
Microchip Technology - PIC18LF47K40T-I/MV Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 36

Program Memory Size 128KB (64K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 3.6K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 35x10b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 40-UFQFN Exposed Pad

Supplier Device Package 40-UQFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf47k40t-i-mv

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf47k40t-i-mv-4389988
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F27/47K40
4.3.1.5 Secondary Oscillator

The secondary oscillator is a separate oscillator block
that can be used as an alternate system clock source.
The secondary oscillator is optimized for 32.768 kHz,
and can be used with an external crystal oscillator con-
nected to the SOSCI and SOSCO device pins, or an
external clock source connected to the SOSCIN pin.
The secondary oscillator can be selected during
run-time using clock switching. Refer to Section
4.4 “Clock Switching” for more information.

FIGURE 4-5: QUARTZ CRYSTAL
OPERATION
(SECONDARY
OSCILLATOR)

4.3.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal
oscillator block as the system clock by performing one
of the following actions:

• Program the RSTOSC<2:0> bits in Configuration
Words to select the INTOSC clock source, which
will be used as the default system clock upon a
device Reset.

• Write the NOSC<2:0> bits in the OSCCON1
register to switch the system clock source to the
internal oscillator during run-time. See Section
4.4 “Clock Switching” for more information.

In INTOSC mode, OSC1/CLKIN is available for general
purpose I/O. OSC2/CLKOUT is available for general
purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined
by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent
oscillators that can produce two internal system clock
sources.

1. The HFINTOSC (High-Frequency Internal
Oscillator) is factory-calibrated and operates
from 1 to 64 MHz. The frequency of HFINTOSC
can be selected through the OSCFRQ
Frequency Selection register, and fine-tuning
can be done via the OSCTUNE register.

2. The LFINTOSC (Low-Frequency Internal
Oscillator) is factory-calibrated and operates at
31 kHz.Note 1: Quartz crystal characteristics vary

according to type, package and
manufacturer. The user should consult the
manufacturer data sheets for specifications
and recommended application.

2: Always verify oscillator performance over
the VDD and temperature range that is
expected for the application.

3: For oscillator design assistance, reference
the following Microchip Application Notes:

• AN826, “Crystal Oscillator Basics and
Crystal Selection for PIC® and PIC®
Devices” (DS00826)

• AN849, “Basic PIC® Oscillator Design”
(DS00849)

• AN943, “Practical PIC® Oscillator
Analysis and Design” (DS00943)

• AN949, “Making Your Oscillator Work”
(DS00949)

• TB097, “Interfacing a Micro Crystal
MS1V-T1K 32.768 kHz Tuning Fork
Crystal to a PIC16F690/SS” (DS91097)

• AN1288, “Design Practices for
Low-Power External Oscillators”
(DS01288)

C1

C2

32.768 kHz

SOSCI

To Internal
Logic

PIC® MCU

Crystal

SOSCO

Quartz
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 45

PIC18(L)F27/47K40
5.5 Register Definitions: Reference Clock

Long bit name prefixes for the Reference Clock periph-
erals are shown in Table 5-1. Refer to Section
1.4.2.2 “Long Bit Names” for more information.

TABLE 5-1:

Peripheral Bit Name Prefix

CLKR CLKR

REGISTER 5-1: CLKRCON: REFERENCE CLOCK CONTROL REGISTER

R/W-0/0 U-0 U-0 R/W-1/1 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

EN — — DC<1:0> DIV<2:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 EN: Reference Clock Module Enable bit

1 = Reference clock module enabled
0 = Reference clock module is disabled

bit 6-5 Unimplemented: Read as ‘0’

bit 4-3 DC<1:0>: Reference Clock Duty Cycle bits(1)

11 = Clock outputs duty cycle of 75%
10 = Clock outputs duty cycle of 50%
01 = Clock outputs duty cycle of 25%
00 = Clock outputs duty cycle of 0%

bit 2-0 DIV<2:0>: Reference Clock Divider bits

111 = Base clock value divided by 128
110 = Base clock value divided by 64
101 = Base clock value divided by 32
100 = Base clock value divided by 16
011 = Base clock value divided by 8
010 = Base clock value divided by 4
001 = Base clock value divided by 2
000 = Base clock value

Note 1: Bits are valid for reference clock divider values of two or larger, the base clock cannot be further divided.
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 56

 2

0
1

6
-2

0
1

7
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

P
relim

in
ary

D
S

4
0

0
0

1
8

4
4

C
-p

a
g

e
 1

0
2

P
IC

18(L
)F

27/47K
40

FIG

Virtual Bank

Access RAM 00h

5Fh

SFR 60h

FFh
URE 10-4: DATA MEMORY MAP FOR PIC18(L)F2X/4XK40 DEVICES

Bank BSR<3:0> addr<7:0>

PIC18(L)F24K40
PIC18(L)F25K40

PIC18(L)F45K40

PIC18(L)F26K40

PIC18(L)F27K40

PIC18(L)F46K40

PIC18(L)F47K40

Address

addr<11:0>

Bank 0 0000

00h Access RAM Access RAM Access RAM 000h

05Fh

GPR GPR GPR 060h

FFh 0FFh

Bank 1 0001
00h

GPR GPR GPR

100h

FFh
•

•

•

Bank 2 0010
00h

FFh

Bank 3 0011
00h

FFh 3FFh

Banks

4 to 7

0100
—

0111

00h

Unimplemented

GPR GPR

400h

•

•

•

FFh 7FFh

Banks

8 to 13

1000
—

1101

00h

Unimplemented GPR

800h

•

•

•

FFh DFFh

Bank 14 1110
00h Unimplemented(1) Unimplemented(1) GPR(1) E00h

FFh SFR(1) SFR(1) SFR(1) EFFh

Bank 15 1111

00h

SFR SFR SFR

F00h

F5Fh

F60h

FFh FFFh

Note 1: It depends on the number of SFRs. Refer to Table 10-3 and Table 10-4.

PIC18(L)F27/47K40
Operations on the FSRs with POSTDEC, POSTINC
and PREINC affect the entire register pair; that is, roll-
overs of the FSRnL register from FFh to 00h carry over
to the FSRnH register. On the other hand, results of
these operations do not change the value of any flags
in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form
of indexed addressing in the data memory space. By
manipulating the value in the W register, users can
reach addresses that are fixed offsets from pointer
addresses. In some applications, this can be used to
implement some powerful program control structure,
such as software stacks, inside of data memory.

10.6.3.3 Operations by FSRs on FSRs

Indirect addressing operations that target other FSRs
or virtual registers represent special cases. For
example, using an FSR to point to one of the virtual
registers will not result in successful operations. As a
specific case, assume that FSR0H:FSR0L contains
FE7h, the address of INDF1. Attempts to read the
value of the INDF1 using INDF0 as an operand will
return 00h. Attempts to write to INDF1 using INDF0 as
the operand will result in a NOP.

On the other hand, using the virtual registers to write to
an FSR pair may not occur as planned. In these cases,
the value will be written to the FSR pair but without any
incrementing or decrementing. Thus, writing to either
the INDF2 or POSTDEC2 register will write the same
value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the
SFR space, they can be manipulated through all direct
operations. Users should proceed cautiously when
working on these registers, particularly if their code
uses indirect addressing.

Similarly, operations by indirect addressing are generally
permitted on all other SFRs. Users should exercise the
appropriate caution that they do not inadvertently change
settings that might affect the operation of the device.

10.7 Data Memory and the Extended
Instruction Set

Enabling the PIC18 extended instruction set (XINST
Configuration bit = 1) significantly changes certain
aspects of data memory and its addressing. Specifi-
cally, the use of the Access Bank for many of the core
PIC18 instructions is different; this is due to the intro-
duction of a new addressing mode for the data memory
space.

What does not change is just as important. The size of
the data memory space is unchanged, as well as its
linear addressing. The SFR map remains the same.
Core PIC18 instructions can still operate in both Direct
and Indirect Addressing mode; inherent and literal
instructions do not change at all. Indirect addressing
with FSR0 and FSR1 also remain unchanged.

10.7.1 INDEXED ADDRESSING WITH
LITERAL OFFSET

Enabling the PIC18 extended instruction set changes
the behavior of indirect addressing using the FSR2
register pair within Access RAM. Under the proper
conditions, instructions that use the Access Bank – that
is, most bit-oriented and byte-oriented instructions –
can invoke a form of indexed addressing using an
offset specified in the instruction. This special
addressing mode is known as Indexed Addressing with
Literal Offset, or Indexed Literal Offset mode.

When using the extended instruction set, this
addressing mode requires the following:

• The use of the Access Bank is forced (‘a’ = 0) and

• The file address argument is less than or equal to
5Fh.

Under these conditions, the file address of the
instruction is not interpreted as the lower byte of an
address (used with the BSR in direct addressing), or as
an 8-bit address in the Access Bank. Instead, the value
is interpreted as an offset value to an Address Pointer,
specified by FSR2. The offset and the contents of
FSR2 are added to obtain the target address of the
operation.

10.7.2 INSTRUCTIONS AFFECTED BY
INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use direct
addressing are potentially affected by the Indexed
Literal Offset Addressing mode. This includes all
byte-oriented and bit-oriented instructions, or almost
one-half of the standard PIC18 instruction set.
Instructions that only use Inherent or Literal Addressing
modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions
are not affected if they do not use the Access Bank
(Access RAM bit is ‘1’), or include a file address of 60h
or above. Instructions meeting these criteria will
continue to execute as before. A comparison of the
different possible addressing modes when the
extended instruction set is enabled is shown in
Figure 10-7.

Those who desire to use byte-oriented or bit-oriented
instructions in the Indexed Literal Offset mode should
note the changes to assembler syntax for this mode.
This is described in more detail in Section
35.2.1 “Extended Instruction Syntax”.
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 121

PIC18(L)F27/47K40
EXAMPLE 11-4: WRITING TO PROGRAM FLASH MEMORY

MOVLW D'64’ ; number of bytes in erase block
MOVWF COUNTER
MOVLW BUFFER_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW BUFFER_ADDR_LOW
MOVWF FSR0L
MOVLW CODE_ADDR_UPPER ; Load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW CODE_ADDR_HIGH
MOVWF TBLPTRH
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL

READ_BLOCK
TBLRD*+ ; read into TABLAT, and inc
MOVF TABLAT, W ; get data
MOVWF POSTINC0 ; store data
DECFSZ COUNTER ; done?
BRA READ_BLOCK ; repeat

MODIFY_WORD
MOVLW BUFFER_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW BUFFER_ADDR_LOW
MOVWF FSR0L
MOVLW NEW_DATA_LOW ; update buffer word
MOVWF POSTINC0
MOVLW NEW_DATA_HIGH
MOVWF INDF0

ERASE_BLOCK
MOVLW CODE_ADDR_UPPER ; load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW CODE_ADDR_HIGH
MOVWF TBLPTRH
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL
BCF NVMCON1, NVMREG0 ; point to Program Flash Memory
BSF NVMCON1, NVMREG1 ; point to Program Flash Memory
BSF NVMCON1, WREN ; enable write to memory
BSF NVMCON1, FREE ; enable Erase operation
BCF INTCON, GIE ; disable interrupts
MOVLW 55h

Required MOVWF NVMCON2 ; write 55h
Sequence MOVLW AAh

MOVWF NVMCON2 ; write 0AAh
BSF NVMCON1, WR ; start erase (CPU stall)
BSF INTCON, GIE ; re-enable interrupts
TBLRD*- ; dummy read decrement
MOVLW BUFFER_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW BUFFER_ADDR_LOW
MOVWF FSR0L

WRITE_BUFFER_BACK
MOVLW BlockSize ; number of bytes in holding register
MOVWF COUNTER
MOVLW D’64’/BlockSize ; number of write blocks in 64 bytes
MOVWF COUNTER2
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 136

PIC18(L)F27/47K40
REGISTER 14-9: PIR7: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 7

R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0 R/W-0/0

SCANIF CRCIF NVMIF — — — — CWG1IF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 SCANIF: SCAN Interrupt Flag bit
1 = SCAN interrupt has occurred (must be cleared in software)

0 = SCAN interrupt has not occurred or has not been started

bit 6 CRCIF: CRC Interrupt Flag bit
1 = CRC interrupt has occurred (must be cleared in software)

0 = CRC interrupt has not occurred or has not been started

bit 5 NVMIF: NVM Interrupt Flag bit
1 = NVM interrupt has occurred (must be cleared in software)

0 = NVM interrupt has not occurred or has not been started

bit 4-1 Unimplemented: Read as ‘0’

bit 0 CWG1IF: CWG Interrupt Flag bit
1 = CWG interrupt has occurred (must be cleared in software)
0 = CWG interrupt has not occurred or has not been started
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 178

PIC18(L)F27/47K40
REGISTER 15-7: SLRCONx: SLEW RATE CONTROL REGISTER

R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

SLRx7 SLRx6 SLRx5 SLRx4 SLRx3 SLRx2 SLRx1 SLRx0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0 SLRx<7:0>: Slew Rate Control on Pins Rx<7:0>, respectively

1 = Port pin slew rate is limited
0 = Port pin slews at maximum rate

TABLE 15-8: SLEW RATE CONTROL REGISTERS

Name

Device

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 028
Pins

40/44
Pins

SLRCONA X X SLRA7 SLRA6 SLRA5 SLRA4 SLRA3 SLRA2 SLRA1 SLRA0

SLRCONB X X SLRB7 SLRB6 SLRB5 SLRB4 SLRB3 SLRB2 SLRB1 SLRB0

SLRCONC X X SLRC7 SLRC6 SLRC5 SLRC4 SLRC3 SLRC2 SLRC1 SLRC0

SLRCOND X — — — — — — — —

X SLRD7 SLRD6 SLRD5 SLRD4 SLRD3 SLRD2 SLRD1 SLRD0

SLRCONE X — — — — — — — —

X — — — — — SLRE2 SLRE1 SLRE0
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 207

PIC18(L)F27/47K40
20.5.5 SOFTWARE START ONE-SHOT
MODE

In One-Shot mode the timer resets and the ON bit is
cleared when the timer value matches the PRx period
value. The ON bit must be set by software to start
another timer cycle. Setting MODE<4:0> = 01000
selects One-Shot mode which is illustrated in
Figure 20-8. In the example, ON is controlled by BSF
and BCF instructions. In the first case, a BSF instruc-
tion sets ON and the counter runs to completion and
clears ON. In the second case, a BSF instruction starts
the cycle, BCF/BSF instructions turn the counter off
and on during the cycle, and then it runs to completion.

When One-Shot mode is used in conjunction with the
CCP PWM operation the PWM pulse drive starts con-
current with setting the ON bit. Clearing the ON bit
while the PWM drive is active will extend the PWM
drive. The PWM drive will terminate when the timer
value matches the CCPRx pulse width value. The
PWM drive will remain off until software sets the ON bit
to start another cycle. If software clears the ON bit after
the CCPRx match but before the PRx match then the
PWM drive will be extended by the length of time the
ON bit remains cleared. Another timing cycle can only
be initiated by setting the ON bit after it has been
cleared by a PRx period count match.

FIGURE 20-8: SOFTWARE START ONE-SHOT MODE TIMING DIAGRAM (MODE = 01000)

Rev. 10-000199B
4/7/2016

TMRx_clk

ON

PRx

TMRx

BSF BSF

5

0 1 2 3 4 5 0 431

MODE 0b01000

2 5 0

TMRx_postscaled

BCF BSF

PWM Duty
Cycle 3

PWM Output

Note 1: BSF and BCF represent Bit-Set File and Bit-Clear File instructions
 executed by the CPU to set or clear the ON bit of TxCON. CPU
 execution is asynchronous to the timer clock input.

Instruction(1)
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 251

PIC18(L)F27/47K40

REGISTER 20-3: TxCLKCON: TIMERx CLOCK SELECTION REGISTER

U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

— — — — CS<3:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-4 Unimplemented: Read as ‘0’

bit 3-0 CS<3:0>: Timerx Clock Selection bits

CS<3:0>
TMR2 TMR4 TMR6

Clock Source Clock Source Clock Source

1111-1001 Reserved Reserved Reserved

1000 ZCD_OUT ZCD_OUT ZCD_OUT

0111 CLKREF_OUT CLKREF_OUT CLKREF_OUT

0110 SOSC SOSC SOSC

0101 MFINTOSC (31 kHz) MFINTOSC (31 kHz) MFINTOSC (31 kHz)

0100 LFINTOSC LFINTOSC LFINTOSC

0011 HFINTOSC HFINTOSC HFINTOSC

0010 Fosc Fosc Fosc

0001 Fosc/4 Fosc/4 Fosc/4

0000 Pin selected by T2INPPS Pin selected by T4INPPS Pin selected by T6INPPS
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 264

PIC18(L)F27/47K40
24.10 Auto-Shutdown

Auto-shutdown is a method to immediately override the
CWG output levels with specific overrides that allow for
safe shutdown of the circuit. The shutdown state can be
either cleared automatically or held until cleared by
software. The auto-shutdown circuit is illustrated in
Figure 24-14.

24.10.1 SHUTDOWN

The shutdown state can be entered by either of the
following two methods:

• Software generated

• External Input

24.10.1.1 Software Generated Shutdown

Setting the SHUTDOWN bit of the CWG1AS0 register
will force the CWG into the shutdown state.

When the auto-restart is disabled, the shutdown state
will persist as long as the SHUTDOWN bit is set.

When auto-restart is enabled, the SHUTDOWN bit will
clear automatically and resume operation on the next
rising edge event. The SHUTDOWN bit indicates when
a shutdown condition exists. The bit may be set or
cleared in software or by hardware.

24.10.1.2 External Input Source

External shutdown inputs provide the fastest way to safely
suspend CWG operation in the event of a Fault condition.
When any of the selected shutdown inputs goes active,
the CWG outputs will immediately go to the selected over-
ride levels without software delay. The override levels are
selected by the LSBD<1:0> and LSAC<1:0> bits of the
CWG1AS0 register (Register 24-6). Several input
sources can be selected to cause a shutdown condition.
All input sources are active-low. The sources are:

• Pin selected by CWG1PPS

• Timer2 post-scaled output

• Timer4 post-scaled output

• Timer6 post-scaled output

• Comparator 1 output

• Comparator 2 output

Shutdown input sources are individually enabled by the
ASxE bits of the CWG1AS1 register (Register 24-7).

24.10.1.3 Pin Override Levels

The levels driven to the CWG outputs during an auto-
shutdown event are controlled by the LSBD<1:0> and
LSAC<1:0> bits of the CWG1AS0 register
(Register 24-6). The LSBD<1:0> bits control CWG1B/
D output levels, while the LSAC<1:0> bits control the
CWG1A/C output levels.

24.10.1.4 Auto-Shutdown Interrupts

When an auto-shutdown event occurs, either by soft-
ware or hardware setting SHUTDOWN, the CWG1IF
flag bit of the PIR7 register is set (Register 14-5).

24.11 Auto-Shutdown Restart

After an auto-shutdown event has occurred, there are
two ways to resume operation:

• Software controlled
• Auto-restart

In either case, the shut-down source must be cleared
before the restart can take place. That is, either the
shutdown condition must be removed, or the
corresponding ASxE bit must be cleared.

24.11.1 SOFTWARE-CONTROLLED
RESTART

If the REN bit of the CWG1AS0 register is clear
(REN = 0), the CWG module must be restarted after an
auto-shutdown event through software.

Once all auto-shutdown sources are removed, the
software must clear SHUTDOWN. Once SHUTDOWN
is cleared, the CWG module will resume operation
upon the first rising edge of the CWG data input.

24.11.2 AUTO-RESTART

If the REN bit of the CWG1AS0 register is set (REN = 1),
the CWG module will restart from the shutdown state
automatically.

Once all auto-shutdown conditions are removed, the
hardware will automatically clear SHUTDOWN. Once
SHUTDOWN is cleared, the CWG module will resume
operation upon the first rising edge of the CWG data
input.

Note: Shutdown inputs are level sensitive, not
edge sensitive. The shutdown state can-
not be cleared, except by disabling auto-
shutdown, as long as the shutdown input
level persists.

Note: The SHUTDOWN bit cannot be cleared in
software if the auto-shutdown condition is
still present.

Note: The SHUTDOWN bit cannot be cleared in
software if the auto-shutdown condition is
still present.
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 311

PIC18(L)F27/47K40
25.1 Register Definitions: Modulation Control

Long bit name prefixes for the Modulation peripheral is
shown in Table 25-1. Refer to Section 1.4.2.2 “Long
Bit Names” for more information.

TABLE 25-1:

Peripheral Bit Name Prefix

MD MD

REGISTER 25-1: MDCON0: MODULATION CONTROL REGISTER 0

R/W-0/0 U-0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 R/W-0/0

EN — OUT OPOL — — — BIT

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 EN: Modulator Module Enable bit

1 = Modulator module is enabled and mixing input signals
0 = Modulator module is disabled and has no output

bit 6 Unimplemented: Read as ‘0’

bit 5 OUT: Modulator Output bit

Displays the current output value of the Modulator module.(1)

bit 4 OPOL: Modulator Output Polarity Select bit

1 = Modulator output signal is inverted; idle high output
0 = Modulator output signal is not inverted; idle low output

bit 3-1 Unimplemented: Read as ‘0’

bit 0 BIT: Allows software to manually set modulation source input to module(2)

Note 1: The modulated output frequency can be greater and asynchronous from the clock that updates this
register bit, the bit value may not be valid for higher speed modulator or carrier signals.

2: MDBIT must be selected as the modulation source in the MDSRC register for this operation.
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 325

PIC18(L)F27/47K40
26.8 I2C Mode Operation

All MSSP I2C communication is byte oriented and
shifted out MSb first. Six SFR registers and two
interrupt flags interface the module with the PIC®

microcontroller and user software. Two pins, SDA and
SCL, are exercised by the module to communicate
with other external I2C devices.

26.8.1 BYTE FORMAT

All communication in I2C is done in 9-bit segments. A
byte is sent from a master to a slave or vice-versa, fol-
lowed by an Acknowledge bit sent back. After the
eighth falling edge of the SCL line, the device output-
ting data on the SDA changes that pin to an input and
reads in an acknowledge value on the next clock
pulse.

The clock signal, SCL, is provided by the master. Data
is valid to change while the SCL signal is low, and
sampled on the rising edge of the clock. Changes on
the SDA line while the SCL line is high define special
conditions on the bus, explained below.

26.8.2 DEFINITION OF I2C TERMINOLOGY

There is language and terminology in the description
of I2C communication that have definitions specific to
I2C. That word usage is defined below and may be
used in the rest of this document without explanation.
This table was adapted from the Philips I2C
specification.

26.8.3 SDA AND SCL PINS

Selection of any I2C mode with the SSPEN bit set,
forces the SCL and SDA pins to be open-drain. These
pins should be set by the user to inputs by setting the
appropriate TRIS bits.

26.8.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT
bit of the SSPxCON3 register. Hold time is the time
SDA is held valid after the falling edge of SCL. Setting
the SDAHT bit selects a longer 300 ns minimum hold
time and may help on buses with large capacitance.

TABLE 26-2: I2C BUS TERMS

Note 1: Data is tied to output zero when an I2C
mode is enabled.

2: Any device pin can be selected for SDA
and SCL functions with the PPS peripheral.
These functions are bidirectional. The SDA
input is selected with the SSPxDATPPS
registers. The SCL input is selected with
the SSPxCLKPPS registers. Outputs are
selected with the RxyPPS registers. It is the
user’s responsibility to make the selections
so that both the input and the output for
each function is on the same pin.

TERM Description

Transmitter The device which shifts data out
onto the bus.

Receiver The device which shifts data in
from the bus.

Master The device that initiates a transfer,
generates clock signals and
terminates a transfer.

Slave The device addressed by the
master.

Multi-master A bus with more than one device
that can initiate data transfers.

Arbitration Procedure to ensure that only one
master at a time controls the bus.
Winning arbitration ensures that
the message is not corrupted.

Synchronization Procedure to synchronize the
clocks of two or more devices on
the bus.

Idle No master is controlling the bus,
and both SDA and SCL lines are
high.

Active Any time one or more master
devices are controlling the bus.

Addressed
Slave

Slave device that has received a
matching address and is actively
being clocked by a master.

Matching
Address

Address byte that is clocked into a
slave that matches the value
stored in SSPxADD.

Write Request Slave receives a matching
address with R/W bit clear, and is
ready to clock in data.

Read Request Master sends an address byte with
the R/W bit set, indicating that it
wishes to clock data out of the
Slave. This data is the next and all
following bytes until a Restart or
Stop.

Clock Stretching When a device on the bus hold
SCL low to stall communication.

Bus Collision Any time the SDA line is sampled
low by the module while it is out-
putting and expected high state.
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 358

PIC18(L)F27/47K40
26.9.4 SLAVE MODE 10-BIT ADDRESS
RECEPTION

This section describes a standard sequence of events
for the MSSP module configured as an I2C slave in
10-bit Addressing mode.

Figure 26-20 is used as a visual reference for this
description.

This is a step by step process of what must be done by
slave software to accomplish I2C communication.

1. Bus starts Idle.

2. Master sends Start condition; S bit of SSPxSTAT
is set; SSPxIF is set if interrupt on Start detect is
enabled.

3. Master sends matching high address with R/W
bit clear; UA bit of the SSPxSTAT register is set.

4. Slave sends ACK and SSPxIF is set.

5. Software clears the SSPxIF bit.

6. Software reads received address from
SSPxBUF clearing the BF flag.

7. Slave loads low address into SSPxADD,
releasing SCL.

8. Master sends matching low address byte to the
slave; UA bit is set.

9. Slave sends ACK and SSPxIF is set.

10. Slave clears SSPxIF.

11. Slave reads the received matching address
from SSPxBUF clearing BF.

12. Slave loads high address into SSPxADD.

13. Master clocks a data byte to the slave and
clocks out the slaves ACK on the ninth SCL
pulse; SSPxIF is set.

14. If SEN bit of SSPxCON2 is set, CKP is cleared
by hardware and the clock is stretched.

15. Slave clears SSPxIF.

16. Slave reads the received byte from SSPxBUF
clearing BF.

17. If SEN is set the slave sets CKP to release the
SCL.

18. Steps 13-17 repeat for each received byte.

19. Master sends Stop to end the transmission.

26.9.5 10-BIT ADDRESSING WITH
ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or
DHEN set is the same as with 7-bit modes. The only
difference is the need to update the SSPxADD register
using the UA bit. All functionality, specifically when the
CKP bit is cleared and SCL line is held low are the
same. Figure 26-21 can be used as a reference of a
slave in 10-bit addressing with AHEN set.

Figure 26-22 shows a standard waveform for a slave
transmitter in 10-bit Addressing mode.

Note: Updates to the SSPxADD register are not
allowed until after the ACK sequence.

Note: If the low address does not match, SSPxIF
and UA are still set so that the slave soft-
ware can set SSPxADD back to the high
address. BF is not set because there is no
match. CKP is unaffected.
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 370

PIC18(L)F27/47K40
26.10.13.1 Bus Collision During a Start
Condition

During a Start condition, a bus collision occurs if:

a) SDA or SCL are sampled low at the beginning of
the Start condition (Figure 26-33).

b) SCL is sampled low before SDA is asserted low
(Figure 26-34).

During a Start condition, both the SDA and the SCL
pins are monitored.

If the SDA pin is already low, or the SCL pin is already
low, then all of the following occur:

• the Start condition is aborted,

• the BCLxIF flag is set and

• the MSSP module is reset to its Idle state
(Figure 26-33).

The Start condition begins with the SDA and SCL pins
deasserted. When the SDA pin is sampled high, the
Baud Rate Generator is loaded and counts down. If the
SCL pin is sampled low while SDA is high, a bus
collision occurs because it is assumed that another
master is attempting to drive a data ‘1’ during the Start
condition.

If the SDA pin is sampled low during this count, the
BRG is reset and the SDA line is asserted early
(Figure 26-35). If, however, a ‘1’ is sampled on the SDA
pin, the SDA pin is asserted low at the end of the BRG
count. The Baud Rate Generator is then reloaded and
counts down to zero; if the SCL pin is sampled as ‘0’
during this time, a bus collision does not occur. At the
end of the BRG count, the SCL pin is asserted low.

FIGURE 26-33: BUS COLLISION DURING START CONDITION (SDA ONLY)

Note: The reason that bus collision is not a
factor during a Start condition is that no
two bus masters can assert a Start condi-
tion at the exact same time. Therefore,
one master will always assert SDA before
the other. This condition does not cause a
bus collision because the two masters
must be allowed to arbitrate the first
address following the Start condition. If the
address is the same, arbitration must be
allowed to continue into the data portion,
Repeated Start or Stop conditions.

SDA

SCL

SEN

SDA sampled low before

SDA goes low before the SEN bit is set.

S bit and SSPxIF set because

SSPx module reset into Idle state.
SEN cleared automatically because of bus collision.

S bit and SSPxIF set because

Set SEN, enable Start
condition if SDA = 1, SCL = 1

SDA = 0, SCL = 1.

BCLxIF

S

SSPxIF

SDA = 0, SCL = 1.

SSPxIF and BCLxIF are
cleared by software

SSPxIF and BCLxIF are
cleared by software

Set BCLxIF,

Start condition. Set BCLxIF.
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 385

PIC18(L)F27/47K40

TABLE 27-9: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE

TRANSMISSION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register
on Page

BAUDxCON ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN 395

INTCON GIE/GIEH PEIE/GIEL IPEN — — INT2EDG INT1EDG INT0EDG 170

PIE3 RC2IE TX2IE RC1IE TX1IE BCL2IE SSP2IE BCL1IE SSP1IE 182

PIR3 RC2IF TX2IF RC1IF TX1IF BCL2IF SSP2IF BCL1IF SSP1IF 174

IPR3 RC2IP TX2IP RC1IP TX1IP BCL2IP SSP2IP BCL1IP SSP1IP 190

RCxSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 394

RxyPPS — — — RxyPPS<4:0> 218

TXxPPS — — — TXPPS<4:0> 216

TXxREG EUSARTx Transmit Data Register 396*

TXxSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 393

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for synchronous slave transmission.
* Page provides register information.
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 419

PIC18(L)F27/47K40
TABLE 31-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES(1,4)

FIGURE 31-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

ADC Clock Period (TAD) Device Frequency (FOSC)

ADC
Clock Source

ADCS<5:0> 64 MHz 32 MHz 20 MHz 16 MHz 8 MHz 4 MHz 1 MHz

FOSC/2 000000 31.25 ns(2) 62.5 ns(2) 100 ns(2) 125 ns(2) 250 ns(2) 500 ns(2) 2.0 s

FOSC/4 000001 62.5 ns(2) 125 ns(2) 200 ns(2) 250 ns(2) 500 ns(2) 1.0 s 4.0 s

FOSC/6 000010 125 ns(2) 187.5 ns(2) 300 ns(2) 375 ns(2) 750 ns(2) 1.5 s 6.0 s

FOSC/8 000011 187.5 ns(2) 250 ns(2) 400 ns(2) 500 ns(2) 1.0 s 2.0 s 8.0 s(3)

...

FOSC/16 000100 250 ns(2) 500 ns(2) 800 ns(2) 1.0 s 2.0 s 4.0 s 16.0 s(3)

...

FOSC/128 111111 2.0 s 4.0 s 6.4 s 8.0 s 16.0 s(3) 32.0 s(2) 128.0 s(2)

FRC ADCS(ADCON0<4>) = 1 1.0-6.0 s 1.0-6.0 s 1.0-6.0 s 1.0-6.0 s 1.0-6.0 s 1.0-6.0 s 1.0-6.0 s

Legend: Shaded cells are outside of recommended range.
Note 1: See TAD parameter for FRC source typical TAD value.

2: These values violate the required TAD time.
3: Outside the recommended TAD time.
4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system

clock FOSC. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep
mode.

On the following cycle:
ADRESH:ADRESL is loaded,
GO bit is cleared,
ADIF bit is set,

Rev. 10-000035B
11/3/2016

Set GO bit

External and Internal
Channels are
charged/discharged

If ADPRE 0 If ADACQ 0

External and Internal
Channels share
charge

If ADPRE = 0
If ADACQ = 0
(Traditional Operation Start)

TAD1TCY TCY-TAD TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10TAD11

Holding capacitor CHOLD is disconnected from analog input (typically 100ns)

2 TCY

Conversion starts

b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Precharge
Time

1-255 TCY
(TPRE)

Acquisition/
Sharing Time

1-255 TCY
(TACQ)

Conversion Time
(Traditional Timing of ADC Conversion)
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 434

PIC18(L)F27/47K40
REGISTER 31-4: ADCON3: ADC CONTROL REGISTER 3

U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W/HC-0 R/W-0/0 R/W-0/0 R/W-0/0
— ADCALC<2:0> ADSOI ADTMD<2:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared HC = Bit is cleared by hardware

bit 7 Unimplemented: Read as ‘0’

bit 6-4 ADCALC<2:0>: ADC Error Calculation Mode Select bits

bit 3 ADSOI: ADC Stop-on-Interrupt bit

If ADCONT = 1:
1 = ADGO is cleared when the threshold conditions are met, otherwise the conversion is retriggered
0 = ADGO is not cleared by hardware, must be cleared by software to stop retriggers

bit 2-0 ADTMD<2:0>: Threshold Interrupt Mode Select bits

111 = Interrupt regardless of threshold test results
110 = Interrupt if ADERR>ADUTH
101 = Interrupt if ADERRADUTH
100 = Interrupt if ADERRADLTH or ADERR>ADUTH
011 = Interrupt if ADERR>ADLTH and ADERR<ADUTH
010 = Interrupt if ADERR≥ADLTH
001 = Interrupt if ADERR<ADLTH
000 = Never interrupt

Note 1: When ADPSIS = 0, the value of ADRES-ADPREV) is the value of (S2-S1) from Table 31-3.

2: When ADPSIS = 0

3: When ADPSIS = 1.

ADCALC

Action During 1st Precharge Stage

ApplicationADDSEN = 0
Single-Sample Mode

ADDSEN = 1 CVD
Double-Sample Mode(1)

111 Reserved Reserved Reserved

110 Reserved Reserved Reserved

101 ADLFTR-ADSTPT ADFLTR-ADSTPT Average/filtered value vs.
setpoint

100 ADPREV-ADFLTR ADPREV-ADFLTR First derivative of filtered
value(3) (negative)

011 Reserved Reserved Reserved

010 ADRES-ADFLTR (ADRES-ADPREV)-ADFLTR Actual result vs.
averaged/filtered value

001 ADRES-ADSTPT (ADRES-ADPREV)-ADSTPT Actual result vs.setpoint

000 ADRES-ADPREV ADRES-ADPREV First derivative of single
measurement(2)

Actual CVD result in CVD
mode(2)
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 451

PIC18(L)F27/47K40

BNC Branch if Not Carry

Syntax: BNC n

Operands: -128 n 127

Operation: if CARRY bit is ‘0’
(PC) + 2 + 2n PC

Status Affected: None

Encoding: 1110 0011 nnnn nnnn

Description: If the CARRY bit is ‘0’, then the program
will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
2-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BNC Jump

Before Instruction
PC = address (HERE)

After Instruction
If CARRY = 0;

PC = address (Jump)
If CARRY = 1;

PC = address (HERE + 2)

BNN Branch if Not Negative

Syntax: BNN n

Operands: -128 n 127

Operation: if NEGATIVE bit is ‘0’
(PC) + 2 + 2n PC

Status Affected: None

Encoding: 1110 0111 nnnn nnnn

Description: If the NEGATIVE bit is ‘0’, then the
program will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
2-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BNN Jump

Before Instruction
PC = address (HERE)

After Instruction
If NEGATIVE = 0;

PC = address (Jump)
If NEGATIVE = 1;

PC = address (HERE + 2)
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 495

PIC18(L)F27/47K40

MOVFF Move f to f

Syntax: MOVFF fs,fd

Operands: 0 fs 4095
0 fd 4095

Operation: (fs) fd

Status Affected: None

Encoding:
1st word (source)
2nd word (destin.)

1100
1111

ffff
ffff

ffff
ffff

ffffs
ffffd

Description: The contents of source register ‘fs’ are
moved to destination register ‘fd’.
Location of source ‘fs’ can be anywhere
in the 4096-byte data space (000h to
FFFh) and location of destination ‘fd’
can also be anywhere from 000h to
FFFh.
Either source or destination can be W
(a useful special situation).
MOVFF is particularly useful for
transferring a data memory location to a
peripheral register (such as the transmit
buffer or an I/O port).
The MOVFF instruction cannot use the
PCL, TOSU, TOSH or TOSL as the
destination register.

Words: 2

Cycles: 2 (3)

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

(src)

Process
Data

No
operation

Decode No
operation

No dummy
read

No
operation

Write
register ‘f’

(dest)

Example: MOVFF REG1, REG2

Before Instruction
REG1 = 33h
REG2 = 11h

After Instruction
REG1 = 33h
REG2 = 33h

MOVLB Move literal to low nibble in BSR

Syntax: MOVLW k

Operands: 0 k 255

Operation: k BSR

Status Affected: None

Encoding: 0000 0001 kkkk kkkk

Description: The 8-bit literal ‘k’ is loaded into the
Bank Select Register (BSR). The value
of BSR<7:4> always remains ‘0’,
regardless of the value of k7:k4.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write literal
‘k’ to BSR

Example: MOVLB 5

Before Instruction
BSR Register = 02h

After Instruction
BSR Register = 05h
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 510

PIC18(L)F27/47K40
35.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18
instruction set, PIC18(L)F2x/4xK40 devices also
provide an optional extension to the core CPU
functionality. The added features include eight
additional instructions that augment indirect and
indexed addressing operations and the implementation
of Indexed Literal Offset Addressing mode for many of
the standard PIC18 instructions.

The additional features of the extended instruction set
are disabled by default. To enable them, users must set
the XINST Configuration bit.

The instructions in the extended set can all be
classified as literal operations, which either manipulate
the File Select Registers, or use them for indexed
addressing. Two of the instructions, ADDFSR and
SUBFSR, each have an additional special instantiation
for using FSR2. These versions (ADDULNK and
SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented
to optimize re-entrant program code (that is, code that
is recursive or that uses a software stack) written in
high-level languages, particularly C. Among other
things, they allow users working in high-level
languages to perform certain operations on data
structures more efficiently. These include:

• dynamic allocation and deallocation of software
stack space when entering and leaving
subroutines

• function pointer invocation

• software Stack Pointer manipulation

• manipulation of variables located in a software
stack

A summary of the instructions in the extended instruc-
tion set is provided in Table 35-3. Detailed descriptions
are provided in Section 35.2.2 “Extended Instruction
Set”. The opcode field descriptions in Table 35-1 apply
to both the standard and extended PIC18 instruction
sets.

35.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed
arguments, using one of the File Select Registers and
some offset to specify a source or destination register.
When an argument for an instruction serves as part of
indexed addressing, it is enclosed in square brackets
(“[]”). This is done to indicate that the argument is used
as an index or offset. MPASM™ Assembler will flag an
error if it determines that an index or offset value is not
bracketed.

When the extended instruction set is enabled, brackets
are also used to indicate index arguments in byte-
oriented and bit-oriented instructions. This is in addition
to other changes in their syntax. For more details, see
Section 35.2.3.1 “Extended Instruction Syntax with
Standard PIC18 Commands”.

TABLE 35-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

Note: The instruction set extension and the
Indexed Literal Offset Addressing mode
were designed for optimizing applications
written in C; the user may likely never use
these instructions directly in assembler.
The syntax for these commands is pro-
vided as a reference for users who may be
reviewing code that has been generated
by a compiler.

Note: In the past, square brackets have been
used to denote optional arguments in the
PIC18 and earlier instruction sets. In this
text and going forward, optional
arguments are denoted by braces (“{ }”).

Mnemonic,
Operands

Description Cycles
16-Bit Instruction Word Status

AffectedMSb LSb

ADDFSR
ADDULNK
CALLW
MOVSF

MOVSS

PUSHL

SUBFSR
SUBULNK

f, k
k

zs, fd

zs, zd

k

f, k
k

Add literal to FSR
Add literal to FSR2 and return
Call subroutine using WREG
Move zs (source) to 1st word
 fd (destination) 2nd word
Move zs (source) to 1st word
 zd (destination) 2nd word
Store literal at FSR2,
 decrement FSR2
Subtract literal from FSR
Subtract literal from FSR2 and
 return

1
2
2
2

2

1

1
2

1110
1110
0000
1110
1111
1110
1111
1110

1110
1110

1000
1000
0000
1011
ffff
1011
xxxx
1010

1001
1001

 ffkk
 11kk
 0001
0zzz
ffff
1zzz
xzzz
kkkk

ffkk
11kk

kkkk
kkkk
0100
zzzz
ffff
zzzz
zzzz
kkkk

kkkk
kkkk

None
None
None
None

None

None

None
None
 2016-2017 Microchip Technology Inc. Preliminary DS40001844C-page 527

