
Microchip Technology - PIC18LF47K40-E/ML Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 36

Program Memory Size 128KB (64K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 3.6K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 35x10b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 44-VQFN Exposed Pad

Supplier Device Package 44-QFN (8x8)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf47k40-e-ml

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf47k40-e-ml-4404021
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F27/47K40
REGISTER 3-3: Configuration Word 2L (30 0002h): Supervisor

R/W-1 R/W-1 R/W-1 U-1 U-1 U-1 R/W-1 R/W-1

BOREN<1:0> LPBOREN — — — PWRTE MCLRE

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘1’

-n = Value for blank device ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 BOREN<1:0>: Brown-out Reset Enable bits
When enabled, Brown-out Reset Voltage (VBOR) is set by BORV bit
11 = Brown-out Reset enabled, SBOREN bit is ignored
10 = Brown-out Reset enabled while running, disabled in Sleep; SBOREN is ignored
01 = Brown-out Reset enabled according to SBOREN
00 = Brown-out Reset disabled

bit 5 LPBOREN: Low-Power BOR Enable bit
1 = Low-Power Brown-out Reset is disabled
0 = Low-Power Brown-out Reset is enabled

bit 4-2 Unimplemented: Read as ‘1’

bit 1 PWRTE: Power-up Timer Enable bit
1 = PWRT disabled
0 = PWRT enabled

bit 0 MCLRE: Master Clear (MCLR) Enable bit
If LVP = 1

RE3 pin function is MCLR

If LVP = 0

1 = MCLR pin is MCLR

0 = MCLR pin function is port defined function
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 24

PIC18(L)F27/47K40
10.2.3 LOOK-UP TABLES IN PROGRAM
MEMORY

There may be programming situations that require the
creation of data structures, or look-up tables, in
program memory. For PIC18 devices, look-up tables
can be implemented in two ways:

• Computed GOTO

• Table Reads

10.2.3.1 Computed GOTO

A computed GOTO is accomplished by adding an offset
to the program counter. An example is shown in
Example 10-2.

A look-up table can be formed with an ADDWF PCL
instruction and a group of RETLW nn instructions. The
W register is loaded with an offset into the table before
executing a call to that table. The first instruction of the
called routine is the ADDWF PCL instruction. The next
instruction executed will be one of the RETLW nn
instructions that returns the value ‘nn’ to the calling
function.

The offset value (in WREG) specifies the number of
bytes that the program counter should advance and
should be multiples of two (LSb = 0).

In this method, only one data byte may be stored in
each instruction location and room on the return
address stack is required.

EXAMPLE 10-2: COMPUTED GOTO USING
AN OFFSET VALUE

10.2.3.2 Table Reads and Table Writes

A better method of storing data in program memory
allows two bytes of data to be stored in each instruction
location.

Look-up table data may be stored two bytes per
program word by using table reads and writes. The
Table Pointer (TBLPTR) register specifies the byte
address and the Table Latch (TABLAT) register
contains the data that is read from or written to program
memory. Data is transferred to or from program
memory one byte at a time.

Table read and table write operations are discussed
further in Section 11.1.1 “Table Reads and Table
Writes”.

MOVF OFFSET, W
CALL TABLE

ORG nn00h
TABLE ADDWF PCL

RETLW nnh
RETLW nnh
RETLW nnh
.
.
.

 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 98

PIC18(L)F27/47K40
11.3.6 OPERATION DURING CODE-
PROTECT

Data EEPROM Memory has its own code-protect bits in
Configuration Words. External read and write operations
are disabled if code protection is enabled.

If the Data EEPROM is write-protected or if NVMADR
points an invalid address location, the WR bit is cleared
without any effect. WRERR is signaled in this scenario.

11.3.7 PROTECTION AGAINST SPURIOUS
WRITE

There are conditions when the user may not want to
write to the Data EEPROM Memory. To protect against
spurious EEPROM writes, various mechanisms have
been implemented. On power-up, the WREN bit is
cleared. In addition, writes to the EEPROM are blocked
during the Power-up Timer period (TPWRT).

The unlock sequence and the WREN bit together help
prevent an accidental write during brown-out, power
glitch or software malfunction.

11.3.8 ERASING THE DATA EEPROM
MEMORY

Data EEPROM Memory can be erased by writing 0xFF
to all locations in the Data EEPROM Memory that
needs to be erased.

EXAMPLE 11-7: DATA EEPROM REFRESH ROUTINE
 CLRF NVMADRL ; Clear address low byte register

CLRF NVMADRH ; Clear address high byte register (if applicable)
BCF NVMCON1, NVMREG0 ; Set access for EEPROM
BCF NVMCON1, NVMREG1 ; Set access for EEPROM
SETF NVMDAT ; Load 0xFF to data register
BCF INTCON, GIE ; Disable interrupts
BSF NVMCON1, WREN ; Enable writes

Loop ; Loop to refresh array
MOVLW 0x55 ; Initiate unlock sequence

 MOVWF NVMCON2 ;
 MOVLW 0xAA ;
 MOVWF NVMCON2 ;
 BSF NVMCON1, WR ; Set WR bit to begin write
 BTFSC NVMCON1, WR ; Wait for write to complete
 BRA $-2
 INCFSZ NVMADRL, F ; Increment address low byte
 BRA Loop ; Not zero, do it again

 //The following 4 lines of code are not needed if the part doesn't have NVMADRH register
 INCF NVMADRH, F ; Decrement address high byte
 MOVLW 0x03 ; Move 0x03 to working register
 CPFSGT NVMADRH ; Compare address high byte with working register
 BRA Loop ; Skip if greater than working register

; Else go back to erase loop

BCF NVMCON1, WREN ; Disable writes
 BSF INTCON, GIE ; Enable interrupts
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 144

PIC18(L)F27/47K40
REGISTER 11-2: NVMCON2: NONVOLATILE MEMORY CONTROL 2 REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

NVMCON2<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

x = Bit is unknown ‘0’ = Bit is cleared ‘1’ = Bit is set

-n = Value at POR

bit 7-0 NVMCON2<7:0>:

Refer to Section 11.1.4 “NVM Unlock Sequence”.

Note 1: This register always reads zeros, regardless of data written.

Register 11-3: NVMADRL: Data EEPROM Memory Address Low

R/W-x/0 R/W-x/0 R/W-x/0 R/W-x/0 R/W-x/0 R/W-x/0 R/W-x/0 R/W-x/0

NVMADR<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

x = Bit is unknown ‘0’ = Bit is cleared ‘1’ = Bit is set

-n = Value at POR

bit 7-0 NVMADR<7:0>: EEPROM Read Address bits

REGISTER 11-4: NVMADRH: DATA EEPROM MEMORY ADDRESS HIGH

U-0 U-0 U-0 U-0 U-0 U-0 R/W-x/u R/W-x/u

— — — — — — NVMADR<9:8>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

x = Bit is unknown ‘0’ = Bit is cleared ‘1’ = Bit is set

-n = Value at POR

bit 7-2 Unimplemented: Read as ‘0’

bit 1-0 NVMADR<9:8>: EEPROM Read Address bits
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 146

PIC18(L)F27/47K40

REGISTER 13-16: SCANHADRH: SCAN HIGH ADDRESS HIGH BYTE REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

HADR<15:8>(1, 2)

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 HADR<15:8>: Scan End Address bits(1, 2)

Most Significant bits of the address at the end of the designated scan

Note 1: Registers SCANHADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access;
registers should only be read or written while SCANGO = 0 (SCANCON0 register).

2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 13-17: SCANHADRL: SCAN HIGH ADDRESS LOW BYTE REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

HADR<7:0>(1, 2)

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 HADR<7:0>: Scan End Address bits(1, 2)

Least Significant bits of the address at the end of the designated scan

Note 1: Registers SCANHADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access;
registers should only be read or written while SCANGO = 0 (SCANCON0 register).

2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 158

PIC18(L)F27/47K40
13.6 CRC Check Value

The CRC check value will be located in the CRCACC
registers after the CRC calculation has finished. The
check value will depend on two mode settings of the
CRCCON register: ACCM and SHIFTM.

When the ACCM bit is set, the CRC module augments
the data with a number of zeros equal to the length of
the polynomial to align the final check value. When the
ACCM bit is not set, the CRC will stop at the end of the
data. A number of zeros equal to the length of the
polynomial can then be entered into CRCDAT to find
the same check value as augmented mode.
Alternatively, the expected check value can be entered
at this point to make the final result equal 0.

When the CRC check value is computed with the
SHIFTM bit set, selecting LSb first, and the ACCM bit
is set then the final value in the CRCACC registers will
be reversed such that the LSb will be in the MSb
position and vice versa. This is the expected check
value in bit reversed form. If you are creating a check
value to be appended to a data stream then a bit
reversal must be performed on the final value to
achieve the correct checksum. You can use the CRC to
do this reversal by the following method:

• Save CRCACC value in user RAM space

• Clear the CRCACC registers

• Clear the CRCXOR registers

• Write the saved CRCACC value to the CRCDAT
input

The properly oriented check value will be in the
CRCACC registers as the result.

13.7 CRC Interrupt

The CRC will generate an interrupt when the BUSY bit
transitions from 1 to 0. The CRCIF Interrupt Flag bit of
the PIR7 register is set every time the BUSY bit
transitions, regardless of whether or not the CRC
interrupt is enabled. The CRCIF bit can only be cleared
in software. The CRC interrupt enable is the CRCIE bit
of the PIE7 register.

13.8 Configuring the CRC

The following steps illustrate how to properly configure
the CRC.

1. Determine if the automatic program memory
scan will be used with the scanner or manual
calculation through the SFR interface and
perform the actions specified in Section
13.5 “CRC Data Sources”, depending on which
decision was made.

2. If desired, seed a starting CRC value into the
CRCACCH/L registers.

3. Program the CRCXORH/L registers with the
desired generator polynomial.

4. Program the DLEN<3:0> bits of the CRCCON1
register with the length of the data word - 1 (refer
to Example 13-1). This determines how many
times the shifter will shift into the accumulator for
each data word.

5. Program the PLEN<3:0> bits of the CRCCON1
register with the length of the polynomial -2
(refer to Example 13-1).

6. Determine whether shifting in trailing zeros is
desired and set the ACCM bit of the CRCCON0
register appropriately.

7. Likewise, determine whether the MSb or LSb
should be shifted first and write the SHIFTM bit
of the CRCCON0 register appropriately.

8. Write the CRCGO bit of the CRCCON0 register
to begin the shifting process.

9a. If manual SFR entry is used, monitor the FULL bit
of the CRCCON0 register. When FULL = 0,
another word of data can be written to the
CRCDATH/L registers, keeping in mind that
CRCDATH should be written first if the data has
more than eight bits, as the shifter will begin upon
the CRCDATL register being written.

9b. If the scanner is used, the scanner will
automatically stuff words into the CRCDATH/L
registers as needed, as long as the SCANGO bit
is set.

10a.If using the Flash memory scanner, monitor the
SCANIF (or the SCANGO bit) for the scanner to
finish pushing information into the CRCDATA
registers. After the scanner is completed,
monitor the BUSY bit to determine that the CRC
has been completed and the check value can be
read from the CRCACC registers. If both the
interrupt flags are set (or both BUSY and
SCANGO bits are cleared), the completed CRC
calculation can be read from the CRCACCH/L
registers.

10b.If manual entry is used, monitor the BUSY bit to
determine when the CRCACC registers will hold
the check value.
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 162

PIC18(L)F27/47K40
16.0 INTERRUPT-ON-CHANGE

PORTA, PORTB, PORTC and pin RE3 of PORTE can
be configured to operate as Interrupt-on-Change (IOC)
pins on PIC18(L)F2x/4xK40 family devices. An interrupt
can be generated by detecting a signal that has either a
rising edge or a falling edge. Any individual port pin, or
combination of port pins, can be configured to generate
an interrupt. The interrupt-on-change module has the
following features:

• Interrupt-on-Change enable (Master Switch)

• Individual pin configuration

• Rising and falling edge detection

• Individual pin interrupt flags

Figure 16-1 is a block diagram of the IOC module.

16.1 Enabling the Module

To allow individual port pins to generate an interrupt, the
IOCIE bit of the PIE0 register must be set. If the IOCIE
bit is disabled, the edge detection on the pin will still
occur, but an interrupt will not be generated.

16.2 Individual Pin Configuration

For each port pin, a rising edge detector and a falling
edge detector are present. To enable a pin to detect a
rising edge, the associated bit of the IOCxP register is
set. To enable a pin to detect a falling edge, the
associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling
edges simultaneously by setting both associated bits of
the IOCxP and IOCxN registers, respectively.

16.3 Interrupt Flags

The IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits located
in the IOCAF, IOCBF, IOCCF and IOCEF registers
respectively, are status flags that correspond to the
interrupt-on-change pins of the associated port. If an
expected edge is detected on an appropriately enabled
pin, then the status flag for that pin will be set, and an
interrupt will be generated if the IOCIE bit is set. The
IOCIF bit of the PIR0 register reflects the status of all
IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits.

16.4 Clearing Interrupt Flags

The individual status flags, (IOCAFx, IOCBFx, IOCCFx
and IOCEF3 bits), can be cleared by resetting them to
zero. If another edge is detected during this clearing
operation, the associated status flag will be set at the
end of the sequence, regardless of the value actually
being written.

In order to ensure that no detected edge is lost while
clearing flags, only AND operations masking out known
changed bits should be performed. The following
sequence is an example of what should be performed.

EXAMPLE 16-1: CLEARING INTERRUPT
FLAGS
(PORTA EXAMPLE)

16.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake
the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCxF
register will be updated prior to the first instruction
executed out of Sleep.

MOVLW 0xff
XORWF IOCAF, W
ANDWF IOCAF, F
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 209

PIC18(L)F27/47K40
REGISTER 17-3: PPSLOCK: PPS LOCK REGISTER

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0

— — — — — — — PPSLOCKED

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-1 Unimplemented: Read as ‘0’

bit 0 PPSLOCKED: PPS Locked bit
1 = PPS is locked. PPS selections can not be changed.
0 = PPS is not locked. PPS selections can be changed.

TABLE 17-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register
on page

PPSLOCK — — — — — — — PPSLOCKED 219

INT0PPS — — — INT0PPS<4:0> 216

INT1PPS — — — INT1PPS<4:0> 216

INT2PPS — — — INT2PPS<4:0> 216

T0CKIPPS — — — T0CKIPPS<4:0> 216

T1CKIPPS — — — T1CKIPPS<4:0> 216

T1GPPS — — — T1GPPS<4:0> 216

T3CKIPPS — — — T3CKIPPS<4:0> 216

T3GPPS — — — T3GPPS<4:0> 216

T5CKIPPS — — — T5CKIPPS<4:0> 216

T5GPPS — — — T5GPPS<4:0> 216

T2INPPS — — — T2INPPS<4:0> 216

T4INPPS — — — T4INPPS<4:0> 216

T6INPPS — — — T6INPPS<4:0> 216

CCP1PPS — — — CCP1PPS<4:0> 216

CCP2PPS — — — CCP2PPS<4:0> 216

CWG1PPS — — — CWG1PPS<4:0> 216

MDCARLPPS — — — MDCARLPPS<4:0> 216

MDCARHPPS — — — MDCARHPPS<4:0> 216

MDSRCPPS — — — MDSRCPPS<4:0> 216

ADACTPPS — — — ADACTPPS<4:0> 216

SSP1CLKPPS — — — SSP1CLKPPS<4:0> 216

SSP1DATPPS — — — SSP1DATPPS<4:0> 216

SSP1SSPPS — — — SSP1SSPPS<4:0> 216

RX1PPS — — — RX1PPS<4:0> 218

TX1PPS — — — TX1PPS<4:0> 216

SSP2CLKPPS — — — SSP2CLKPPS<4:0> 216

SSP2DATPPS — — — SSP2DATPPS<4:0> 216
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 219

PIC18(L)F27/47K40
19.7 Timer1/3/5 16-Bit Read/Write Mode

Timer1/3/5 can be configured to read and write all 16
bits of data, to and from, the 8-bit TMRxL and TMRxH
registers, simultaneously. The 16-bit read and write
operations are enabled by setting the RD16 bit of the
TxCON register.

To accomplish this function, the TMRxH register value
is mapped to a buffer register called the TMRxH buffer
register. While in 16-Bit mode, the TMRxH register is
not directly readable or writable and all read and write
operations take place through the use of this TMRxH
buffer register.

When a read from the TMRxL register is requested, the
value of the TMRxH register is simultaneously loaded
into the TMRxH buffer register. When a read from the
TMRxH register is requested, the value is provided
from the TMRxH buffer register instead. This provides
the user with the ability to accurately read all 16 bits of
the Timer1/3/5 value from a single instance in time.
Reference the block diagram in Figure 19-2 for more
details.

In contrast, when not in 16-Bit mode, the user must
read each register separately and determine if the
values have become invalid due to a rollover that may
have occurred between the read operations.

When a write request of the TMRxL register is
requested, the TMRxH buffer register is simultaneously
updated with the contents of the TMRxH register. The
value of TMRxH must be preloaded into the TMRxH
buffer register prior to the write request for the TMRxL
register. This provides the user with the ability to write
all 16 bits to the TMRxL:TMRxH register pair at the
same time.

Any requests to write to the TMRxH directly does not
clear the Timer1/3/5 prescaler value. The prescaler
value is only cleared through write requests to the
TMRxL register.

FIGURE 19-2: TIMER1/3/5 16-BIT
READ/WRITE MODE
BLOCK DIAGRAM

19.8 Timer1/3/5 Gate

Timer1/3/5 can be configured to count freely or the
count can be enabled and disabled using Timer1/3/5
gate circuitry. This is also referred to as Timer1/3/5 gate
enable.

Timer1/3/5 gate can also be driven by multiple
selectable sources.

19.8.1 TIMER1/3/5 GATE ENABLE

The Timer1/3/5 Gate Enable mode is enabled by
setting the TMRxGE bit of the TxGCON register. The
polarity of the Timer1/3/5 Gate Enable mode is
configured using the TxGPOL bit of the TxGCON
register.

When Timer1/3/5 Gate Enable mode is enabled,
Timer1/3/5 will increment on the rising edge of the
Timer1/3/5 clock source. When Timer1/3/5 Gate signal
is inactive, the timer will not increment and hold the
current count. Enable mode is disabled, no
incrementing will occur and Timer1/3/5 will hold the
current count. See Figure 19-4 for timing details.

TABLE 19-3: TIMER1/3/5 GATE ENABLE
SELECTIONS

TMRxCLK TxGPOL TxG
Timer1/3/5
Operation

 1 1 Counts

 1 0 Holds Count

 0 1 Holds Count

 0 0 Counts

TMR1L

Internal Data Bus

8

Set
TMR1IF

on Overflow

TMR1

TMR1H

 High Byte

8
8

8

Read TMR1L

Write TMR1L

8

From
Timer1

Circuitry

Block Diagram of Timer1 Example of TIMER1/3/5
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 236

PIC18(L)F27/47K40
22.1.5 PWM RESOLUTION

The resolution determines the number of available duty
cycles for a given period. For example, a 10-bit resolution
will result in 1024 discrete duty cycles, whereas an 8-bit
resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is
255. The resolution is a function of the PR2 register
value as shown by Equation 22-4.

EQUATION 22-4: PWM RESOLUTION

22.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment
and the state of the module will not change. If the
PWMx pin is driving a value, it will continue to drive that
value. When the device wakes up, TMR2 will continue
from its previous state.

22.1.7 CHANGES IN SYSTEM CLOCK
FREQUENCY

The PWM frequency is derived from the system clock
frequency (FOSC). Any changes in the system clock
frequency will result in changes to the PWM frequency.
Refer to Section 4.0 “Oscillator Module (with
Fail-Safe Clock Monitor)” for additional details.

22.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the
PWM registers to their Reset states.

Note: If the pulse-width value is greater than the
period the assigned PWM pin(s) will
remain unchanged.

Resolution
4 PR2 1+  log

2 log
-- bits=

TABLE 22-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)

PWM Frequency 0.31 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz

Timer Prescale 64 4 1 1 1 1

PR2 Value 0xFF 0xFF 0xFF 0x3F 0x1F 0x17

Maximum Resolution (bits) 10 10 10 8 7 6.6

TABLE 22-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)

PWM Frequency 0.31 kHz 4.90 kHz 19.61 kHz 76.92 kHz 153.85 kHz 200.0 kHz

Timer Prescale 64 4 1 1 1 1

PR2 Value 0x65 0x65 0x65 0x19 0x0C 0x09

Maximum Resolution (bits) 8 8 8 6 5 5
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 283

PIC18(L)F27/47K40
FIGURE 24-2: CWG1 HALF-BRIDGE MODE OPERATION

24.2.2 PUSH-PULL MODE

In Push-Pull mode, two output signals are generated,
alternating copies of the input as illustrated in
Figure 24-4. This alternation creates the push-pull
effect required for driving some transformer-based
power supply designs. Steering modes are not used in
Push-Pull mode. A basic block diagram for the
Push-Pull mode is shown in Figure 24-3.

The push-pull sequencer is reset whenever EN = 0 or
if an auto-shutdown event occurs. The sequencer is
clocked by the first input pulse, and the first output
appears on CWG1A.

The unused outputs CWG1C and CWG1D drive copies
of CWG1A and CWG1B, respectively, but with polarity
controlled by the POLC and POLD bits of the
CWG1CON1 register, respectively.

Rising Event D
Falling Event Dead Band

Rising Event Dead Band
Falling Event Dead Band

CWGx_clock

CWGxA

CWGxB

Note: CWGx_rising_src = CCP1_out, CWGx_falling_src = ~CCP1_out

CWGxD

CWGxC

CWGx_data
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 298

PIC18(L)F27/47K40
FIGURE 26-7: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

FIGURE 26-8: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

SCK
(CKP = 1

SCK
(CKP = 0

Input
Sample

SDI

bit 7

SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

SSPxIF
Interrupt

CKE = 0)

CKE = 0)

Write to
SSPxBUF

SSPSR to
SSPxBUF

SS

Flag

Optional

bit 0

detection active

Write Collision

Valid

SCK
(CKP = 1

SCK
(CKP = 0

Input
Sample

SDI

bit 7 bit 0

SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

SSPxIF
Interrupt

CKE = 1)

CKE = 1)

Write to
SSPxBUF

SSPSR to
SSPxBUF

SS

Flag

Not Optional

Write Collision
detection active

Valid
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 347


 2

0
1

6
-2

0
1

7
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

P
relim

in
ary

D
S

4
0

0
0

1
8

4
4

C
-p

a
g

e
 3

6
3

P
IC

18(L
)F

27/47K
40

FIG

4 D3 D2 D1 D0

5 6 7 8 9 P

SSPxIF set on 9th

SCL is not held
 ‘1’ in software, low because

falling edge of SCL

K is not sent.

Bus Master sends

SPOV set because
SPxBUF is still full.

ware

ACK= 1

Stop condition

ACKive Data
URE 26-15: I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)

SEN SEN

A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 DSDA

SCL 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4

CKP is written toCKP is written to ‘1’ in software,

ACK

releasing SCL

 AC
CKP

SSPOV

BF

SSPxIF

S
S

Cleared by soft

First byte
 of data is
 available
 in SSPxBUF

Cleared by software

SSPxBUF is read

Clock is held low until CKP is set to ‘1’

releasing SCL

S

ACK

Receive Address Receive Data Rece

R/W=0

PIC18(L)F27/47K40
27.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the
special Break character sequences that are required by
the LIN bus standard. A Break character consists of a
Start bit, followed by 12 ‘0’ bits and a Stop bit.

To send a Break character, set the SENDB and TXEN
bits of the TXxSTA register. The Break character trans-
mission is then initiated by a write to the TXxREG. The
value of data written to TXxREG will be ignored and all
‘0’s will be transmitted.

The SENDB bit is automatically reset by hardware after
the corresponding Stop bit is sent. This allows the user
to preload the transmit FIFO with the next transmit byte
following the Break character (typically, the Sync
character in the LIN specification).

The TRMT bit of the TXxSTA register indicates when the
transmit operation is active or idle, just as it does during
normal transmission. See Figure 27-9 for the timing of
the Break character sequence.

27.4.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame
header made up of a Break, followed by an auto-baud
Sync byte. This sequence is typical of a LIN bus
master.

1. Configure the EUSART for the desired mode.

2. Set the TXEN and SENDB bits to enable the
Break sequence.

3. Load the TXxREG with a dummy character to
initiate transmission (the value is ignored).

4. Write ‘55h’ to TXxREG to load the Sync charac-
ter into the transmit FIFO buffer.

5. After the Break has been sent, the SENDB bit is
reset by hardware and the Sync character is
then transmitted.

When the TXxREG becomes empty, as indicated by
the TXxIF, the next data byte can be written to TXxREG.

27.4.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break
character in two ways.

The first method to detect a Break character uses the
FERR bit of the RCxSTA register and the received data
as indicated by RCxREG. The Baud Rate Generator is
assumed to have been initialized to the expected baud
rate.

A Break character has been received when;

• RCxIF bit is set

• FERR bit is set

• RCxREG = 00h

The second method uses the Auto-Wake-up feature
described in Section 27.4.3 “Auto-Wake-up on
Break”. By enabling this feature, the EUSART will
sample the next two transitions on RX/DT, cause an
RCxIF interrupt, and receive the next data byte fol-
lowed by another interrupt.

Note that following a Break character, the user will
typically want to enable the Auto-Baud Detect feature.
For both methods, the user can set the ABDEN bit of
the BAUDxCON register before placing the EUSART in
Sleep mode.

FIGURE 27-9: SEND BREAK CHARACTER SEQUENCE

Write to TXxREG
Dummy Write

BRG Output
(Shift Clock)

Start bit bit 0 bit 1 bit 11 Stop bit

Break

TXxIF bit
(Transmit

Interrupt Flag)

TXx (pin)

TRMT bit
(Transmit Shift

Empty Flag)

SENDB
(send Break

control bit)

SENDB Sampled Here Auto Cleared
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 412

PIC18(L)F27/47K40
27.5.2.3 EUSART Synchronous Slave
Reception

The operation of the Synchronous Master and Slave
modes is identical (Section 27.5.1.5 “Synchronous
Master Reception”), with the following exceptions:

• Sleep

• CREN bit is always set, therefore the receiver is
never idle

• SREN bit, which is a “don’t care” in Slave mode

A character may be received while in Sleep mode by
setting the CREN bit prior to entering Sleep. Once the
word is received, the RSR register will transfer the data
to the RCxREG register. If the RCxIE enable bit is set,
the interrupt generated will wake the device from Sleep
and execute the next instruction. If the GIE bit is also
set, the program will branch to the interrupt vector.

27.5.2.4 Synchronous Slave Reception
Setup:

1. Set the SYNC and SPEN bits and clear the
CSRC bit.

2. Clear the ANSEL bit for both the CKx and DTx
pins (if applicable).

3. If interrupts are desired, set the RCxIE bit of the
PIE3 register and the GIE and PEIE bits of the
INTCON register.

4. If 9-bit reception is desired, set the RX9 bit.

5. Set the CREN bit to enable reception.

6. The RCxIF bit will be set when reception is
complete. An interrupt will be generated if the
RCxIE bit was set.

7. If 9-bit mode is enabled, retrieve the Most
Significant bit from the RX9D bit of the RCxSTA
register.

8. Retrieve the eight Least Significant bits from the
receive FIFO by reading the RCxREG register.

9. If an overrun error occurs, clear the error by
either clearing the CREN bit of the RCxSTA
register or by clearing the SPEN bit which resets
the EUSART.

TABLE 27-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
RECEPTION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register
on Page

BAUDxCON ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN 395

INTCON GIE/GIEH PEIE/GIEL IPEN — — INT2EDG INT1EDG INT0EDG 170

PIE3 RC2IE TX2IE RC1IE TX1IE BCL2IE SSP2IE BCL1IE SSP1IE 182

PIR3 RC2IF TX2IF RC1IF TX1IF BCL2IF SSP2IF BCL1IF SSP1IF 174

IPR3 RC2IP TX2IP RC1IP TX1IP BCL2IP SSP2IP BCL1IP SSP1IP 190

RCxREG EUSART Receive Data Register 399*

RCxSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 394

RxyPPS — — — RxyPPS<4:0> 218

RXxPPS — — — RXPPS<4:0> 216

TXxSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 393

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for synchronous slave reception.
* Page provides register information.
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 420

PIC18(L)F27/47K40
31.5.8 CONTINUOUS SAMPLING MODE

Setting the ADCONT bit in the ADCON0 register
automatically retriggers a new conversion cycle after
updating the ADACC register. That means the ADGO
bit is set to generate automatic retriggering, until the
device Reset occurs or the A/D Stop-on-interrupt bit
(ADSOI in the ADCON3 register) is set (correct logic).

31.5.9 DOUBLE SAMPLE CONVERSION

Double sampling is enabled by setting the ADDSEN bit
of the ADCON1 register. When this bit is set, two
conversions are required before the module will
calculate threshold error (each conversion must still be
triggered separately). The first conversion will set the
ADMATH bit of the ADSTAT register and update
ADACC, but will not calculate ADERR or trigger ADTIF.
When the second conversion completes, the first value
is transferred to ADPREV (depending on the setting of
ADPSIS) and the value of the second conversion is
placed into ADRES. Only upon the completion of the
second conversion is ADERR calculated and ADTIF
triggered (depending on the value of ADCALC).

31.6 Register Definitions: ADC Control

REGISTER 31-1: ADCON0: ADC CONTROL REGISTER 0

R/W-0/0 R/W-0/0 U-0 R/W-0/0 U-0 R/W-0/0 U-0 R/W/HC-0

ADON ADCONT — ADCS — ADFM — ADGO

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared HC = Bit is cleared by hardware

bit 7 ADON: ADC Enable bit

1 = ADC is enabled
0 = ADC is disabled

bit 6 ADCONT: ADC Continuous Operation Enable bit

1 = ADGO is retriggered upon completion of each conversion trigger until ADTIF is set (if ADSOI is
set) or until ADGO is cleared (regardless of the value of ADSOI)

0 = ADC is cleared upon completion of each conversion trigger

bit 5 Unimplemented: Read as ‘0’

bit 4 ADCS: ADC Clock Selection bit

1 = Clock supplied from FRC dedicated oscillator
0 = Clock supplied by FOSC, divided according to ADCLK register

bit 3 Unimplemented: Read as ‘0’

bit 2 ADFM: ADC results Format/alignment Selection

1 = ADRES and ADPREV data are right-justified
0 = ADRES and ADPREV data are left-justified, zero-filled

bit 1 Unimplemented: Read as ‘0’

bit 0 ADGO: ADC Conversion Status bit
1 = ADC conversion cycle in progress. Setting this bit starts an ADC conversion cycle. The bit is

cleared by hardware as determined by the ADCONT bit
0 = ADC conversion completed/not in progress
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 448

PIC18(L)F27/47K40
REGISTER 31-11: ADCAP: ADC ADDITIONAL SAMPLE CAPACITOR SELECTION REGISTER

U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

— — — ADCAP<4:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-5 Unimplemented: Read as ‘0’

bit 4-0 ADCAP<4:0>: ADC Additional Sample Capacitor Selection bits
11111 = 31 pF
11110 = 30 pF
11101 = 29 pF



00011 = 3 pF
00010 = 2 pF
00001 = 1 pF
00000 = No additional capacitance

REGISTER 31-12: ADRPT: ADC REPEAT SETTING REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

ADRPT<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 Unimplemented: Read as ‘0’

bit 7-0 ADRPT<7:0>: ADC Repeat Threshold bits
Counts the number of times that the ADC has been triggered and is used along with ADCNT to deter-
mine when the error threshold is checked when the computation is Low-pass Filter, Burst Average, or
Average modes. See Table 31-3 for more details.
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 456

PIC18(L)F27/47K40

CPFSGT Compare f with W, skip if f > W

Syntax: CPFSGT f {,a}

Operands: 0  f  255
a  [0,1]

Operation: (f) –W),
skip if (f) > (W)
(unsigned comparison)

Status Affected: None

Encoding: 0110 010a ffff ffff

Description: Compares the contents of data memory
location ‘f’ to the contents of the W by
performing an unsigned subtraction.
If the contents of ‘f’ are greater than the
contents of WREG, then the fetched
instruction is discarded and a NOP is
executed instead, making this a
2-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 35.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register ‘f’
Process

Data
No

operation
If skip:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE CPFSGT REG, 0
NGREATER :
GREATER :

Before Instruction
PC = Address (HERE)
W = ?

After Instruction

If REG  W;
PC = Address (GREATER)

If REG  W;
PC = Address (NGREATER)

CPFSLT Compare f with W, skip if f < W

Syntax: CPFSLT f {,a}

Operands: 0  f  255
a  [0,1]

Operation: (f) –W),
skip if (f) < (W)
(unsigned comparison)

Status Affected: None

Encoding: 0110 000a ffff ffff

Description: Compares the contents of data memory
location ‘f’ to the contents of W by
performing an unsigned subtraction.
If the contents of ‘f’ are less than the
contents of W, then the fetched
instruction is discarded and a NOP is
executed instead, making this a
2-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

No
operation

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE CPFSLT REG, 1
NLESS :
LESS :

Before Instruction
PC = Address (HERE)
W = ?

After Instruction

If REG < W;
PC = Address (LESS)
If REG  W;
PC = Address (NLESS)
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 503

PIC18(L)F27/47K40
35.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18
instruction set, PIC18(L)F2x/4xK40 devices also
provide an optional extension to the core CPU
functionality. The added features include eight
additional instructions that augment indirect and
indexed addressing operations and the implementation
of Indexed Literal Offset Addressing mode for many of
the standard PIC18 instructions.

The additional features of the extended instruction set
are disabled by default. To enable them, users must set
the XINST Configuration bit.

The instructions in the extended set can all be
classified as literal operations, which either manipulate
the File Select Registers, or use them for indexed
addressing. Two of the instructions, ADDFSR and
SUBFSR, each have an additional special instantiation
for using FSR2. These versions (ADDULNK and
SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented
to optimize re-entrant program code (that is, code that
is recursive or that uses a software stack) written in
high-level languages, particularly C. Among other
things, they allow users working in high-level
languages to perform certain operations on data
structures more efficiently. These include:

• dynamic allocation and deallocation of software
stack space when entering and leaving
subroutines

• function pointer invocation

• software Stack Pointer manipulation

• manipulation of variables located in a software
stack

A summary of the instructions in the extended instruc-
tion set is provided in Table 35-3. Detailed descriptions
are provided in Section 35.2.2 “Extended Instruction
Set”. The opcode field descriptions in Table 35-1 apply
to both the standard and extended PIC18 instruction
sets.

35.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed
arguments, using one of the File Select Registers and
some offset to specify a source or destination register.
When an argument for an instruction serves as part of
indexed addressing, it is enclosed in square brackets
(“[]”). This is done to indicate that the argument is used
as an index or offset. MPASM™ Assembler will flag an
error if it determines that an index or offset value is not
bracketed.

When the extended instruction set is enabled, brackets
are also used to indicate index arguments in byte-
oriented and bit-oriented instructions. This is in addition
to other changes in their syntax. For more details, see
Section 35.2.3.1 “Extended Instruction Syntax with
Standard PIC18 Commands”.

TABLE 35-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

Note: The instruction set extension and the
Indexed Literal Offset Addressing mode
were designed for optimizing applications
written in C; the user may likely never use
these instructions directly in assembler.
The syntax for these commands is pro-
vided as a reference for users who may be
reviewing code that has been generated
by a compiler.

Note: In the past, square brackets have been
used to denote optional arguments in the
PIC18 and earlier instruction sets. In this
text and going forward, optional
arguments are denoted by braces (“{ }”).

Mnemonic,
Operands

Description Cycles
16-Bit Instruction Word Status

AffectedMSb LSb

ADDFSR
ADDULNK
CALLW
MOVSF

MOVSS

PUSHL

SUBFSR
SUBULNK

f, k
k

zs, fd

zs, zd

k

f, k
k

Add literal to FSR
Add literal to FSR2 and return
Call subroutine using WREG
Move zs (source) to 1st word
 fd (destination) 2nd word
Move zs (source) to 1st word
 zd (destination) 2nd word
Store literal at FSR2,
 decrement FSR2
Subtract literal from FSR
Subtract literal from FSR2 and
 return

1
2
2
2

2

1

1
2

1110
1110
0000
1110
1111
1110
1111
1110

1110
1110

1000
1000
0000
1011
ffff
1011
xxxx
1010

1001
1001

 ffkk
 11kk
 0001
0zzz
ffff
1zzz
xzzz
kkkk

ffkk
11kk

kkkk
kkkk
0100
zzzz
ffff
zzzz
zzzz
kkkk

kkkk
kkkk

None
None
None
None

None

None

None
None
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 527

PIC18(L)F27/47K40
OS21 FCY Instruction Frequency — FOSC/4 — MHz

OS22 TCY Instruction Period 62.5 1/FCY — ns

TABLE 37-7: EXTERNAL CLOCK/OSCILLATOR TIMING REQUIREMENTS (CONTINUED)

Standard Operating Conditions (unless otherwise stated)

Param
No.

Sym. Characteristic Min. Typ† Max. Units Conditions

* These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are

not tested.
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on

characterization data for that particular oscillator type under standard operating conditions with the device executing
code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected
current consumption. All devices are tested to operate at “min” values with an external clock applied to OSC1 pin.
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.

2: The system clock frequency (FOSC) is selected by the “main clock switch controls” as described in Section 6.0 “Power-
Saving Operation Modes”.

3: The system clock frequency (FOSC) must meet the voltage requirements defined in the Section 37.2 “Standard
Operating Conditions”.

4: LP, XT and HS oscillator modes require an appropriate crystal or resonator to be connected to the device. For clocking
the device with the external square wave, one of the EC mode selections must be used.
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 551

