

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

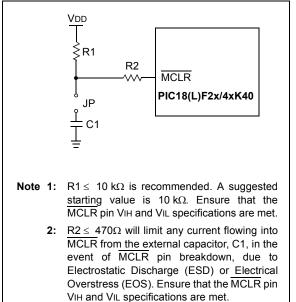
Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf27k40-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

2.4 ICSP[™] Pins

The PGC and PGD pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 36.0 "Development Support"**.

6.0 POWER-SAVING OPERATION MODES

The purpose of the Power-Down modes is to reduce power consumption. There are three Power-Down modes:

- Doze mode
- Sleep mode
- Idle mode

6.1 Doze Mode

Doze mode allows for power saving by reducing CPU operation and program memory (PFM) access, without affecting peripheral operation. Doze mode differs from Sleep mode because the bandgap and system oscillators continue to operate, while only the CPU and PFM are affected. The reduced execution saves power by eliminating unnecessary operations within the CPU and memory.

When the Doze Enable (DOZEN) bit is set (DOZEN = 1), the CPU executes only one instruction cycle out of every N cycles as defined by the DOZE<2:0> bits of the CPUDOZE register. For example, if DOZE<2:0> = 001, the instruction cycle ratio is 1:4. The CPU and memory execute for one instruction cycle and then lay idle for three instruction cycles. During the unused cycles, the peripherals continue to operate at the system clock speed.

6.1.1 DOZE OPERATION

The Doze operation is illustrated in Figure 6-1. For this example:

- Doze enable (DOZEN) bit set (DOZEN = 1)
- DOZE<2:0> = 001 (1:4) ratio
- Recover-on-Interrupt (ROI) bit set (ROI = 1)

As with normal operation, the PFM fetches for the next instruction cycle. The Q-clocks to the peripherals continue throughout.

8.2 Register Definitions: Power Control

	R/W/HS-0/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-0/u	R/W/HC-q/u
STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR
bit 7							bit 0
Legend:							
•	ared by hardwa	ire		HS = Bit is se	et by hardware		
R = Readable	-	W = Writable	bit		nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkn	nown	-m/n = Value	at POR and BO	R/Value at all o	other Resets
ʻı' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condit	ion	
bit 7	STKOVE: Sta	ck Overflow Fla	og hit				
	1 = A Stack	Overflow occur Overflow has r	rred (more CA				
bit 6		ck Underflow F					
	1 = A Stack	Underflow occ Underflow has	curred (more R		,		
bit 5	WDTWV: Wat	chdog Window	Violation bit				
	0 = A CLRWE		as issued whe	n the WDT Re	'1' by firmware set window was	closed (set to '	0' in hardward
	which u						
bit 4		Reset Flag bit		,			
bit 4	RWDT : WDT	overflow/time-o		not occurred o	r set to '1' by fir ɔ '0' in hardware		Reset occurs
bit 4 bit 3	RWDT : WDT 1 = A WDT 0 0 = A WDT 0	overflow/time-o	out Reset has o	not occurred o			Reset occurs
	RWDT: WDT 1 = A WDT 0 = A WDT RMCLR: MCL 1 = A MCLR	overflow/time-o overflow/time-o R Reset Flag I Reset has not	out Reset has o bit t occurred or s	not occurred o occurred (set to et to '1' by firm	o '0' in hardware	e when a WDT	Reset occurs
	RWDT: WDT 1 = A WDT 0 = A WDT 0 = A WDT RMCLR: MCL 1 = A MCLR 0 = A MCLR 0 = A MCLR RI: RESET INS	overflow/time-o overflow/time-o R Reset Flag I Reset has not Reset has occ truction Flag b	out Reset has o bit t occurred or s curred (set to ' it	not occurred o occurred (set to et to '1' by firn 0' in hardware	o 'o' in hardware hware when a MCLR	e when a WDT Reset occurs)	Reset occurs
bit 3	RWDT: WDT 1 = A WDT 0 = A WDT 0 = A WDT RMCLR: MCL 1 = A MCLR 0 = A MCLR 0 = A MCLR 1 = A MCLR RI: RESET INS 1 = 1 = A RESET	Deverflow/time-op- poverflow/time-op- R Reset Flag I Reset has not Reset has occ struction Flag b r instruction ha r instruction ha	but Reset has o bit t occurred or s curred (set to ' it s not been exe	not occurred o occurred (set to et to '1' by firm 0' in hardware ecuted or set t	o '0' in hardware	e when a WDT Reset occurs) e	
bit 3	RWDT: WDT 1 = A WDT 0 = A WDT 0 = A WDT RMCLR: MCL 1 = A MCLR 0 = A RESET 1 = A RESET 0 = A RESET	Deverflow/time-op- poverflow/time-op- R Reset Flag I Reset has not Reset has occ struction Flag b r instruction ha r instruction ha	but Reset has o bit t occurred or s curred (set to ' it s not been exe has been exe	not occurred o occurred (set to et to '1' by firm 0' in hardware ecuted or set t	o '0' in hardware hware when a MCLR o '1' by firmware	e when a WDT Reset occurs) e	
bit 3 bit 2	RWDT: WDT 1 = A WDT 0 = A WDT 0 = A WDT 0 = A WDT RMCLR: MCL MCLR 1 = A MCLR 0 = A MCLR RI: RESET Ins A RESET 1 = A RESET 0 = A RESET 1 = No Power-4 1 = No Power-4	overflow/time-o overflow/time-o Reset Flag I Reset has not Reset has occ truction Flag b instruction ha instruction ha instruction h on Reset Statu- er-on Reset occ	but Reset has o bit t occurred or s curred (set to ' it s not been exe has been exe s bit curred or set t	not occurred o occurred (set to et to '1' by firm 0' in hardware ecuted or set t cuted (set to o '1' by firmwa	o '0' in hardware when a MCLR o '1' by firmware '0' in hardware	e when a WDT Reset occurs) e e upon execut	ting a RESE
bit 3 bit 2	RWDT: WDT 1 = A WDT (0) 0 = A WDT (0) RMCLR: MCLR 1 = A MCLR 0 = A MCLR RI: RESET Ins 1 = A RESET 0 = A RESET 0 = A RESET 0 = A RESET 0 = A Power	overflow/time-o overflow/time-o Reset Flag I Reset has not Reset has occ truction Flag b instruction ha instruction ha instruction h on Reset Statu- er-on Reset occ	but Reset has o bit t occurred or s curred (set to ' it s not been exe as been exe s bit curred or set t urred (set to 'o	not occurred o occurred (set to et to '1' by firm 0' in hardware ecuted or set t cuted (set to o '1' by firmwa	o '0' in hardware when a MCLR o '1' by firmware '0' in hardware	e when a WDT Reset occurs) e e upon execut	ting a RESE

REGISTER 8-2: PCON0: POWER CONTROL REGISTER 0

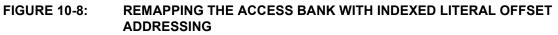
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR	
EB1h	CWGINPPS	_	—	_	CWGINPPS<4:0>						
EB0h	CCP2PPS	_	—	_		CCP2PPS<4:0>					
EAFh	CCP1PPS	_	_	_		CCP1PPS<4:0>					
EAEh	ADACTPPS	_	—	_		/	ADACTPPS<4:()>		01100	
EADh	T6INPPS	_	_	_			T6INPPS<4:0>	•		01111	
EACh	T4INPPS	_	—	_			T4INPPS<4:0>	•		10101	
EABh	T2INPPS	_	—	_			T2INPPS<4:0>	•		10011	
EAAh	T5GPPS	_	—	_			T5GPPS<4:0>			01100	
EA9h	T5CKIPPS	_	—	_			T5CKIPPS<4:0	>		10010	
EA8h	T3GPPS	_	—	_			T3GPPS<4:0>			10000	
EA7h	T3CKIPPS	_	—	_			T3CKIPPS<4:0	>		10000	
EA6h	T1GPPS	_	—	_			T1GPPS<4:0>			01101	
EA5h	T1CKIPPS	_	—	_			T1CKIPPS<4:0	>		10000	
EA4h	TOCKIPPS	_	—	_			T0CKIPPS<4:0	>		00100	
EA3h	INT2PPS	_	—	_	INT2PPS<4:0>					01010	
EA2h	INT1PPS	_	—	_	INT1PPS<4:0>						
EA1h	INTOPPS	_	—	_	INTOPPS<4:0>						
EA0h	PPSLOCK	_	—	_	—	—	—	—	PPSLOCKED	0	
E9Fh	BAUD2CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-00-00	
E9Eh	TX2STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	00000010	
E9Dh	RC2STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	00000000	
E9Ch	SP2BRGH			EUSA	RT2 Baud Rat	e Generator, H	igh Byte			00000000	
E9Bh	SP2BRGL			EUSA	ART2 Baud Rat	e Generator, L	ow Byte			00000000	
E9Ah	TX2REG				EUSART2 Tra	ansmit Registe	r			00000000	
E99h	RC2REG				EUSART2 Re	eceive Registe	r			00000000	
E98h	SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	00000000	
E97h	SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	00000000	
E96h	SSP2CON1	WCOL	SSPOV	SSPEN	CKP		SSPN	1<3:0>		00000000	
E95h	SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	00000000	
E94h	SSP2MSK				MSP	<7:0>				11111111	
E93h	SSP2ADD				ADE)<7:0>				00000000	
E92h	SSP2BUF				BUF	<7:0>				xxxxxxxx	
E91h	SSP2SSPPS	_	—	—		:	SSPSSPPS<4:()>		00101	
E90h	SSP2DATPPS	—	—	—		S	SPDATPPS<4:	0>		10100	
E8Fh	SSP2CLKPPS	—	—	—		S	SPCLKPPS<4:	0>		10011	
E8Eh	TX2PPS	—	—	—			TXPPS<4:0>			10110	
E8Dh	RX2PPS	_	_	—			RXPPS<4:0>			10111	
E8Ch - E7Eh	_				Unimpl	emented				_	

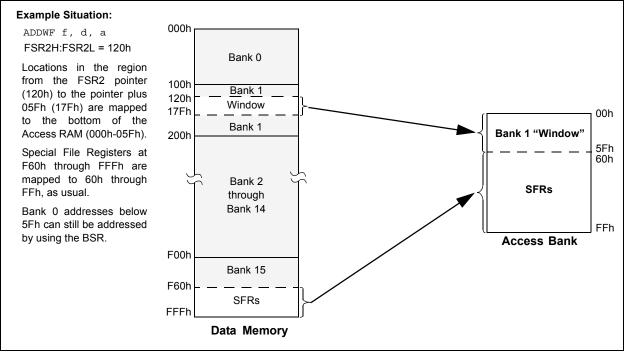
TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F27/47K40 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

2: Not available on PIC18(L)F27K40 (28-pin variants).


10.7.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE


The use of Indexed Literal Offset Addressing mode effectively changes how the first 96 locations of Access RAM (00h to 5Fh) are mapped. Rather than containing just the contents of the bottom section of Bank 0, this mode maps the contents from a user defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see **Section 10.4.2 "Access Bank"**). An example of Access Bank remapping in this addressing mode is shown in Figure 10-8.

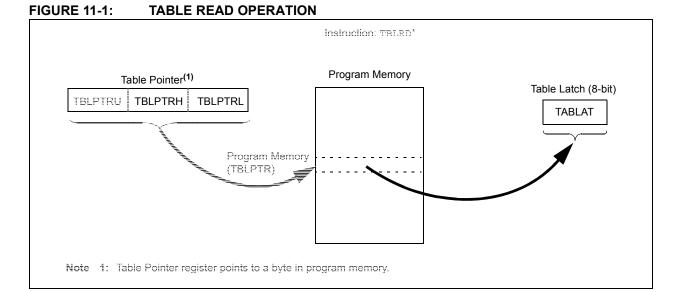
Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use direct addressing as before.

10.8 PIC18 Instruction Execution and the Extended Instruction Set

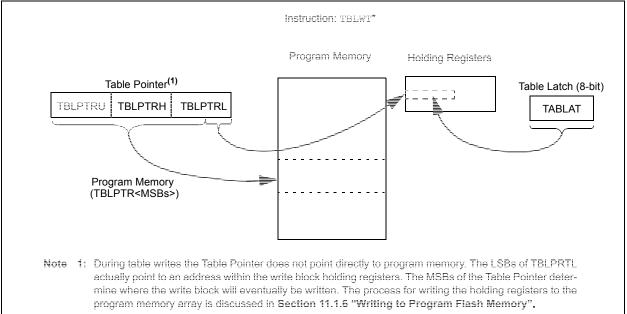
Enabling the extended instruction set adds eight additional commands to the existing PIC18 instruction set. These instructions are executed as described in **Section 35.2 "Extended Instruction Set**".

11.1.1 TABLE READS AND TABLE WRITES

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:


- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16 bits wide, while the data RAM space is eight bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).


The table read operation retrieves one byte of data directly from program memory and places it into the TABLAT register. Figure 11-1 shows the operation of a table read.

The table write operation stores one byte of data from the TABLAT register into a write block holding register. The procedure to write the contents of the holding registers into program memory is detailed in **Section 11.1.6 "Writing to Program Flash Memory"**. Figure 11-2 shows the operation of a table write with program memory and data RAM.

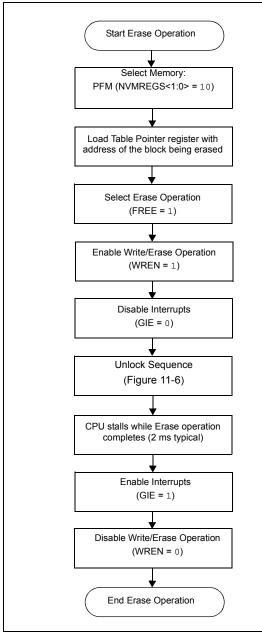

Table operations work with byte entities. Tables containing data, rather than program instructions, are not required to be word aligned. Therefore, a table can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word aligned.

FIGURE 11-2: TABLE WRITE OPERATION

FIGURE 11-7: PFM ROW ERASE FLOWCHART

11.1.6 WRITING TO PROGRAM FLASH MEMORY

The programming write block size is described in Table 11-3. Word or byte programming is not supported. Table writes are used internally to load the holding registers needed to program the Flash memory. There are only as many holding registers as there are bytes in a write block. Refer to Table 11-3 for write latch size.

Since the table latch (TABLAT) is only a single byte, the TBLWT instruction needs to be executed multiple times for each programming operation. The write protection state is ignored for this operation. All of the table write operations will essentially be short writes because only the holding registers are written. NVMIF is not affected while writing to the holding registers.

After all the holding registers have been written, the programming operation of that block of memory is started by configuring the NVMCON1 register for a program memory write and performing the long write sequence.

If the PFM address in the TBLPTR is write-protected or if TBLPTR points to an invalid location, the WR bit is cleared without any effect and the WREER is signaled.

The long write is necessary for programming the internal Flash. CPU operation is suspended during a long write cycle and resumes when the operation is complete. The long write operation completes in one instruction cycle. When complete, WR is cleared in hardware and NVMIF is set and an interrupt will occur if NVMIE is also set. The latched data is reset to all '1s'. WREN is not changed.

The internal programming timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CRCACCH	ACC<15:8>							152	
CRCACCL	ACC<7:0>							153	
CRCCON0	EN	GO	BUSY	ACCM	—	_	SHIFTM	FULL	151
CRCCON1		DLEN<	3:0>			PLE	N<3:0>		151
CRCDATH				DATA	<15:8>				152
CRCDATL				DATA	<7:0>				152
CRCSHIFTH				SHIFT	<15:8>				153
CRCSHIFTL				SHIF	T<7:0>				153
CRCXORH	X<15:8>						154		
CRCXORL	X<7:1> —					154			
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	68
SCANCON0	SCANEN	SCANGO	BUSY	INVALID	INTM	—	MODE	=<1:0>	155
SCANHADRU	—	—			HADF	R<21:16>			157
SCANHADRH				HADR	<15:8>				158
SCANHADRL				HADF	R<7:0>				158
SCANLADRU	—	—			LADF	R<21:16>			156
SCANLADRH	LADR<15:8>						156		
SCANLADRL				LADF	R<7:0>				157
SCANTRIG	—	—	_	_		TSEL	_<3:0>		159
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	—	INT2EDG	INT1EDG	INT0EDG	170
PIR7	SCANIF	CRCIF	NVMIF					CWG1IF	178
PIE7	SCANIE	CRCIE	NVMIE	_	_	_	_	CWG1IE	186
IPR7	SCANIP	CRCIP	NVMIP	_	_	_	_	CWG1IP	194

TABLE 13-5:	SUMMARY OF REGISTERS ASSOCIATED WITH CRC
-------------	--

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the CRC module.

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1
	—			_	TMR5GIP	TMR3GIP	TMR1GIP
bit 7						•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-3	Unimplomon	ted: Read as '	۰ ،				
	Unimplemen	ted: Read as '	J				
bit 2	TMR5GIP: TM 1 = High prio 0 = Low prior	•	rupt Priority bi	t			
bit 1	TMR3GIP: TM 1 = High prio 0 = Low prior	•	rupt Priority bi	t			
bit 0	TMR1GIP: TM 1 = High prio 0 = Low prior	2	rupt Priority bi	t			

REGISTER 14-23: IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5

15.2.5 SLEW RATE CONTROL

The SLRCONx register (Register 15-7) controls the slew rate option for each port pin. Slew rate for each port pin can be controlled independently. When an SLRCONx bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONx bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

15.2.6 INPUT THRESHOLD CONTROL

The INLVLx register (Register 15-8) controls the input voltage threshold for each of the available PORTx input pins. A selection between the Schmitt Trigger CMOS or the TTL compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTx register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-8 for more information on threshold levels.

Note:	Changing the input threshold selection
	should be performed while all peripheral
	modules are disabled. Changing the
	threshold level during the time a module is
	active may inadvertently generate a
	transition associated with an input pin,
	regardless of the actual voltage level on
	that pin.

15.2.7 WEAK PULL-UP CONTROL

The WPUx register (Register 15-5) controls the individual weak pull-ups for each port pin.

15.2.8 EDGE SELECTABLE INTERRUPT-ON-CHANGE

An interrupt can be generated by detecting a signal at the port pin that has either a rising edge or a falling edge. Any individual pin can be configured to generate an interrupt. The interrupt-on-change module is present on all the pins that are common between 28-pin and 40/44-pin devices. For further details about the IOC module refer to **Section 16.0 "Interrupt-on-Change**".

15.3 PORTE Registers

Depending on the device selected, PORTE is implemented in two different ways.

15.3.1 PORTE ON 40/44-PIN DEVICES

For PIC18(L)F4xK40 devices, PORTE is a 4-bit wide port. Three pins (RE0, RE1 and RE2) are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers. When selected as an analog input, these pins will read as '0's.

The corresponding data direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., disable the output driver). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin).

TRISE controls the direction of the REx pins, even when they are being used as analog pins. The user must make sure to keep the pins configured as inputs when using them as analog inputs. RE<2:0> bits have other registers associated with them (i.e., ANSELE, WPUE, INLVLE, SLRCONE and ODCONE). The functionality is similar to the other ports.

The Data Latch register (LATE) is also memory mapped. Read-modify-write operations on the LATE register read and write the latched output value for PORTE.

Note:	On a Power-on Reset, RE<2:0> a	are
	configured as analog inputs.	

The fourth pin of PORTE (MCLR/VPP/RE3) is an inputonly pin. Its operation is controlled by the MCLRE Configuration bit. When selected as a port pin (MCLRE = 0), it functions as a digital input-only pin; as such, it does not have TRIS or LAT bits associated with its operation. Otherwise, it functions as the device's Master Clear input. In either configuration, RE3 also functions as the programming voltage input during programming.

RE3 in PORTE register is a read-only bit and will read '1' when MCLRE = 1 (i.e., Master Clear enabled).

Note:	On a Power-on Reset, RE3 is enabled as						
	a digital input only if Master Clear						
	functionality is disabled.						

EXAMPLE 15-2: INITIALIZING PORTE

CLRF	PORTE	; Initialize PORTE by
		; clearing output
		; data latches
CLRF	LATE	; Alternate method
		; to clear output
		; data latches
CLRF	ANSELE	; Configure analog pins
		; for digital only
MOVLW	05h	; Value used to
		; initialize data
		; direction
MOVWF	TRISE	; Set RE<0> as input
		; RE<1> as output
		; RE<2> as input

15.3.2 PORTE ON 28-PIN DEVICES

For PIC18(L)F2xK40 devices, PORTE is only available when Master Clear functionality is disabled (MCLRE = 0). In this case, PORTE is a single bit, inputonly port comprised of RE3 only. The pin operates as previously described. RE3 in PORTE register is a readonly bit and will read '1' when MCLRE = 1 (i.e., Master Clear enabled).

17.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (synchronous operation)
- MSSP (I²C)
- CCP module
- Note: The I²C default input pins are I²C and SMBus compatible. RB1 and RB2 are additional pins. RC4 and RC3 are default MMP1 pins and are SMBus compatible. Clock and data signals can be routed to any pin, however pins without I²C compatibility will operate at standard TTL/ST logic levels as selected by the INVLV register.

17.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 17-1.

EXAMPLE 17-1: PPS LOCK SEQUENCE

; Disable interrupts: BCF INTCON,GIE
; Bank to PPSLOCK register BANKSEL PPSLOCK MOVLB PPSLOCK MOVLW 55h
; Required sequence, next 4 instructions MOVWF PPSLOCK MOVLW AAh MOVWF PPSLOCK
; Set PPSLOCKED bit to disable writes ; Only a BSF instruction will work BSF PPSLOCK,0
; Enable Interrupts BSF INTCON,GIE

EXAMPLE 17-2: PPS UNLOCK SEQUENCE

```
; Disable interrupts:
   BCF
           INTCON, GIE
; Bank to PPSLOCK register
   BANKSEL PPSLOCK
   MOVLB
           PPSLOCK
   MOVIW
            55h
; Required sequence, next 4 instructions
   MOVWF
           PPSLOCK
   MOVLW
           AAh
   MOVWF
           PPSLOCK
; Clear PPSLOCKED bit to enable writes
; Only a BCF instruction will work
   BCF
           PPSLOCK,0
; Enable Interrupts
   BSF
            INTCON.GIE
```

17.5 PPS One-Way Lock

Using the PPS1WAY Configuration bit, the PPS settings can be locked in. When this bit is set, the PPSLOCKED bit can only be cleared and set one time after a device Reset. This allows for clearing the PPSLOCKED bit so that the input and output selections can be made during initialization. When the PPSLOCKED bit is set after all selections have been made, it will remain set and cannot be cleared until after the next device Reset event.

17.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

17.7 Effects of a Reset

A device Power-on-Reset (POR) clears all PPS input and output selections to their default values. All other Resets leave the selections unchanged. Default input selections are shown in the **Section "Pin Allocation Tables"**. The PPS one-way is also removed.

18.1 Timer0 Operation

Timer0 can operate as either an 8-bit timer/counter or a 16-bit timer/counter. The mode is selected with the T016BIT bit of the T0CON register.

18.1.1 16-BIT MODE

The register pair TMR0H:TMR0L, increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

18.1.1.1 Timer0 Reads and Writes in 16-Bit Mode

In 16-bit mode, to avoid rollover between reading high and low registers, the TMR0H register is a buffered copy of the actual high byte of Timer0, which is neither directly readable nor writable (see Figure 18-1). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte was valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

18.1.2 8-BIT MODE

In normal operation, TMR0 increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

In 8-bit mode, the value of TMR0L is compared to that of the Period buffer, a copy of TMR0H, on each clock cycle. When the two values match, the following events happen:

- TMR0_out goes high for one prescaled clock period
- TMR0L is reset
- The contents of TMR0H are copied to the period buffer

In 8-bit mode, the TMR0L and TMR0H registers are both directly readable and writable. The TMR0L register is cleared on any device Reset, while the TMR0H register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- A write to the TMR0L register
- A write to either the T0CON0 or T0CON1 registers
- Any device Reset Power-on Reset (POR), MCLR Reset, Watchdog Timer Reset (WDTR) or
- Brown-out Reset (BOR)

18.1.3 COUNTER MODE

In Counter mode, the prescaler is normally disabled by setting the T0CKPS bits of the T0CON1 register to '0000'. Each rising edge of the clock input (or the output of the prescaler if the prescaler is used) increments the counter by '1'.

18.1.4 TIMER MODE

In Timer mode, the Timer0 module will increment every instruction cycle as long as there is a valid clock signal and the T0CKPS bits of the T0CON1 register (Register 18-2) are set to '0000'. When a prescaler is added, the timer will increment at the rate based on the prescaler value.

18.1.5 ASYNCHRONOUS MODE

When the TOASYNC bit of the TOCON1 register is set (TOASYNC = '1'), the counter increments with each rising edge of the input source (or output of the prescaler, if used). Asynchronous mode allows the counter to continue operation during Sleep mode provided that the clock also continues to operate during Sleep.

18.1.6 SYNCHRONOUS MODE

When the T0ASYNC bit of the T0CON1 register is clear (T0ASYNC = 0), the counter clock is synchronized to the system clock (Fosc/4). When operating in Synchronous mode, the counter clock frequency cannot exceed Fosc/4.

18.2 Clock Source Selection

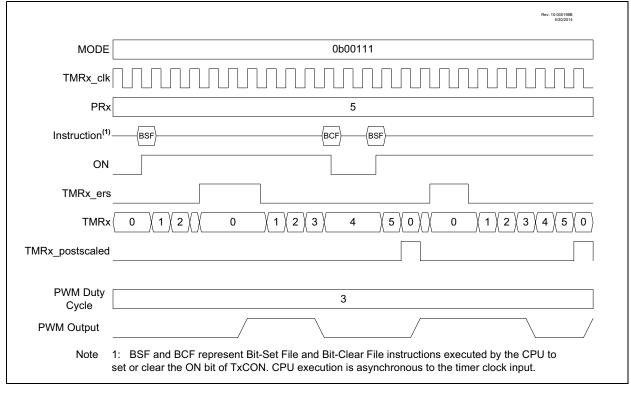
The T0CS<2:0> bits of the T0CON1 register are used to select the clock source for Timer0. Register 18-2 displays the clock source selections.

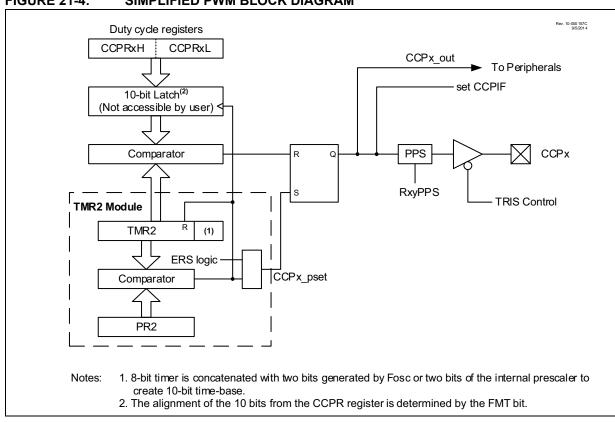
18.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, Timer0 operates as a timer and will increment on multiples of the clock source, as determined by the Timer0 prescaler.

18.2.2 EXTERNAL CLOCK SOURCE

When an external clock source is selected, Timer0 can operate as either a timer or a counter. Timer0 will increment on multiples of the rising edge of the external clock source, as determined by the Timer0 prescaler.


20.5.4 LEVEL-TRIGGERED HARDWARE LIMIT MODE


In the Level-Triggered Hardware Limit Timer modes the counter is reset by high or low levels of the external signal TMRx_ers, as shown in Figure 20-7. Selecting MODE<4:0> = 0.0110 will cause the timer to reset on a low level external signal. Selecting MODE<4:0> = 0.0111 will cause the timer to reset on a high level external signal. In the example, the counter is reset while TMRx_ers = 1. ON is controlled by BSF and BCF instructions. When ON = 0 the external signal is ignored.

When the CCP uses the timer as the PWM time base then the PWM output will be set high when the timer starts counting and then set low only when the timer count matches the CCPRx value. The timer is reset when either the timer count matches the PRx value or two clock periods after the external Reset signal goes true and stays true.

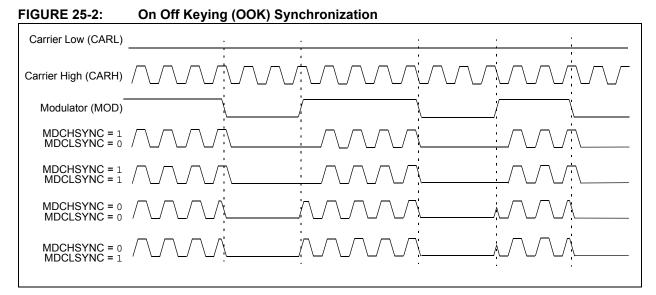

The timer starts counting, and the PWM output is set high, on either the clock following the PRx match or two clocks after the external Reset signal relinquishes the Reset. The PWM output will remain high until the timer counts up to match the CCPRx pulse width value. If the external Reset signal goes true while the PWM output is high then the PWM output will remain high until the Reset signal is released allowing the timer to count up to match the CCPRx value.

FIGURE 21-4: SIMPLIFIED PWM BLOCK DIAGRAM

FIGURE 25-3: No Synchronization (MDSHSYNC = 0, MDCLSYNC = 0)

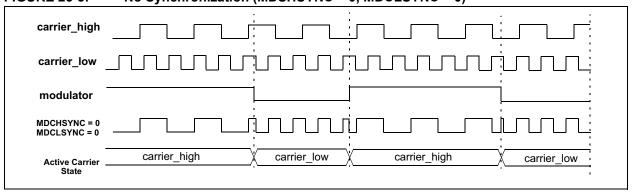


FIGURE 25-4: Carrier High Synchronization (MDSHSYNC = 1, MDCLSYNC = 0)

carrier_high	
carrier_low	
modulator	
MDCHSYNC = 1 MDCLSYNC = 0	
Active Carrier State	carrier_high /_both\carrier_low \ / carrier_high / both \ carrier_low

26.9.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 26-19 displays a standard waveform of a 7-bit address slave transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCL line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- Slave software reads the <u>ACKTIM</u> bit of SSPxCON3 register, and R/W and D/A of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPxBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: <u>SSPx</u>BUF cannot be loaded until after the ACK.

- 13. Slave sets the CKP bit releasing the clock.
- 14. Master clocks out the data from the slave and sends an ACK value on the ninth SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not ACK the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

33.2 HLVD Setup

To set up the HLVD module:

- Select the desired HLVD trip point by writing the value to the HLVDSEL<3:0> bits of the HLVDCON1 register.
- Depending on the application to detect high-voltage peaks or low-voltage drops or both, set the HLVDINTH or HLVDINTL bit appropriately.
- 3. Enable the HLVD module by setting the HLVDEN bit.
- Clear the HLVD interrupt flag (PIR2 register), which may have been set from a previous interrupt.
- 5. If interrupts are desired, enable the HLVD interrupt by setting the HLVDIE in the PIE2 register and GIE bits.

An interrupt will not be generated until the HLVDRDY bit is set.

Note: Before changing any module settings (HLVDINTH, HLVDINTL, HLVDSEL<3:0>), first disable the module (HLVDEN = 0), make the changes and re-enable the module. This prevents the generation of false HLVD events.

33.3 Current Consumption

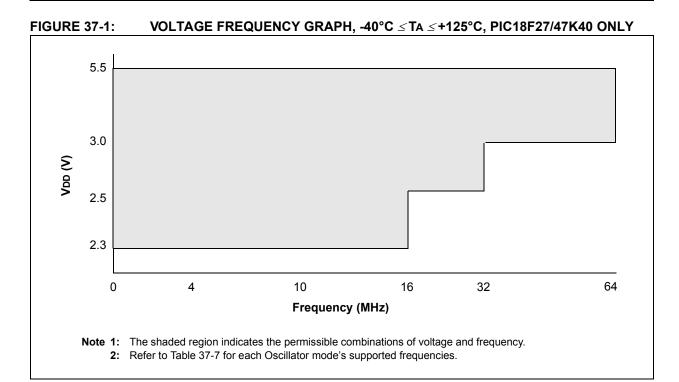
When the module is enabled, the HLVD comparator and voltage divider are enabled and consume static current. The total current consumption, when enabled, is specified in electrical specification Parameter **D206** (Table 37-3).

Depending on the application, the HLVD module does not need to operate constantly. To reduce current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After such a check, the module could be disabled.

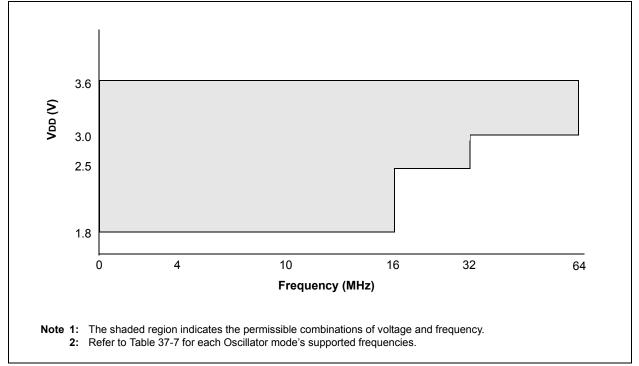
33.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification (Table 37-17), may be used by other internal circuitry, such as the programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TFVRST, is an interval that is independent of device clock speed. It is specified in electrical specification (Table 37-17).

The HLVD interrupt flag is not enabled until TFVRST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (see Figure 33-2 or Figure 33-3).


35.1.1 STANDARD INSTRUCTION SET

ADD	LW	ADD litera	al to W					
Syntax:		ADDLW	ADDLW k					
Opera	ands:	$0 \le k \le 255$	$0 \leq k \leq 255$					
Opera	ation:	$(W) + k \rightarrow V$	$(W) + k \to W$					
Status	s Affected:	N, OV, C, D	N, OV, C, DC, Z					
Enco	ding:	0000	1111 kkkk		k kkkk			
Descr	ription:		The contents of W are added to the 8-bit literal 'k' and the result is placed in W.					
Word	s:	1	1					
Cycle	s:	1						
Q Cy	cle Activity:							
_	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Process Data		Write to W			
Exam	nle [.]	ADDLW 1	.5h					
	<u>ipie</u> . Before Instruc		. 511					
W = 10h								
/	After Instructio							
1	After Instructio W =	25h						


ADDWF	ADD W to f						
Syntax:	ADDWF f {,d {,a}}						
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Operation:	$(W) + (f) \rightarrow dest$						
Status Affected:	N, OV, C, DC, Z						
Encoding:	0010 01da ffff ffff						
Description:	Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.						
Words: Cycles:	1 1						

QC	ycle Activity:							
	Q1		Q2		23	Q4		
	Decode	Read register 'f'		Process Data		Write to destination		
<u>Exan</u>	Example:		DDWF	REG,	0, 0			
Before Instruc		tion						
	W REG After Instructio	= =	17h 0C2h					
	W REG	=	0D9h 0C2h					

Note:	All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
	symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

PIC18LF27/47K40 PIC18F27/47K40			Standard Operating Conditions (unless otherwise stated)						
No.	Symbol	Device Characteristics	Min.	Тур.†	VDD	Note			
D100	IDD _{XT4}	XT = 4 MHz	—	450	650	μΑ	3.0V		
D100	IDD _{XT4}	XT = 4 MHz		550	750	μΑ	3.0V		
D100A	IDD _{XT4}	XT = 4 MHz	—	310	—	μΑ	3.0V	PMD's all 1's	
D100A	IDD _{XT4}	XT = 4 MHz		410	—	μΑ	3.0V	PMD's all 1's	
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	-	1.9	2.6	mA	3.0V		
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	_	2.0	2.7	mA	3.0V		
D101A	IDD _{HFO16}	HFINTOSC = 16 MHz	-	1.4	—	mA	3.0V	PMD's all 1's	
D101A	IDD _{HFO16}	HFINTOSC = 16 MHz	_	1.5	—	mA	3.0V	PMD's all 1's	
D102	IDD _{HFOPLL}	HFINTOSC = 64 MHz	—	7.4	9.4	mA	3.0V		
D102	IDD _{HFOPLL}	HFINTOSC = 64 MHz	_	7.5	9.5	mA	3.0V		
D102A	IDD _{HFOPLL}	HFINTOSC = 64 MHz	—	5.2	—	mA	3.0V	PMD's all 1's	
D102A	IDD _{HFOPLL}	HFINTOSC = 64 MHz		5.3	—	mA	3.0V	PMD's all 1's	
D103	IDD _{HSPLL32}	HS+PLL = 64 MHz	_	6.9	8.9	mA	3.0V		
D103	IDD _{HSPLL32}	HS+PLL = 64 MHz	_	7.0	9.0	mA	3.0V		
D103A	IDD _{HSPLL32}	HS+PLL = 64 MHz	_	4.9	_	mA	3.0V	PMD's all 1's	
D103A	IDD _{HSPLL32}	HS+PLL = 64 MHz	—	5.0	—	mA	3.0V	PMD's all 1's	
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	_	1.05	- 1	mA	3.0V		
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	_	1.15	-	mA	3.0V		
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16	_	1.1	-	mA	3.0V		
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16	—	1.2	—	mA	3.0V		

TABLE 37-2: SUPPLY CURRENT (IDD)^(1,2,4)

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from

rail-to-rail; all I/O pins are outputs driven low; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: $IDD_{DOZE} = [IDD_{IDLE}^{*}(N-1)/N] + IDD_{HFO} 16/N$ where N = DOZE Ratio (Register 6-2).

4: PMD bits are all in the default state, no modules are disabled.