

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf47k40-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Allocation Tables

TABLE 1: 28-PIN ALLOCATION TABLE (PIC18(L)F27K40)

I/O ⁽²⁾	28-Pin SPDIP, SOIC, SSOP	28-Pin QFN	٩N	Reference	Comparator	Timers	CCP	CWG	ZCD	Interrupt	EUSART	MSQ	dssw	dn-IInd	Basic
RA0	2	27	ANA0		C1IN0- C2IN0-	_		—	-	IOCA0	_			Y	
RA1	3	28	ANA1	—	C1IN1- C2IN1-	-	_	—	-	IOCA1	—		_	Y	_
RA2	4	1	ANA2	DAC1OUT1 VREF- (DAC) VREF- (ADC)	C1IN0+ C2IN0+	_	_	—	Ι	IOCA2	_		—	Y	_
RA3	5	2	ANA3	VREF+ (DAC) VREF+ (ADC)	C1IN1+	—	_	—	_	IOCA3	—	MDCIN1 ⁽¹⁾	—	Y	—
RA4	6	3	ANA4	_	_	T0CKI ⁽¹⁾	_	_	_	IOCA4	_	MDCIN2 ⁽¹⁾	_	Y	_
RA5	7	4	ANA5	—	_	_	_	_	_	IOCA5	_	MDMIN ⁽¹⁾	SS1 ⁽¹⁾	Y	-
RA6	10	7	ANA6	—	—	—	—	—	_	IOCA6	—	_	_	Y	CLKOUT OSC2
RA7	9	6	ANA7	_	—	—	_	—	_	IOCA7	—	_	_	Y	OSC1 CLKIN
RB0	21	18	ANB0	—	C2IN1+	_	_	CWG1 ⁽¹⁾	ZCDIN	IOCB0 INT0 ⁽¹⁾	—	-	SS2 ⁽¹⁾	Y	—
RB1	22	19	ANB1	—	C1IN3- C2IN3-	_	-	—	_	IOCB1 INT1 ⁽¹⁾	—		SCK2 ⁽¹⁾ SCL2 ^(3,4)	Y	—
RB2	23	20	ANB2	—		_		_	-	IOCB2 INT2 ⁽¹⁾	—	_	SDI2 ⁽¹⁾ SDA2 ^(3,4)	Y	—
RB3	24	21	ANB3	—	C1IN2- C2IN2-	_	_	—	_	IOCB3	—		—	Y	—
RB4	25	22	ANB4	—		T5G ⁽¹⁾		_	_	IOCB4	_	_	_	Y	_
RB5	26	23	ANB5		_	T1G ⁽¹⁾	_	_	—	IOCB5	_	_	_	Y	_
RB6	27	24	ANB6		_	_	_	_	—	IOCB6	CK2 ⁽¹⁾	_	_	Y	ICSPCLK
RB7	28	25	ANB7	DAC1OUT2	—	T6AIN ⁽¹⁾	—	—	_	IOCB7	RX2/DT2 ⁽¹⁾	—	_	Y	ICSPDAT

PIC18(L)F27/47K40

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers (Register 17-1).

2: All pin outputs default to PORT latch data. Any pin can be selected as a peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: These pins are configured for 1²C logic levels; The SCLx/SDAx signals may be assigned to any of these pins. PPS assignments to the other pins (e.g., RB1) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the 1²C specific or SMBus input buffer thresholds.

REGISTER 3-13	REVI	SION ID: REVIS	SION ID R	EGISTER				
R	R	R	R	R	R	R	R	
1	0	1	0		MJR	REV<5:2>		
bit 15		·		·			bit 8	
R	R	R	R	R	R	R	R	
MJRREV<1:0>				MNRREV<5:0>				
bit 7							bit 0	
Legend:								
R = Readable bit '1		'1' = Bit is set		0' = Bit is clea	ared	x = Bit is unki	nown	
bit 15-12 R	ead as '1	010'						

 bit 11-6
 MJRREV<5:0>: Major Revision ID bits

 These bits are used to identify a major revision. A major revision is indicated by an all-layer revision (A0, B0, C0, etc.).

 Revision A = 6 'b00_0000

 bit 5-0
 MNRREV<5:0>: Minor Revision ID bits

These bits are used to identify a minor revision.

FIGURE 4-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

FIGURE 4-4: CERAMIC RESONATOR OPERATION (XT OR HS MODE)

4.3.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR), or a wake-up from Sleep. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

4.3.1.4 4x PLL

The oscillator module contains a 4x PLL that can be used with the external clock sources to provide a system clock source. The input frequency for the PLL must fall within specifications. See the PLL Clock Timing Specifications in Table 37-9.

The PLL can be enabled for use by one of two methods:

- 1. Program the RSTOSC bits in the Configuration Word 1 to 010 (enable EXTOSC with 4x PLL).
- 2. Write the NOSC bits in the OSCCON1 register to 010 (enable EXTOSC with 4x PLL).

8.3 Power-on Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

8.4 Brown-out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- · BOR is always on
- BOR is off when in Sleep
- BOR is controlled by software
- BOR is always off

Refer to Table 8-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV<1:0> bits in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Table 37-11 for more information.

8.4.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

8.4.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

8.4.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

8.4.4 BOR AND BULK ERASE

BOR is forced ON during PFM Bulk Erase operations to make sure that the system code protection cannot be compromised by reducing VDD.

During Bulk Erase, the BOR is enabled at 2.45V for F and LF devices, even if it is configured to some other value. If VDD falls, the erase cycle will be aborted, but the device will not be reset.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
LADR<7:0> ^(1, 2)											
bit 7	bit 0										
Legend:											
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared								

REGISTER 13-14: SCANLADRL: SCAN LOW ADDRESS LOW BYTE REGISTER

bit 7-0 LADR<7:0>: Scan Start/Current Address bits^(1, 2) Least Significant bits of the current address to be fetched from, value increments on each fetch of memory

- **Note 1:** Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 13-15: SCANHADRU: SCAN HIGH ADDRESS UPPER BYTE REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	—			HADR	<21:16>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented:	Read	as '	'0'
---------	----------------	------	------	-----

bit 5-0 **HADR<21:16>:** Scan End Address bits^(1, 2) Upper bits of the address at the end of the designated scan

- **Note 1:** Registers SCANHADRU/H/L form a 22-bit value but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1				
RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP				
bit 7							bit 0				
Legend:	L :4		L :4			-l (O'					
R = Readable	DIT	W = Willable bil			nented bit, rea						
-n = value at F	POR	"1" = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
bit 7 RC2IP: EUS		ART2 Receive	Interrupt Prior	ity bit							
	1 = High prio 0 = Low prior	rity rity	·								
bit 6	TX2IP: EUSA	RT2 Transmit	Interrupt Prior	ity bit							
	1 = High prio 0 = Low prior	rity rity									
bit 5	RC1IP: EUSA	RC1IP: EUSART1 Receive Interrupt Priority bit									
	1 = High prio	ligh priority									
	0 = Low priority										
DIT 4	IX1IP: EUSARI1 Iransmit Interrupt Priority bit										
	0 = Low priority										
bit 3	BCL2IP: MSS	SP2 Bus Collisi	ion Interrupt P	Priority bit							
	1 = High priority										
	0 = Low prior	rity									
bit 2	SSP2IP: Synd	chronous Seria	al Port 2 Interr	upt Priority bit							
	1 = High prior 0 = I ow prior	rity ritv									
bit 1	BCL1IP: MSS	SP1 Bus Collisi	ion Interrupt P	Priority bit							
	1 = High priority										
	0 = Low prior	rity									
bit 0	SSP1IP: Synd	chronous Seria	al Port 1 Interr	upt Priority bit							
	1 = High prio	rity									
	0 = Low prior	nty									

REGISTER 14-21: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

20.5.10 LEVEL-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

The Level-Triggered Hardware Limit One-Shot modes hold the timer in Reset on an external Reset level and start counting when both the ON bit is set and the external signal is not at the Reset level. If one of either the external signal is not in Reset or the ON bit is set then the other signal being set/made active will start the timer. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 10110)
- High Reset level (MODE<4:0> = 10111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control the timer will stay in Reset until both the ON bit is set and the external signal is not at the Reset level.

When Level-Triggered Hardware Limit One-Shot modes are used in conjunction with the CCP PWM operation the PWM drive goes active with either the external signal edge or the setting of the ON bit, whichever of the two starts the timer.

							•
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	—	_	_		RSEL	_<3:0>	
bit 7							bit 0
Logond							

REGISTER 20-4: TxRST: TIMER2 EXTERNAL RESET SIGNAL SELECTION REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 RSEL<3:0>: Timer2 External Reset Signal Source Selection bits

	TMR2	TMR4	TMR6
RSEL<3:0>	Reset Source	Reset Source	Reset Source
1011-1111	1011-1111 Reserved		Reserved
1010	ZCD_OUT	ZCD_OUT	ZCD_OUT
1001	CMP2OUT	CMP2OUT	CMP2OUT
1000	CMP1OUT	CMP1OUT	CMP1OUT
0111	PWM4OUT	PWM4OUT	PWM4OUT
0110	PWM3OUT	BOUT PWM3OUT	
0101	CCP2OUT	CCP2OUT	CCP2OUT
0100	CCP10UT	CCP1OUT	CCP1OUT
0011	TMR6 post-scaled	TMR6 post-scaled	Reserved
0010 TMR4 post-scaled 0001 Reserved		Reserved	TMR4 post-scaled
		TMR2 post-scaled	TMR2 post-scaled
0000	Pin selected by T2INPPS	Pin selected by T4INPPS	Pin selected by T6INPPS

							1
R/HS/HC	-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ACKTIN	1 PCIE ⁽¹⁾	SCIE ⁽¹⁾	BOEN ⁽²⁾	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		HS/HC = Bit is	s set/cleared b	y hardware	
x = Bit is u	nknown	'0' = Bit is clea	ared				
bit 7	ACKTIM: Act	knowledge Time	e Status bit				
	Unused in SF	임.					
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit ⁽¹)			
	1 = Enable ir	nterrupt on dete	ection of Stop	condition			
6.14 F			s are disabled	n			
DIT 5	SCIE: Start C		ipt Enable bitv	r Deetert eendit			
	1 = Enable in0 = Start dete	ection interrupts	are disabled	r Restart condit	IONS		
bit 4	BOEN: Buffe	r Overwrite Ena	able bit ⁽²⁾				
	1 = SSPxBU	- updates ever	/ time a new d	ata byte is shifte	ed in, ignoring t	the BF bit	
	0 = If a new b	oyte is received	with BF bit alr	eady set, SSPC	DV is set, and t	he buffer is not	updated
bit 3	SDAHT: SDA	Hold Time Sel	ection bit				
	Unused in SF	임.					
bit 2	SBCDE: Slav	ve Mode Bus C	ollision Detect	Enable bit			
	Unused in SF	임.					
bit 1	AHEN: Addre	ess Hold Enable	e bit				
	Unused in SF	기.					
bit 0	DHEN: Data	Hold Enable bit					
	Unused in SF	기.					
Note 1:	This bit has no ef	fect in Slave m	odes that Star	t and Stop cond	ition detection	is explicitly liste	ed as enabled.
2: For daisy-chained SPI operation; allows the user to ignore all but the last received byte. SSPOV is st							

REGISTER 26-3: SSPxCON3: MSSPx CONTROL REGISTER 3 (SPI MODE)

For daisy-chained SPI operation; allows the user to ignore all but the last received byte. SSPOV is still set when a new byte is received and BF = 1, but hardware continues to write the most recent byte to SSPxBUF.

26.9.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low, effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.

The CKP bit of the SSPxCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

26.9.6.1 Normal Clock Stretching

Following an ACK if the R/W bit of SSPxSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPxBUF with data to transfer to the master. If the SEN bit of SSPxCON2 is set, the slave hardware will always stretch the clock after the ACK sequence. Once the slave is ready; CKP is set by software and communication resumes.

- Note 1: The BF bit has no effect on if the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, clear CKP, if SSPxBUF was read before the ninth falling edge of SCL.
 - 2: Previous versions of the module did not stretch the clock for a transmission if SSPxBUF was loaded before the ninth falling edge of SCL. It is now always cleared for read requests.

26.9.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set, the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSPxADD.

Note: Previous versions of the module did not stretch the clock if the second address byte did not match.

26.9.6.3 Byte NACKing

When the AHEN bit of SSPxCON3 is set; CKP is cleared by hardware after the eighth falling edge of SCL for a received matching address byte. When the DHEN bit of SSPxCON3 is set; CKP is cleared after the eighth falling edge of SCL for received data.

Stretching after the eighth falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

26.9.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 26-23).

FIGURE 26-23: CLOCK SYNCHRONIZATION TIMING

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXxSTA)
- Receive Status and Control (RCxSTA)
- Baud Rate Control (BAUDxCON)

These registers are detailed in Register 27-1, Register 27-2 and Register 27-3, respectively.

The RXx/DTx and TXx/CKx input pins are selected with the RXxPPS and TXxPPS registers, respectively. TXx, CKx, and DTx output pins are selected with each pin's RxyPPS register. Since the RX input is coupled with the DT output in Synchronous mode, it is the user's responsibility to select the same pin for both of these functions when operating in Synchronous mode. The EUSART control logic will control the data direction drivers automatically.

27.4.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDxCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RXx pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPxBRGH:SPxBRGL register pair. After the ABDOVF bit has been set, the counter continues to count until the fifth rising edge is detected on the RXx pin. Upon detecting the fifth RX edge, the hardware will set the RCxIF interrupt flag and clear the ABDEN bit of the BAUDxCON register. The RCxIF flag can be subsequently cleared by reading the RCxREG register. The ABDOVF flag of the BAUDxCON register can be cleared by software directly.

To terminate the auto-baud process before the RCxIF flag is set, clear the ABDEN bit then clear the ABDOVF bit of the BAUDxCON register. The ABDOVF bit will remain set if the ABDEN bit is not cleared first.

27.4.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDxCON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCxIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 27-7), and asynchronously if the device is in Sleep mode (Figure 27-8). The interrupt condition is cleared by reading the RCxREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

27.4.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be ten or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

WUE Bit

The wake-up event causes a receive interrupt by setting the RCxIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCxREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

31.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the ADIE bit of the PIE1 register and the PEIE bit of the INTCON register must both be set and the GIE bit of the INTCON register must be cleared. If all three of these bits are set, the execution will switch to the Interrupt Service Routine.

31.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bits of the ADCON0 register controls the output format.

Figure 31-3 shows the two output formats.

FIGURE 31-3: 10-BIT ADC CONVERSION RESULT FORMAT

FIGURE 31-9: DIFFERENTIAL CVD WITH GUARD RING OUTPUT WAVEFORM

Precharge Time 1-255 TINST	Acquisition/ Sharing Time 1-255 TINST	Conversion Time (Traditional Timing of ADC Conversion)											
(TPRE)	(TACQ)	TCY - TAI	D TAD1	TAD2	TAD3	TAD4	TAD5	TAD6	Tad7	TAD8	Tad9	TAD10	TAD11
External and Internal Channels are charged/discharged	External and Internal Channels share charge	Holdin	Conversing capad	b9 sion sta citor Cr	b8 arts HOLD is	b7 discon	b6 inected	b5 I from a	b4 analog	b3 input (1	b2 typicall	b1 y 100 r	b0 ns)
If ADPRE ≠ 0 et GO/DONE bit	If ADACQ ≠ 0	If ADPR If ADAC (Traditic	{E = 0 ζQ = 0 onal Op	eration	Start)		On th AADF ADIF GO/D	e follov RES0H <u>bit is</u> s ONE b	♥ ving cy :AADF et, oit is cle	/cle: ≹ES0L i eared	is load	ed,	

31.4.5 ADDITIONAL SAMPLE AND HOLD CAPACITANCE

Additional capacitance can be added in parallel with the internal sample and hold capacitor (CHOLD) by using the ADCAP register. This register selects a digitally programmable capacitance which is added to the ADC conversion bus, increasing the effective internal capacitance of the sample and hold capacitor in the ADC module. This is used to improve the match between internal and external capacitance for a better sensing performance. The additional capacitance does not affect analog performance of the ADC because it is not connected during conversion. See Figure 31-11.

PIC18(L)F27/47K40

Before Instruction

FFh

00h

0 ? ? =

=

=

= 1 1 1 =

CNT Z C DC

After Instruction

CNT Z C DC

GOI	ю	Unconditi	ional Branc	h	INC	F	Incremen	tf				
Synta	ax:	GOTO k) k		Syn	tax:	INCF f{,d	INCF f {,d {,a}}				
Oper	ands:	$0 \le k \le 104$	8575		Ope	erands:	$0 \leq f \leq 255$					
Oper	ation:	$k \rightarrow PC<20$:1>				d ∈ [0,1] a ∈ [0,1]					
Statu	is Affected:	None			One	aration.	$a \in [0,1]$	aet				
Enco	oding:	1110	1111 1- 1-		Stat	us Affected:	C, DC, N, C	OV, Z				
2nd v	word(k<19:8>)	1110	k_{19} kkk kk	kk kkkk ₈	Enc	oding:	0010	10da -	ffff	ffff		
Desc	ription:	GOTO allow anywhere w 2-Mbyte me value 'k' is l GOTO is alw instruction.	vs an uncondit vithin entire emory range. ⁻ loaded into PC ways a 2-cycle	ional branch The 20-bit C<20:1>.	Des	cription:	The contents of regist incremented. If 'd' is ' placed in W. If 'd' is '1 placed back in registe If 'a' is '0', the Access If 'a' is '1', the BSR is			ster 'f' are '0', the result is '1', the result is ter 'f' (default). s Bank is selected. s used to select the		
Word	ls:	2					GPR bank.	nd the exte	ndod in	otruction		
Cycle	es:	2					set is enabl	ed, this inst	truction	operates		
QC	ycle Activity:						in Indexed Literal Offset Addressing					
	Q1	Q2	Q3	Q4			tion 35.2.3	whenever $1 \le 95$ (5Fh). See Sec- 5.2.3 "Byte-Oriented and Bit-				
	Decode	Read literal 'k'<7:0>,	No operation	Read literal 'k'<19:8>, Write to PC			Oriented Instructions in Inde eral Offset Mode" for details.			dexed Lit-		
	No	No	No	No	Wor	rds:	1					
	operation	operation	operation	operation	Сус	les:	1					
					QC	Cycle Activity:						
Exar	nple:	GOTO THEF	RE			Q1	Q2	Q3		Q4		
	After Instructio PC =	n Address (TI	HERE)			Decode	Read register 'f'	Process Data	s V de	Vrite to stination		
					Exa	mple:	INCF	CNT, 1,	0			

PIC18(L)F27/47K40

MUL	_LW	Multiply	Multiply literal with W								
Synta	ax:	MULLW	MULLW k								
Oper	ands:	$0 \le k \le 25$	$0 \le k \le 255$								
Oper	ation:	(W) x k \rightarrow	PRODH:	PROD	L						
Statu	is Affected:	None									
Enco	oding:	0000	1101	kkkl	k kkkk						
Desc	ription:	An unsign out betwe 8-bit litera placed in pair. PRO W is unch None of th Note that possible in is possible	An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected								
Word	ls:	1									
Cycle	es:	1									
QC	ycle Activity:										
	Q1	Q2	Q3		Q4						
	Decode	Read literal 'k'	Proce Data	ess a	Write registers PRODH: PRODL						
<u>Exan</u>	nple: Before Instruc	MULLW	0C4h								
	W	= F	2h								
	PRODH PRODL After Instructio	= ? = ? = ?	211								
	W PRODH PRODL	= E = A = 0	2h Dh 8h								

MULWF		Multiply	Multiply W with f							
Syntax:		MULWF	f {,a}							
Operands	8:	0 ≤ f ≤ 25 a ∈ [0,1]	5							
Operation	n:	(W) x (f) –	→ PRODH	:PRODL						
Status Af	fected:	None	None							
Encoding	:	0000	001a	ffff	ffff					
Descriptio	on:	An unsign out betwe register fil result is st register pa high byte. unchange None of tt Note that possible in result is p If 'a' is '0', selected. to select t If 'a' is '0' set is ena operates i Addressin $f \le 95$ (5F 35.2.3 "By ented Ins Offset Mo	An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged. None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 35.2.3 "Byte-Oriented and Bit-Ori-							
Words:		1								
Cycles:		1								
Q Cycle	Activity:									
	Q1	Q2	Q3		Q4					
	ecode	Read register 'f'	Proces Data	ss F F	Write egisters PRODH: PRODL					
Example:		MULWF	REG, 1							

Before Instruction

Defore manualion		
W REG PRODH PRODL	= = =	C4h B5h ? ?
After Instruction		
W REG PRODH PRODL	= = =	C4h B5h 8Ah 94h

TABLE 37-7: EXTERNAL CLOCK/OSCILLATOR TIMING REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
ECL Osc	illator								
OS1	F _{ECL}	Clock Frequency	—	—	500	kHz			
OS2	T _{ECL_DC}	Clock Duty Cycle	40	—	60	%			
ECM Osc	cillator	•							
OS3	F _{ECM}	Clock Frequency	—	—	8	MHz			
OS4	T _{ECM_DC}	Clock Duty Cycle	40	—	60	%			
ECH Osc	cillator								
OS5	F _{ECH}	Clock Frequency	—	_	32	MHz			
OS6	T _{ECH_DC}	Clock Duty Cycle	40	—	60	%			
LP Oscil	lator	•							
OS7	F _{LP}	Clock Frequency	—	—	100	kHz	Note 4		
XT Oscil	lator								
OS8	F _{XT}	Clock Frequency	—	—	4	MHz	Note 4		
HS Oscil	llator								
OS9	F _{HS}	Clock Frequency	—	—	20	MHz	Note 4		
Secondary Oscillator									
OS10	F_{SEC}	Clock Frequency	32.4	32.768	33.1	kHz			
System 0	Oscillator	•				•			
OS20	F _{OSC}	System Clock Frequency	—	—	64	MHz	(Note 2, Note 3)		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: The system clock frequency (FOSC) is selected by the "main clock switch controls" as described in Section 6.0 "Power-Saving Operation Modes".

3: The system clock frequency (Fosc) must meet the voltage requirements defined in the Section 37.2 "Standard Operating Conditions".

4: LP, XT and HS oscillator modes require an appropriate crystal or resonator to be connected to the device. For clocking the device with the external square wave, one of the EC mode selections must be used.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2