTV	V SYNC XMIT (Master and Slave) Clock high to data-out valid	_	80	ns	$3.0 \text{V} \leq \text{VDD} \leq 5.5 \text{V}$
			_	100	ns	$1.8V \leq V_{DD} \leq 5.5V$
US121 T	TCKRF	Clock out rise time and fall time (Master mode)	_	45	ns	$3.0 \text{V} \leq \text{VDD} \leq 5.5 \text{V}$
			_	50	ns	$1.8V \leq V_{DD} \leq 5.5V$
JS122	TDTRF	Data-out rise time and fall time	_	45	ns	$3.0 \text{V} \leq \text{VDD} \leq 5.5 \text{V}$
			_	50	ns	$1.8V \leq V_{DD} \leq 5.5V$

FIGURE 37-15: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 37-22: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)						
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-setup before CK ↓ (DT hold time)	10	1	ns	
US126	TCKL2DTL	Data-hold after CK ↓ (DT hold time)	15	_	ns	