

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, POR, WDT
Number of I/O	-
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	32K x 8
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	64-TQFP Exposed Pad
Supplier Device Package	64-eTQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc570s50e1cefar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	duction		6
	1.1	Docume	ent overview	6
	1.2	Descrip	ion	6
	1.3	Feature	overview	
2	Bloc	k diagra	n	
3	Pack	age pinc	outs and signal descriptions	14
	3.1	Package	e pinouts	
	3.2	Pin dese	criptions	
	3.3	Package	e pads/pins	16
4	Elect	trical cha	aracteristics	22
	4.1	Introduc	tion	
	4.2	Parame	ter classification	
	4.3	Absolute	e maximum ratings	23
	4.4	Electror	nagnetic compatibility (EMC)	
	4.5	Electros	tatic discharge (ESD)	
	4.6	Operatir	ng conditions	
	4.7	Therma	characteristics	
		4.7.1	Package thermal characteristics	
		4.7.2	Power considerations	
	4.8	Current	consumption	
	4.9	I/O pad	electrical characteristics	
		4.9.1	I/O pad types	
		4.9.2	I/O input DC characteristics	30
		4.9.3	I/O output DC characteristics	
	4.10	RESET	electrical characteristics	37
	4.11	Power r	nanagement electrical characteristics	39
		4.11.1	Voltage regulator electrical characteristics	
	4.12		onitor specifications	
		4.12.1	Nomenclature	41

1 Introduction

1.1 Document overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device. To ensure a complete understanding of the device functionality, refer also to the device reference manual and errata sheet.

1.2 Description

The SPC570Sx is a family of next generation microcontrollers built on the Power Architecture embedded category.

The SPC570Sx family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of Chassis and Safety electronics applications within the vehicle. The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category and only implements the VLE (variable-length encoding) APU, providing improved code density. It operates at speeds of up to 80 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

	Description	
Process		55 nm
	Core	e200z0h
	Number of main cores	1
Main processor	Number of checker cores	1
	VLE	Yes
	Main processor frequency	80 MHz ⁽¹⁾
Interrupt controllers (includi	ng interrupt controller checker)	1
Software watchdog timer		1
System timers		1 AUTOSAR [®] STM
		1 PIT with four 32-bit channels
DMA (including DMA check	er)	1
DMA channels		16
SMPU	Yes (8 regions) ⁽²⁾	
System SRAM	48 KB	
Code flash memory	512 KB	
Data flash memory (suitable	32 KB	

DocID024492 Rev 6

Block	Function
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
MC_PMC	Contains registers that enable/disable the various voltage monitors
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device
Memory protection unit (MPU)	Provides hardware access control for all memory references generated in a device
eTimer	Has six 16-bit general purpose counter, where each counter can be used as input capture or output compare function
FCCU	Collects fault event notification from the rest of the system and translates them into internal and/or external system reactions
RCCU	Compares input signals and issues an alarm in the case of a mismatch
МЕМU	Collects and reports error events associated with ECC (Error Correction Code) logic used on SRAM, DMA RAM and Flash memory
XBIC	Verifies the integrity of the attribute information for crossbar transfers and signals the Fault Collection and Control Unit (FCCU) when an error is detected
STCU2	Handles the BIST procedure
CRC	Controls the computation of CRC, off-loading this work from the CPU
RegProt	Protects several registers against accidental writing, locking their value till the next reset phase
Temperature sensor	Monitors the device temperature
Debug Control Interface	Provides debug features for the MCU
Nexus Port Controller	Monitor a variety of signals including addresses, data, control signals, status signals, etc.
Nexus Multimaster Trace Client	Monitors the system bus and provides real-time trace information to debug or development tools
Periodic interrupt timer (PIT)	Produces periodic interrupts and triggers
System integration unit (SIUL)	Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration
System status configuration module (SSCM)	Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)	Provides a set of output compare events to support AUTOSAR and operating system tasks
System watchdog timer (SWT)	Provides protection from runaway code

Table 3. SPC570Sx series block summary (continued)

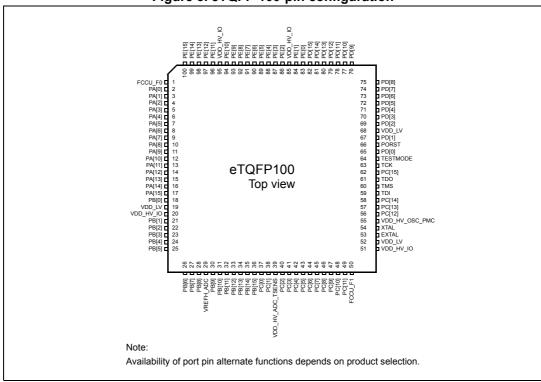


Figure 3. eTQFP 100-pin configuration

		Pin	No.			Alternate functions			
Port pin	Pad	eTQFP64	eTQFP100	Туре	AF1	AF2	AF3	AF4	
PE[11]	PAD[75]	62	96	Ю	Nexus MCK0 ⁽²⁾	DSPI 0 - CLK	DSPI 0 - CS 1	DSPI 1 - CS 3	
PE[12]	PAD[76]	_	97	Ю	_	Timer 3 - ch. 4	DSPI 2 - CS 0	DSPI 1 - CS 2	
PE[13]	PAD[77]	_	98	Ю	_	Timer 3 - ch. 5	DSPI 2 - CS 1	DSPI 1 - CS 1	
PE[14]	PAD[78]	63	99	Ю	Nexus EVTO ⁽²⁾	DSPI 0 - Serial Data	DSPI 0 - CS 2	DSPI 2 - CS 3	
PE[15]	PAD[79]	64	100	Ю	Nexus EVTI ⁽²⁾	DSPI 0 - Serial Data	DSPI 1 - CS 3	_	

Table 4. eTQFP64 and eTQFP100 pinout (continued)

1. Cannot be changed

2. Can be enabled via JTAG during the reset phase

- 2. Allowed 5.5–6.0 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset, T_J = 150 °C remaining time at or below 5.5 V.
- 3. The maximum input voltage on an I/O pin tracks with the associated I/O supply maximum. For the injection current condition on a pin, the voltage will be equal to the supply plus the voltage drop across the internal ESD diode from I/O pin to supply. The diode voltage varies greatly across process and temperature, but a value of 0.3V can be used for nominal calculations.
- 4. A V_{DD HV IO} power segment is defined as one or more GPIO pins located between two V_{DD HV IO} supply pins.
- 5. Solder profile per IPC/JEDEC J-STD-020D
- 6. Moisture sensitivity per JEDEC test method A112

4.4 Electromagnetic compatibility (EMC)

Table 7 describes the EMC characteristics of the device.

Coupling structure	Test setup	Function	Functional configuration	BISS radiated emissions limit	
	(G) TEM	Reference test	C1-S3	18 dBµV	
Entire IC			Reference test with SSCG	C1-S3	18 dBµV
		Memory copy	C4-S2	18 dBµV	
		Memory copy with SSCG	C4-S2	18 dBµV	

Table 7. Radiated emissions testing specification^{(1),(2)}

Reference "BISS Generic IC EMC Test Specification", version 1.2, section 9.3, "Emission test configuration for ICs with CPU".

2. The EMC parameters are classified as "T", validated on testbench.

4.5 Electrostatic discharge (ESD)

The following table describes the ESD ratings of the device.

Table 8. ESD ratings^{(1),(2)}

Parameter	С	Conditions	Value	Unit
ESD for Human Body Model (HBM) ⁽³⁾	Т	All pins	2000	V
ESD for field induced Charged Device Model (CDM) ⁽⁴⁾	Т	All pins	500	V

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

 Device failure is defined as: "If after exposure to ESD pulses, the device does not meet the device specification requirements, which includes the complete DC parametric and functional testing at room temperature and hot temperature. Maximum DC parametrics variation within 10% of maximum specification"

3. This parameter tested in conformity with ANSI/ESD STM5.1-2007 Electrostatic Discharge Sensitivity Testing

4. This parameter tested in conformity with ANSI/ESD STM5.3-1990 Charged Device Model - Component Level

4.6 Operating conditions

			_				Value	
Symbol		С	Parameter	Conditions	Min	Тур	Мах	Unit
				Frequency			L	
f _{SYS}	SR		Device operating frequency ⁽²⁾	-40 °C < T _J < 150 °C	_		80	MHz
		L	Г	emperature				
TJ	SR	Ρ	Operating temperature range - junction	_	-40.0	_	150.0	°C
T _A (T _L to T _H)	SR	Ρ	Ambient operating temperature range	_	-40.0	_	125.0	°C
				Voltage				
		Ρ	I/O supply voltage	LVD290/HVD400 enabled	2.97	_	3.63	
V _{DD_HV_IO}	SR	с		LVD290 enabled HVD400 disabled (3),(4)	2.97	_	5.5	V
V	0.0	Ρ	PMC and OSC	LVD290/HVD400 enabled	2.97	_	3.63	v
V _{DD_HV_OSC_PMC}	SR	С	supply voltage	LVD290 enabled HVD400 disabled	2.97		5.5	
		D		LVD400 enabled	4.5	—	5.5	
V _{DD_HV_ADC_TSENS}	SR	С	SAR ADC supply voltage	LVD400 disabled ^{(3),(5)}	3.0		3.6	V
V _{REFH_ADC}	SR	Ρ	SAR ADC reference voltage	_	2.0		V _{DD_HV_ADC_TSENS}	V
V _{REFH_ADC} - V _{DD_HV_ADC_TSENS}	SR	D	SAR ADC reference differential voltage	_	_	_	25	mV
V _{RAMP}	SR	D	Slew rate on power supply pins	_	—	_	0.5	V/µs
V _{IN}	SR	С	I/O input voltage range	_	0	_	5.5	V
Injection current								
I _{IC}	SR	т	DC injection current (per pin) ^{(6),(7),(8)}	Digital pins and analog pins	-3	_	3	mA
I _{MAXSEG}	SR	D	Maximum current per power segment ⁽⁹⁾	—	-80	—	80	mA

Table 9. Device operating conditions⁽¹⁾

Electrical characteristics

- 1. The ranges in this table are design targets and actual data may vary in the given range.
- Maximum operating frequency is applicable to the computational cores and platform for the device. See the Clocking chapter in the SPC570Sx Microcontroller Reference Manual for more information on the clock limitations for the various IP blocks on the device.
- 3. Maximum voltage is not permitted for entire product life. See Absolute maximum ratings.
- 4. Reduced output/input capabilities below 4.2 V. See performance derating values in I/O pad electrical characteristics
- This LVD/HVD disabled supply voltage condition only applies after LVD/HVD are disabled by the application during the reset sequence, and the LVD/HVD are active until that point.
- 6. Full device lifetime without performance degradation
- I/O and analog input specifications are only valid if the injection current on adjacent pins is within these limits. See Table 6: Absolute maximum ratings for maximum input current for reliability requirements.
- 8. The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pin is above the supply rail, current will be injected through the clamp diode to the supply rail. For external RC network calculation, assume typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature. For more information, see the device characterization report.
- 9. A V_{DD HV IO} power segment is defined as one or more GPIO pins located between two V_{DD HV IO} supply pins.

4.7 Thermal characteristics

4.7.1 Package thermal characteristics

Table 10. Thermal characteristics for eTQFP64

Symbol C		С	Parameter	Conditions	Value	Unit			
R _{θJA}	CC	D	Junction to ambient, natural convection ⁽¹⁾ Four layer board - 2s2p board		32.3	°C/W			
R _{θJMA}	СС	D	Junction to ambient in forced air @ 200 ft/min (1 m/s) ⁽¹⁾ Four layer board - 2s2p board		26.5	°C/W			
$R_{ extsf{ heta}JB}$	СС	D	Junction to board ⁽²⁾ —		12.1	°C/W			
R _{0JCtop}	СС	D	Junction to top case ⁽³⁾ —		19.0	°C/W			
$R_{\theta JCbotttom}$	CC	D	Junction to bottom case thermal resistance ⁽⁴⁾ —		1.9	°C/W			
Ψ_{JT}	СС	D	Junction to package top, natural		0.6	°C/W			

1. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.

- 2. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 3. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1021.1).
- 4. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance.
- 5. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

4.7.2 Power considerations

An estimation of the chip junction temperature, T_J can be obtained from the equation:

Equation 1: $T_J = T_A + (R_{\theta JA} * P_D)$

where:

 T_B = thermocouple temperature on bottom of the package (°C)

 Ψ_{JPB} = thermal characterization parameter (°C/W)

 P_D = power dissipation in the package (W)

Current consumption 4.8

The following table describes the consumption figures.

		=					
Symbol		Deveryoter	Conditions		Unit		
Symbol C	C	Parameter	Conditions	Min	Тур	Мах	Unit
	Ρ	Operating current all	F _{max} ⁽¹⁾	—	_	110 ⁽¹⁾	mA
IDD	Т	supply rails	T _j = 150 °C ⁽¹⁾	_	_	0.75 * f _{CPU} ⁽²⁾ + 50	mA
Stop	Ρ	Stop mode consumption	Device working on RC clock	—	_	40 ⁽³⁾	mA

Table 11. Current consumption

Values are based on typical application code executing from Flash memory, where the DMA is running in continuous mode, 1. the ADC is in continuous conversion, the timers are running to maximum counter values and communication IPs are in loopback or transmitting mode. IOs are unloaded. The maximum consumption can reach 110 mA during boot time M/LBIST (before reset).

2. f_{CPU} is measured in MHz

3. ADC and XOSC disabled, Includes regulator consumption for VDD_LV generation. Includes static I/O current with no pins toggling.

4.9 I/O pad electrical characteristics

4.9.1 I/O pad types

Table 12 describes the different pad type configurations.

Pad type	Description
Weak configuration	Provides a good compromise between transition time and low electromagnetic emission. Pad impedance is centered around 800 Ω
Medium configuration	Provides transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission. Pad impedance is centered around 200 Ω
Strong configuration	Provides fast transition speed; used for fast interface. Pad impedance is centered around 50 $\boldsymbol{\Omega}$
Very strong configuration	Provides maximum speed and controlled symmetric behavior for rise and fall transition. Used for fast interfaces requiring fine control of rising/falling edge jitter. Pad impedance is centered around 40 Ω
Input only pads	These pads are associated to ADC channels and the external 8-40 MHz crystal oscillator (XOSC) providing low input leakage

Symbol		с	Parameter	Conditions		Value		Unit
Symbol		C	Falameter	Conditions	Min	Тур	Max	Onit
				3.0 V < V _{DD_HV_IO} < 3.6 V C _L = 25 pF	_	_	37	
	с	D	Transition time output pin	3.0 V < V _{DD_HV_IO} < 3.6 V C _L = 50 pF	_	—	72	
t _{tr_m}	С	U	medium configuration	4.5 V < V _{DD_HV_IO} < 5.5 V C _L = 25 pF	_	_	25	ns
				4.5 V < V _{DD_HV_IO} < 5.5 V C _L = 50 pF	_	_	50	
+.	С	т	Difference between rise	3.0 V < V _{DD_HV_IO} < 3.6 V	—	—	40	%
^t SKEW_M	С	I	time and fall time	4.5 V < V _{DD_HV_IO} < 5.5 V	_	—	28	/0

Table 16. Medium configuration I/O output characteristics^{(1),(2)} (continued)

1. The above mentioned values are different for M/W (Medium/Weak) pads.

2. Please refer to Table 19: I/O output characteristics for pads 4, 9, 11, 55, 56

Symbo		с	Parameter	Conditions		Value		Unit
Symbo	1	C	Falameter	Conditions	Min	Тур	Max	Onit
P	с	Р	PMOS output impedance	3.0 V < V _{DD_HV_IO} < 3.6 V Push pull, I _{OH} < 6 mA	_	_	90	Ω
R _{OH_S}	С	$ \begin{array}{c c} P & \text{strong configuration} \\ & 4.5 V < V_{DD_HV_IO} < 5.5 V \\ & Push pull, I_{OH} < 8 mA \\ \end{array} $			_	75	52	
В	с	Р	NMOS output impedance	3.0 V < V _{DD_HV_IO} < 3.6 V Push pull, I _{OL} < 6 mA	_	_	90	Ω
R _{OL_S}	С	Г	strong configuration	$4.5 V < V_{DD_HV_IO} < 5.5 V$ Push pull, I _{OL} < 8 mA	_	_	75	52
				3.0 V < V _{DD_HV_IO} < 3.6 V C _L = 25 pF	_	_	25	
£	с	т	Output frequency strong	3.0 V < V _{DD_HV_IO} < 3.6 V C _L = 50 pF	_	_	12.5	MHz
f _{max_S}	С		configuration	4.5 V < V _{DD_HV_IO} < 5.5 V C _L = 25 pF	_	_	50	
				4.5 V < V _{DD_HV_IO} < 5.5 V C _L = 50 pF	_	_	25	

Table 17. Strong configuration I/O output characteristics

Symbol							
		Parameter	Conditions ⁽¹⁾	Min	Тур	Мах	Unit
C _{V1V2}	SR	EMC cap to be placed on every 1.2V pin	V _{DD_LV} /V _{SS} pair	50	100	135	nF
C _{DECBV}	SR	Decoupling capacitance ballast	V _{DD_HV_IO} /V _{SS_LV} pair	1.1	2.2 ⁽⁴⁾	3	μF

Table 21. Voltage regulator electrical characteristics (continued)

1. V_{DD} = 5.0 V \pm 10%, T_A = -40 / 125 °C, unless otherwise specified.

2. All values need to be confirmed during device validation.

3. Recommended X7R or X5R ceramic -43% / +35% variation, 20% tolerance and 12.5% temperature.

4. Recommended X7R or X5R ceramic -43% / +35% variation, 20% tolerance and 12.5% temperature.

4.12 **PMU** monitor specifications

4.12.1 Nomenclature

- **POR** stands for Power On Reset. The POR circuit manages the reset from very low voltage up to its threshold. Cannot be disabled.
- MVD stands for Minimum Voltage Detector. It cannot be disabled by the user and generate a destructive Reset.
- LVD stands for Low Voltage Detector. It can be disabled by the user.
- **HVD** stands for High Voltage Detector. It can be disabled by the user.
- **UVD** stands for Upper Voltage Detector. It cannot be disabled by the user and generate a destructive reset.

Domain monitor	Voltage	Name	Segment	Lower limit	Upper limit	
	Power On Reset	POR041	Core	0.39 V	0.95 V	
		MVD098	Core	1.005 V	1.055 V	
	Low	1010 0090	Flash	1.005 V	1.055 V	
1.2 V		LVD108	Core	1.085 V	1.137 V	
		HVD140	Core	1.340 V	1.400 V	
	High	UVD145	Core	1.379 V	1.441 V	
		0143	Flash	1.379 V	1.441 V	
	Power On Reset	POR200	Core	1.750 V	2.400 V	
		MVD270	Core	2.694 V	2.826 V	
			Flash	2.694 V	2.826 V	
3.3 V	Low		Core	2.881 V	2.999 V	
		LVD290	Flash	2.881 V	2.999 V	
			ADC	2.881 V	2.999 V	
	High	HVD400	Core	3.660 V	3.840 V	

Table 22. Trimmed (PVT) value	Table 2	22. Trim	med (PV	/T) values
-------------------------------	---------	----------	---------	------------

Domain monitor	Voltage	Name	Segment	Lower limit	Upper limit		
5 V	Low	LVD400	ADC	4.128 V	4.332 V		
5 V	High	UVD600	Core	5.684 V	5.920 V		

Table 22. Trimmed (PVT) values (continued)

4.12.2 Power up/down sequencing

For proper device functioning please adhere to following power sequence:

 $V_{DD_HV_OSC_PMC}$ supply should always be greater than or equal to $V_{DD_HV_IO}$ supply (even during ramping up).

 $V_{DD\ HV\ ADC\ TSENS}$ supply should always be greater than or equal to $V_{REFH\ ADC}$ supply.

4.13 Platform Flash controller electrical characteristics

Max Flash operating Frequency (MHz) ⁽²⁾	RWSC
20	0b000
40	0b001
64	0b010
80	0b011

Table 23. RWSC settings⁽¹⁾

1. RWSC is a field in the Flash memory of PFCR register used to specify the wait states for address pipelining and read/write accesses.

2. Maximum frequencies (FM modulation up to 2% could be enabled additionally).

4.14 Flash memory electrical characteristics

Table 24 shows the program and erase characteristics.

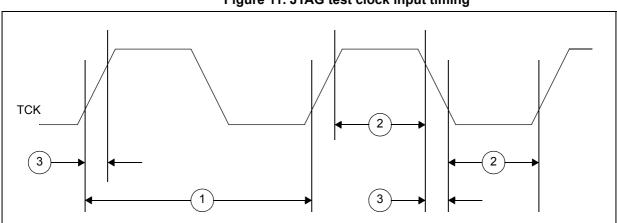
				Value		Lifetime					
Symbol	Characteristics ⁽¹⁾	Typ		Initi	al max		Typical	-	etime ax ⁽⁴⁾		Unit
		Тур (2)	С	25 °C (5)	All temp (6)	с	end of life ⁽³⁾	<u>≤</u> 1 K cycles	<u><</u> 100 K cycles	С	
t _{dwprogram}	Double Word (64 bits) program time [Packaged part]	38	с	150	_	_	94	500		С	μs
t _{pprogram}	Page (256 bits) program time	78	С	300	—	—	214	1(000	С	μs
t _{pprogrameep}	Page (256 bits) program time EEPROM (partition 1) [Packaged part]	90	с	330	_		250	1(000	С	μs

Table 24. Flash memory program and erase specifications

		Value										
Symbol	Characteristics ⁽¹⁾	Typ		Initial max			Typical	Lifetime max ⁽⁴⁾			Unit	
Typ (2) C	25 °C (5)	All temp (6)	с	end of life ⁽³⁾	<u>≤</u> 1 K cycles	<u><</u> 100 K cycles	С	• · · · ·				
t _{AICOP}	Array Integrity Check (0.5 MB, proprietary) ⁽¹¹⁾	0.75	Т	_	—	_	_	_	_	_	s	
t _{MR0S}	Margin Read (0.5 MB, sequential)	25	т	_	_	_	_	_	_	_	ms	
t _{MR128KS}	Margin Read (128 KB, sequential)	6.26	т	_	_	_	_	_	_	_	ms	
t _{AABT}	Array Integrity Check Abort Latency	_	—	_	_	_	_	10		_	μs	
t _{MABT}	Margin Read Abort Latency	_	—	_			_	10			μs	

Table 24. Flash memory program and erase specifications (continued)

1. Actual hardware programming times; this does not include software overhead.


2. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.

- Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations. These values are characteristic, but not tested.
- 4. Lifetime maximum program & erase times apply across the voltages and temperatures and occur after the specified number of program/erase cycles. These maximum values are characterized but not tested or guaranteed.
- 5. Initial factory condition: < 100 program/erase cycles, 20 $^{\circ}C$ < T_J < 30 $^{\circ}C$ junction temperature, and nominal (± 2%) supply voltages. These values are verified at production testing.
- Initial maximum "All temp" program and erase times provide guidance for time-out limits used in the factory and apply for less than or equal to 100 program or erase cycles, -40 °C < T_J < 150 °C junction temperature, and nominal (± 2%) supply voltages. These values are verified at production testing.
- 7. Rate computed based on 128K sectors.
- 8. Only code sectors, not including EEPROM.
- 9. Time between erase suspend resume and next erase suspend.
- 10. Timings guaranteed by design.
- 11. AIC is done using system clock, thus all timing is dependant on system frequency and number of wait states. Timing in the table is calculated at 80 MHz.

All the Flash operations require the presence of the system clock for internal synchronization. About 50 synchronization cycles are needed: this means that the timings of the previous table can be longer if a low frequency system clock is used.

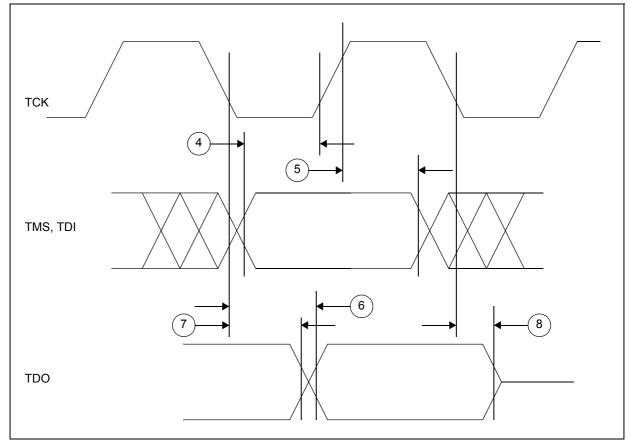

Symbol	Characteristics ⁽¹⁾		Valu	ie		Unit
Symbol	Characteristics	Min	С	Тур	С	Onic
N _{CER16K}	16 KB CODE Flash endurance	10	—	100	—	Kcycles
N _{CER32K}	32 KB CODE Flash endurance	10	—	100	—	Kcycles
N _{CER64K}	64 KB CODE Flash endurance	10	_	100	_	Kcycles

Figure 11. JTAG test clock input timing

Figure 12. JTAG test access port timing

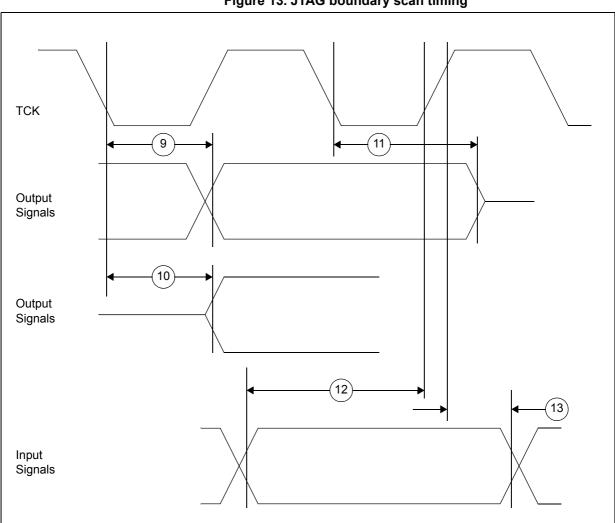


Figure 13. JTAG boundary scan timing

DSPI CMOS master mode timing 4.21

Classic timing 4.21.1

Table 35. DSPI CMOS master classic timing (full duplex and output only) – MTFE = $0^{(1)}$

#	Symbol		с	Characteristic	Condition		Value ⁽²⁾		Unit
					Pad drive ⁽³⁾	Load (C _L)	Min	Мах	onit
1	t _{SCK}	сс	D	SCK cycle time	SCK drive strength			<u>.</u>	
					Very strong	25 pF	75	—	ns
2	t _{CSC}	сс	D	PCS to SCK delay	SCK and PCS drive strength				
2					Very strong	25 pF	50	_	ns

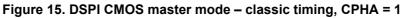
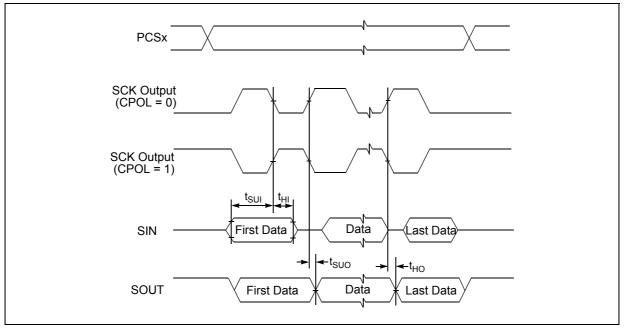




Figure 14. DSPI CMOS master mode – classic timing, CPHA = 0

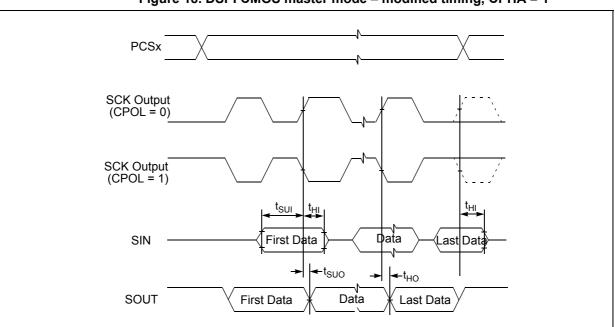
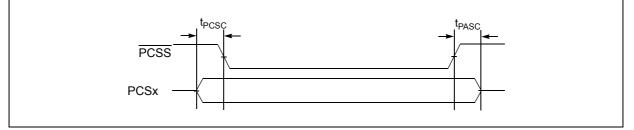



Figure 18. DSPI CMOS master mode – modified timing, CPHA = 1

Figure 19. DSPI PCS strobe (PCSS) timing (master mode)

Package information

	Dimensions										
Ref.		Millimeters		Inches ⁽¹⁾							
	Тур.	Min.	Max.	Тур.	Min.	Max.					
А	_	_	1.20	—	_	0.0472					
A1	_	0.05	0.15	_	0.0020	0.0059					
A2	1.00	0.95	1.05	0.0394	0.0374	0.0413					
b	0.22	0.17	0.27	0.0087	0.0067	0.0106					
С	_	0.09	0.20	_	0.0035	0.0079					
D	12.00	11.80	12.20	0.4724	0.4646	0.4803					
D1	10.00	9.80	10.20	0.3937	0.3858	0.4016					
D2	4.50	4.35	4.65	0.1772	0.1713	0.1831					
D3	7.50	_	_	0.2953	—						
Е	12.00	11.80	12.20	0.4724	0.4646	0.4803					
E1	10.00	9.80	10.20	0.3937	0.3858	0.4016					
E2	4.5	4.35	4.65	0.1772	0.1713	0.1831					
E3	7.50	_	_	0.2953	_						
е	0.50	_	_	0.0197	—	_					
L	0.60	0.45	0.75	0.0236	0.0177	0.0295					
L1	1.00	_	—	0.0394	-	—					
k	3.5°	0°	7°	3.5°	0°	7°					
CCC	_	—	0.08	-	_	0.0031					

Table 37. eTQFP64 package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Note: TQFP stands for Thin Quad Flat Package.

5.2 eTQFP100 package information

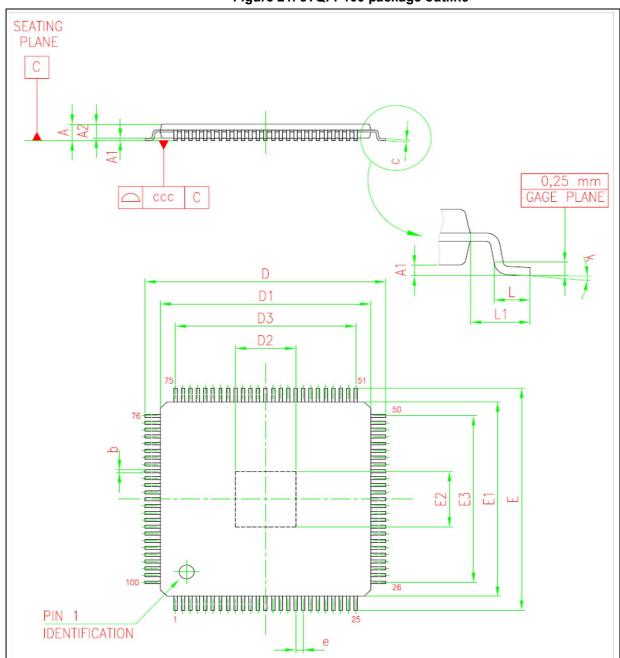


Figure 21. eTQFP100 package outline

DocID024492 Rev 6

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID024492 Rev 6

