

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf27k40t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18(L)F27/47K40

PIC18(L)F2x/4xK40 Family Types

Device	Data Sheet Index	Program Memory Flash (bytes)	Data SRAM (bytes)	Data EEPROM (bytes)	I/O Pins	16-bit Timers	Comparators	10-bit ADC ² with Computation (ch)	5-bit DAC	Zero-Cross Detect	CCP/10-bit PWM	CWG	8-bit TMR with HLT	Windowed Watchdog Timer	CRC with Memory Scan	EUSART	I ² C/SPI	Sdd	Peripheral Module Disable	Temperature Indicator	Debug ⁽¹⁾
PIC18(L)F24K40	(1)	16k	1024	256	25	4	2	24	1	1	2/2	1	3	Y	Y	1	1	Y	Y	Υ	Ι
PIC18(L)F25K40	(1)	32k	2048	256	25	4	2	24	1	1	2/2	1	3	Y	Y	1	1	Υ	Υ	Y	Ι
PIC18(L)F26K40	(2)	64k	3728	1024	25	4	2	24	1	1	2/2	1	3	Y	Υ	2	2	Y	Υ	Υ	Ι
PIC18(L)F27K40	(3)	128k	3728	1024	25	4	2	24	1	1	2/2	1	3	Y	Y	2	2	Υ	Υ	Υ	Ι
PIC18(L)F45K40	(2)	32k	2048	256	36	4	2	35	1	1	2/2	1	3	Y	Y	2	2	Υ	Υ	Υ	Ι
PIC18(L)F46K40	(2)	64k	3728	1024	36	4	2	35	1	1	2/2	1	3	Y	Y	2	2	Υ	Υ	Υ	Ι
PIC18(L)F47K40	(3)	128k	3728	1024	36	4	2	35	1	1	2/2	1	3	Y	Υ	2	2	Υ	Υ	Υ	Ι

Note 1: Debugging Methods: (I) – Integrated on Chip.

Data Sheet Index: (Unshaded devices are described in this document.)

1. DS40001843 PIC18(L)F24/25K40 Data Sheet, 28-Pin, 8-bit Flash Microcontrollers

2. DS40001816 PIC18(L)F26/45/46K40 Data Sheet, 28/40/44-Pin, 8-bit Flash Microcontrollers

3. DS40001844 PIC18(L)F27/47K40 Data Sheet, 28/40/44-Pin, 8-bit Flash Microcontrollers

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

1.2 Other Special Features

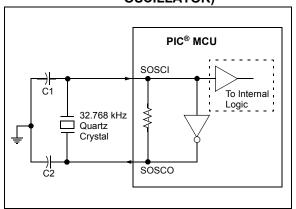
- **Memory Endurance:** The Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles up to 10K for program memory and 100K for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-programmability: These devices can write to their own program memory spaces under internal software control. By using a boot loader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field.
- Extended Instruction Set: The PIC18(L)F2x/ 4xK40 family introduces an optional extension to the PIC18 instruction set, which adds eight new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.
- Enhanced Peripheral Pin Select: The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins.
- Enhanced Addressable EUSART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement).
- **10-bit A/D Converter with Computation:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduce code overhead. It has a new module called ADC² with computation features, which provides a digital filter and threshold interrupt functions.
- Windowed Watchdog Timer (WWDT):
 - Timer monitoring of overflow and underflow events
 - Variable prescaler selection
 - Variable window size selection
 - All sources configurable in hardware or software

1.3 Details on Individual Family Members

Devices in the PIC18(L)F2x/4xK40 family are available in 28-pin and 40/44-pin packages. The block diagram for this device is shown in Figure 1-1.

The devices have the following differences:

- 1. Program Flash Memory
- 2. Data Memory SRAM
- 3. Data Memory EEPROM
- 4. A/D channels
- 5. I/O ports
- 6. Enhanced USART
- 7. Input Voltage Range/Power Consumption


All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in the pin summary tables (Table 1 and Table 2).

4.3.1.5 Secondary Oscillator

The secondary oscillator is a separate oscillator block that can be used as an alternate system clock source. The secondary oscillator is optimized for 32.768 kHz, and can be used with an external crystal oscillator connected to the SOSCI and SOSCO device pins, or an external clock source connected to the SOSCIN pin. The secondary oscillator can be selected during run-time using clock switching. Refer to **Section 4.4 "Clock Switching"** for more information.

FIGURE 4-5: QUARTZ CRYSTAL OPERATION (SECONDARY OSCILLATOR)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for PIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

4.3.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the RSTOSC<2:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the NOSC<2:0> bits in the OSCCON1 register to switch the system clock source to the internal oscillator during run-time. See Section 4.4 "Clock Switching" for more information.

In INTOSC mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators that can produce two internal system clock sources.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory-calibrated and operates from 1 to 64 MHz. The frequency of HFINTOSC can be selected through the OSCFRQ Frequency Selection register, and fine-tuning can be done via the OSCTUNE register.
- 2. The **LFINTOSC** (Low-Frequency Internal Oscillator) is factory-calibrated and operates at 31 kHz.

4.3.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a precision digitally-controlled internal clock source that produces a stable clock up to 64 MHz. The HFINTOSC can be enabled through one of the following methods:

- Programming the RSTOSC<2:0> bits in Configuration Word 1 to '110' (Fosc = 1 MHz) or '000' (Fosc = 64 MHz) to set the oscillator upon device Power-up or Reset.
- Write to the NOSC<2:0> bits of the OSCCON1 register during run-time. See Section 4.4 "Clock Switching" for more information.

The HFINTOSC frequency can be selected by setting the HFFRQ<3:0> bits of the OSCFRQ register.

The NDIV<3:0> bits of the OSCCON1 register allow for division of the HFINTOSC output from a range between 1:1 and 1:512.

4.3.2.2 MFINTOSC

The module provides two (500 kHz and 31.25 kHz) constant clock outputs. These clocks are digital divisors of the HFINTOSC clock. Dynamic divider logic is used to provide constant MFINTOSC clock rates for all settings of HFINTOSC.

The MFINTOSC cannot be used to drive the system but it is used to clock certain modules such as the Timers and WWDT.

4.3.2.3 Internal Oscillator Frequency Adjustment

The internal oscillator is factory-calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 4-3).

The default value of the OSCTUNE register is 00h. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE **does not affect** the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), WWDT, Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

4.3.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is a factory-calibrated 31 kHz internal clock source.

The LFINTOSC is the frequency for the Power-up Timer (PWRT), Windowed Watchdog Timer (WWDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled through one of the following methods:

- Programming the RSTOSC<2:0> bits of Configuration Word 1 to enable LFINTOSC.
- Write to the NOSC<2:0> bits of the OSCCON1 register during run-time. See Section 4.4, Clock Switching for more information.

4.3.2.5 ADCRC

The ADCRC is an oscillator dedicated to the ADC^2 module. The ADCRC oscillator can be manually enabled using the ADOEN bit of the OSCEN register. The ADCRC runs at a fixed frequency of 600 kHz. ADCRC is automatically enabled if it is selected as the clock source for the ADC^2 module.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
LATx7	LATx6	LATx5	LATx4	LATx3	LATx2	LATx1	LATx0		
bit 7							bit 0		
Legend:									
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown				
-n/n = Value at	-n/n = Value at POR and BOR/Value at all other Resets								

REGISTER 15-3: LATx: LATx REGISTER⁽¹⁾

bit 7-0 LATx<7:0>: Rx7:Rx0 Output Latch Value bits

Note 1: Writes to LATx are equivalent with writes to the corresponding PORTx register. Reads from LATx register return register values, not I/O pin values.

	Dev	vice								
Name	28 Pins	40/44 Pins	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LATA	Х	Х	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0
LATB	Х	Х	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0
LATC	Х	Х	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0
LATD	Х		_	_	_	_	—	_	—	_
		Х	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0
LATE	Х		_	—	—	—	—	_	_	_
		Х	_	—	—	_	—	LATE2	LATE1	LATE0

TABLE 15-4: LAT REGISTERS

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
ODCx7	ODCx6	ODCx5	ODCx4	ODCx3	ODCx2	ODCx1	ODCx0		
bit 7				•			bit 0		
Legend:									
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
-n/n = Value at	-n/n = Value at POR and BOR/Value at all other Resets								

REGISTER 15-6: ODCONx: OPEN-DRAIN CONTROL REGISTER

bit 7-0

ODCx<7:0>: Open-Drain Configuration on Pins Rx<7:0>

1 = Output drives only low-going signals (sink current only)

0 = Output drives both high-going and low-going signals (source and sink current)

	Dev	/ice								
Name	28 Pins	40/44 Pins	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ODCONA	Х	Х	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0
ODCONB	Х	Х	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0
ODCONC	Х	Х	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0
ODCOND	Х		_	_	—	—	_	_	_	—
		Х	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0
ODCONE	Х		_	_	_	_	_	_		_
		Х	_	_	_	_	_	ODCE2	ODCE1	ODCE0

TABLE 15-7:OPEN-DRAIN CONTROL REGISTERS

	CCPR	x<15:8>			
					bit 0
W = Writab	ole bit	U = Unimpleme	nted bit, read	as '0'	
'1' = Bit is s	set	'0' = Bit is cleare	ed	x = Bit is unkr	nown
		W = Writable bit '1' = Bit is set	•	•	

REGISTER 21-5: CCPRxH: CCPx REGISTER HIGH BYTE

bit 7-0	MODE = Capture Mode:
	CCPRxH<7:0>: MSB of captured TMR1 value
	MODE = Compare Mode:
	CCPRxH<7:0>: MSB compared to TMR1 value
	MODE = PWM Mode && FMT = 0:
	CCPRxH<7:2>: Not used
	CCPRxH<1:0>: CCPW<9:8> - Pulse-Width MS 2 bits
	MODE = PWM Mode && FMT = 1:
	CCPRxH<7:0>: CCPW<9:2> - Pulse-Width MS 8 bits

PIC18(L)F27/47K40

SHUTDOWN bit 7 Legend: R = Readable bit	REN	LSBD)<1:0>	LSAC			
Legend:				20/10	<1:0>	—	—
							bit C
		W = Writable	bit	II = Unimplem	ented hit read	as '0'	
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Res							thar Resets
'1' = Bit is set '0' = Bit is cleared HS/HC = Bit is set/cleared by hardware							
q = Value depend	ls on condition		areu		sercleared by	naruware	
bit 7 bit 6	1 = An auto 0 = No auto	: Auto-Shutdo -shutdown sta -shutdown eve estart Enable	te is in effect ent has occur				
טונס	1 = Auto-res	estart is enable start is disable	d				
bit 5-4	11 = A logic 10 = A logic 01 = Pin is tri 00 = The ina	1' is placed or 0' is placed or -stated on CW ctive state of	CWG1B/D v n CWG1B/D v /G1B/D when the pin, inclu	-Shutdown State when an auto-sh when an auto-sh an auto-shutdo uding polarity, is hutdown event c	utdown event o utdown event o wn event occur placed on CW	ccurs. s.	he required
bit 3-2	11 = A logic 10 = A logic 01 = Pin is tri 00 = The ina	1' is placed or 0' is placed or -stated on CW ctive state of	CWG1A/C v CWG1A/C v /G1A/C when the pin, inclu	-Shutdown State vhen an auto-sh vhen an auto-sh an auto-shutdo iding polarity, is hutdown event c	utdown event o utdown event o wn event occur placed on CW	ccurs. s.	he required
bit 1-0	Unimplemen	ted: Read as	' 0'				

2: The outputs will remain in auto-shutdown state until the next rising edge of the CWG data input after this bit is cleared.

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	—			DBR	<5:0>		
bit 7	·						bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, reac	l as '0'	
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value dep	ends on condit	ion	
bit 7-6	Unimplem	ented: Read as '	0'				
bit 5-0	DBR<5:0>:	CWG Rising Ed	ge Triggered I	Dead-Band Cou	int bits		
	11 1111 =	= 63-64 CWG cld	ock periods				
	11 1110 =	= 62-63 CWG clo	ock periods				
	•						
	•						
		= 2-3 CWG clock	•				
		 1-2 CWG clock 0 CWG clock p 		hand concration	n is hypassod		
	00 0000 =		enous. Deau-	band generation	in is bypassed		

REGISTER 24-8: CWG1DBR: CWG RISING DEAD-BAND COUNT REGISTER

REGISTER 24-9: CWG1DBF: CWG FALLING DEAD-BAND COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			DBF∙	<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6	Unimplemented: Read as '0'					
bit 5-0	DBF<5:0>: CWG Falling Edge Triggered Dead-Band Count bits					
	11 1111 = 63-64 CWG clock periods					
	11 1110 = 62-63 CWG clock periods					
	00 0010 = 2-3 CWG clock periods					
	00 0001 = 1-2 CWG clock periods					
	00 0000 = 0 CWG clock periods. Dead-band generation is bypassed.					

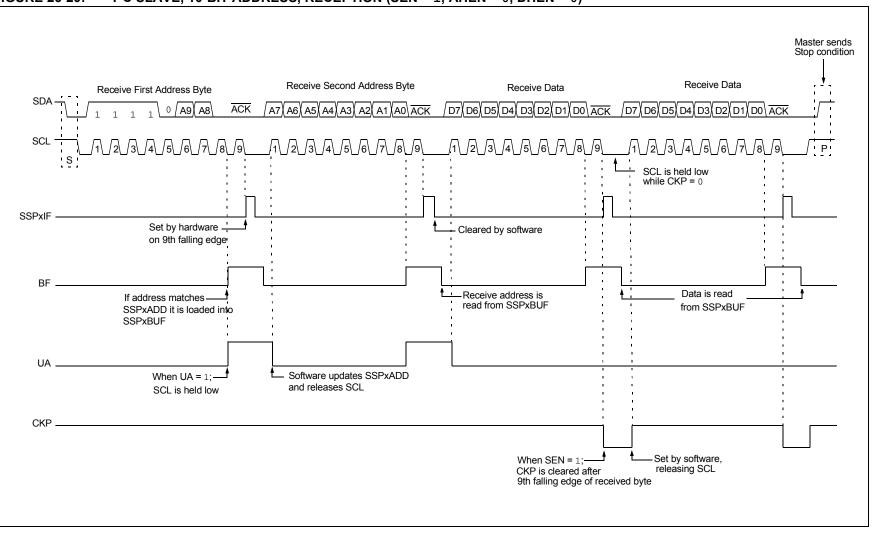
REGISTE				•	C MASTER N	•	
R/W-0	-	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	P ⁽¹⁾	S ⁽¹⁾	R/W ^(2,3)	UA	BF
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	> bit	U = Unimpler	mented bit, read	as '0'	
-n = Value		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkr	nown
		. 2.1.0 00	-	0 2.1.0 0.0			
bit 7	SMP: Slew	Rate Control bi	t				
		<u>Slave mode:</u>					
					de (100 kHz and	1 MHz)	
bit 6	CKE: SMBL	ite control is en		Speed mode (4			
bit 0		<u>Slave mode:</u>					
		SMBus-specifi	c inputs				
	0 = Disables	s SMBus-specif	ic inputs				
bit 5	D/A: Data/A						
	In Master m Reserved.	<u>ode:</u>					
	In Slave mo	de:					
	1 = Indicate	s that the last b					
		s that the last b	yte received or	transmitted wa	s address		
bit 4	P: Stop bit ⁽¹		has been date	ated last			
		s that a Stop bi was not detected		ected last			
bit 3	S: Start bit ⁽¹						
		s that a Start bi		ected last			
		was not detect					
bit 2		Write Informatio	on bit ^(2,3)				
	<u>In Slave mo</u> 1 = Read	<u>de:</u>					
	0 = Write						
	In Master m						
		t is in progress					
bit 1		t is not in progr Address bit (10					
DIL	-			• •	n the SSPxADD	register	
		does not need				. eg.ete.	
bit 0	BF: Buffer F	Full Status bit					
	In Transmit						
	1 = SSPxBL 0 = SSPxBL						
	In Receive r						
	1 = SSPxBl	JF is full (does					
	0 = SSPxBl	JF is empty (do	es not include t	he ACK and St	op bits)		
Note 1:	This bit is cleare	ed on Reset and	when SSPEN	is cleared.			
2:	This bit holds th				ss match. This b	it is only valid	from the
	address match f	to the next Star	bit, Stop bit or	not ACK bit.			

REGISTER 26-6: SSPxSTAT: MSSPx STATUS REGISTER (I²C MASTER MODE)

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.

R/HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit 0
Legend:							
R = Readable		W = Writable	bit	•	nented bit, read		
-n = Value at I	-	'1' = Bit is set		HS/HC = Bit i	s set/cleared by	/ hardware	
x = Bit is unkn	own	'0' = Bit is clea	ared				
bit 7	ACKTIM: Ack	knowledge Time	Status bit				
	Unused in Ma	•					
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit ⁽¹)			
		nterrupt on dete					
		ection interrupts					
bit 5	SCIE: Start C	ondition Interru	pt Enable bit ⁽¹	1)			
				r Restart condit	tions		
		ction interrupts					
bit 4		r Overwrite Ena					
		•	every time a r	new data byte	is available, igr	noring the SSI	POV effect on
		the buffer is only update	d when SSPC)V is clear			
bit 3		Hold Time Sel					
bit o				fter the falling e	edge of SCI		
	 1 = Minimum of 300ns hold time on SDA after the falling edge of SCL 0 = Minimum of 100ns hold time on SDA after the falling edge of SCL 						
bit 2	SBCDE: Slave Mode Bus Collision Detect Enable bit						
	Unused in Master mode.						
bit 1	AHEN: Address Hold Enable bit						
	Unused in Master mode.						
bit 0	DHEN: Data Hold Enable bit						
	Unused in Master mode.						

REGISTER 26-9: SSPxCON3: MSSPx CONTROL REGISTER 3 (I²C MASTER MODE)


Note 1: This bit has no effect when SSPM<3:0> = 1111 or 1110.In these Slave modes the START and STOP condition interrupts are always enabled.

REGISTER 26-10: SSPxBUF: MSSP DATA BUFFER REGISTER (I²C MASTER MODE)

					•	,	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			BUF	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpler	mented bit, read	as '0'	

R = Readable bit	vv = vvritable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

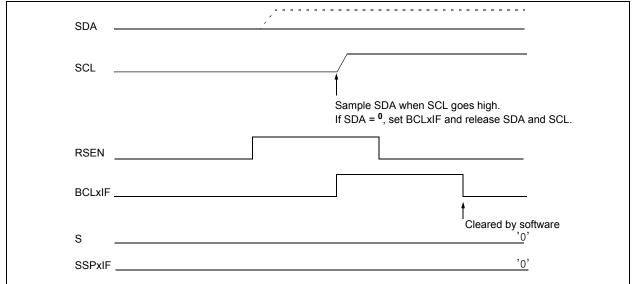
bit 7-0 BUF<7:0>: MSSP Buffer bits

FIGURE 26-20: I²C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)

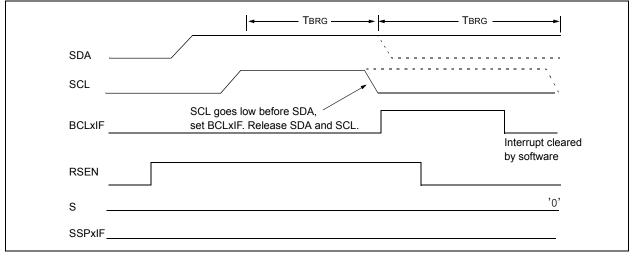
PIC18(L)F27/47K40

26.10.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:


- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 26-36). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 26-37.

If, at the end of the BRG time out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 26-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

30.6 Register Definitions: DAC Control

Long bit name prefixes for the DAC peripheral is shown in Table 30-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

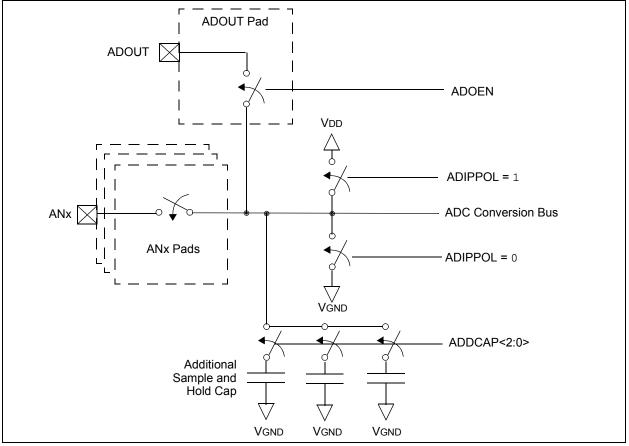
TABLE 30-1:

Peripheral	Bit Name Prefix
DAC	DAC

REGISTER 30-1: DAC1CON0: DAC CONTROL REGISTER

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
EN	—	OE1	OE2	PSS	i<1:0>	—	NSS
bit 7							bit 0

I


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	EN: DAC Enable bit 1 = DAC is enabled 0 = DAC is disabled
bit 6	Unimplemented: Read as '0'
bit 5	 OE1: DAC Voltage Output Enable bit 1 = DAC voltage level is output on the DAC1OUT1 pin 0 = DAC voltage level is disconnected from the DAC1OUT1 pin
bit 4	 OE2: DAC Voltage Output Enable bit 1 = DAC voltage level is output on the DAC1OUT2 pin 0 = DAC voltage level is disconnected from the DAC1OUT2 pin
bit 3-2	PSS<1:0>: DAC Positive Source Select bit 11 = Reserved 10 = FVR buffer 01 = VREF+ 00 = AVDD
bit 1	Unimplemented: Read as '0'
bit 0	NSS: DAC Negative Source Select bit 1 = VREF- 0 = AVSS

31.4 Capacitive Voltage Divider (CVD) Features

The ADC module contains several features that allow the user to perform a relative capacitance measurement on any ADC channel using the internal ADC sample and hold capacitance as a reference. This relative capacitance measurement can be used to implement capacitive touch or proximity sensing applications. Figure 31-6 shows the basic block diagram of the CVD portion of the ADC module.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
			ADPF	RE<7:0>				
bit 7							bit C	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is se	t	'0' = Bit is clea	ared					
bit 7-0	11111111 =	 Precharge Ti Precharge time Precharge time 	e is 255 clock	s of the selected				
	•							

REGISTER 31-9: ADPRE: ADC PRECHARGE TIME CONTROL REGISTER

00000001 = Precharge time is 1 clock of the selected ADC clock 00000000 = Precharge time is not included in the data conversion cycle

REGISTER 31-10: ADACQ: ADC ACQUISITION TIME CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ADACQ<7:0>							
bit 7	bit 7 bit 0						

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	ADACQ<7:0> : Acquisition (charge share time) Select bits 11111111 = Acquisition time is 255 clocks of the selected ADC clock 11111110 = Acquisition time is 254 clocks of the selected ADC clock
	•
	• 00000001 = Acquisition time is 1 clock of the selected ADC clock 00000000 = Acquisition time is not included in the data conversion cycle
Notor	If ADRRE is not equal to (a) then ADACO = b'00000000 means Acquisition time is 256 alor

Note: If ADPRE is not equal to '0', then ADACQ = b'00000000 means Acquisition time is 256 clocks of the selected ADC clock.

32.11 CWG1 Auto-Shutdown Source

The output of the comparator module can be used as an auto-shutdown source for the CWG1 module. When the output of the comparator is active and the corresponding WGASxE is enabled, the CWG operation will be suspended immediately (see Section 24.10.1.2 "External Input Source").

32.12 ADC Auto-Trigger Source

The output of the comparator module can be used to trigger an ADC conversion. When the ADACT register is set to trigger on a comparator output, an ADC conversion will trigger when the Comparator output goes high.

32.13 TMR2/4/6 Reset

The output of the comparator module can be used to reset Timer2. When the TxERS register is appropriately set, the timer will reset when the Comparator output goes high.

32.14 Operation in Sleep Mode

The comparator module can operate during Sleep. The comparator clock source is based on the Timer1 clock source. If the Timer1 clock source is either the system clock (FOSC) or the instruction clock (FOSC/4), Timer1 will not operate during Sleep, and synchronized comparator outputs will not operate.

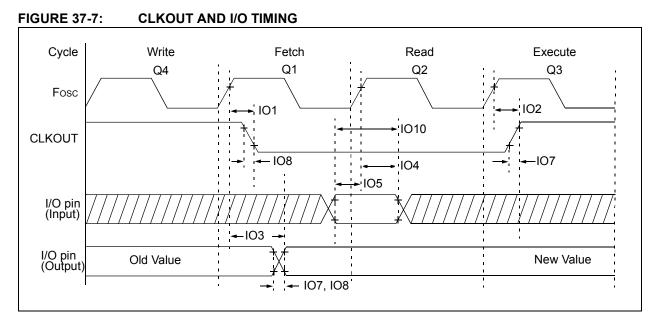
A comparator interrupt will wake the device from Sleep. The CxIE bits of the PIE2 register must be set to enable comparator interrupts.

PIC18(L)F27/47K40

SUBLW	Subtract	Subtract W from literal				
Syntax:	SUBLW I	K				
Operands:	$0 \le k \le 25$	5				
Operation:	$k-(W) \rightarrow$	W				
Status Affected:	N, OV, C,	DC, Z				
Encoding:	0000	1000	kkkk	kkkk		
Description	W is subtr literal 'k'. 1					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read literal 'k'	Proces Data		rite to W		
Example 1:	SUBLW ()2h				
Before Instruct W C After Instruction W C Z N	= 01h = ? n = 01h	esult is po	sitive			
Example 2:	SUBLW ()2h				
Before Instruct W C After Instruction W C Z N	= 02h = ? n = 00h	esult is zei	ro			
Example 3:	SUBLW ()2h				
Before Instruct W C After Instruction W C Z N	= 03h = ? n = FFh;(2's comple esult is ne				

SUBWF	Subtract	Subtract W from f			
Syntax:	SUBWF	f {,d {,a}}			
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]				
Operation:	(f) – (W) –	→ dest			
Status Affected:	N, OV, C,	DC, Z			
Encoding:	0101	11da ffi	ff ffff		
Description:	compleme result is st result is st (default). If 'a' is '0', selected. I to select th If 'a' is '0' a set is enat operates in Addressin $f \le 95$ (5Fh 35.2.3 "By	Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 35.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal			
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	Read register 'f'	Process Data	Write to destination		
Example 1:	SUBWF	REG, 1, 0			
Before Instruct REG W C After Instructio REG W C Z	= 3 = 2 = ? n = 1 = 2 = 1 ; re = 0	esult is positive	2		
N Example 2:	= 0	DEG 0 0			
Example 2: Before Instruct	SUBWF	REG, 0, 0			
After Instructio REG After Instructio REG W C Z N	= 2 = 2 = ? on = 2 = 0	esult is zero			
Example 3:	- U SUBWF	REG, 1, 0			
Before Instruct REG W C After Instructio	tion = 1 = 2 = ?				
REG W	= 2	's complement	,		
C Z N		esult is negativ	e		

PIC18(L)F27/47K40


ADDWF	ADD W to Indexed (Indexed Literal Offset mode)					
Syntax:	ADDWF	[k] {,d}				
Operands:	$\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0,1] \end{array}$					
Operation:	(W) + ((FS	R2) + k) \rightarrow de	est			
Status Affected:	N, OV, C, [DC, Z				
Encoding:	0010	01d0 kł	kk kkkk			
Description:	The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read 'k'	Process Data	Write to destination			
Example:	ADDWF	[OFST], 0				
Before Instruction	on					
W OFST FSR2 Contents of 0A2Ch After Instructior	= = = =	17h 2Ch 0A00h 20h				
W Contents of 0A2Ch	=	37h 20h				

BSF			Bit Set Indexed (Indexed Literal Offset mode)				
Synta	ax:	BSF [k], b				
Oper	ands:	$0 \le f \le 9$ $0 \le b \le 7$	-				
Oper	ation:	$1 \rightarrow ((FS))$	SR2	<u>2)</u> + k) <b< td=""><td>></td><td></td><td></td></b<>	>		
Statu	is Affected:	None					
Enco	oding:	1000		bbb0	kkł	ĸk	kkkk
Desc	cription:			register e value 'l			by FSR2,
Word	ls:	1					
Cycles:		1					
Q Cycle Activity:							
	Q1	Q2		Q3	Q3		Q4
	Decode Read register 'f'		ť		Process Data		Vrite to stination
Example:		BSF	[FLAG_O	FST]	, 7	
	Before Instruc	tion					
FLAG_OFS FSR2 Contents		FST	=	0Ah 0A00h	1		
	of 0A0Ah		=	55h			
	After Instructio Contents	n					
	of 0A0Ah		=	D5h			

SET	F	••••	Set Indexed (Indexed Literal Offset mode)				
Synt	ax:	SETF [k]					
Oper	ands:	$0 \leq k \leq 95$					
Oper	ration:	FFh ightarrow ((F	SR2) + k))			
Statu	is Affected:	None					
Enco	oding:	0110	1000	kkk	ck	kkkk	
Desc	cription:	The conter FSR2, offs		•			
Word	ds:	1					
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3	5	Q4		
	Decode	Read 'k'	Process Data		Write register		
Example:		SETF	[OFST]				
Before Instructio OFST FSR2 Contents of 0A2Ch After Instruction		= 20 = 0.	Ch A00h Dh				

Contents of 0A2Ch

= FFh

Standa	Standard Operating Conditions (unless otherwise stated)						
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
IO1*	T _{CLKOUTH}	CLKOUT rising edge delay (rising edge Fosc (Q1 cycle) to falling edge CLKOUT	_	—	70	ns	
102*	T _{CLKOUTL}	CLKOUT falling edge delay (rising edge Fosc (Q3 cycle) to rising edge CLKOUT		—	72	ns	
IO3*	T _{IO_VALID}	Port output valid time (rising edge Fosc (Q1 cycle) to port valid)	_	50	70	ns	
IO4*	T _{IO_SETUP}	Port input setup time (Setup time before rising edge Fosc – Q2 cycle)	20	—	—	ns	
105*	O5* T _{IO_HOLD} Port input hold time (Hold time after rising edge Fosc – Q2 cycle)		50	—	—	ns	
IO6* T _{IOR_SLREN} Port I/O rise time, slew rate enabled		_	25	—	ns	VDD = 3.0V	
107*	T _{IOR_SLRDIS}	Port I/O rise time, slew rate disabled	_	5	—	ns	VDD = 3.0V
IO8*	T _{IOF_SLREN}	Port I/O fall time, slew rate enabled	—	25	—	ns	VDD = 3.0V
IO9*	T _{IOF_SLRDIS}	Port I/O fall time, slew rate disabled	—	5	—	ns	VDD = 3.0V
IO10*	T _{INT}	INT pin high or low time to trigger an interrupt	25	-	—	ns	
IO11*	T _{IOC}	Interrupt-on-Change minimum high or low time to trigger interrupt	25	—	—	ns	

Standard Onarating	Conditional	(unless otherwise stated)

*These parameters are characterized but not tested.