E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f629-i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	7
2.0	Memory Organization	9
3.0	GPIO Port	21
4.0	Timer0 Module	. 29
5.0	Timer1 Module with Gate Control	. 32
6.0	Comparator Module	. 37
7.0	Analog-to-Digital Converter (A/D) Module (PIC12F675 only)	43
8.0	Data EEPROM Memory	49
9.0	Special Features of the CPU	
10.0	Instruction Set Summary	71
11.0	Development Support	81
12.0	Electrical Specifications	85
13.0	DC and AC Characteristics Graphs and Tables	107
14.0	Packaging Information	117
Apper	ndix A: Data Sheet Revision History	127
Apper	ndix B: Device Differences	127
Apper	ndix C: Device Migrations	128
Apper	ndix D: Migrating from other PIC [®] Devices	128
Index		129
On-Li	ne Support	133
Syste	ns Information and Upgrade Hot Line	133
Reade	er Response	134
Produ	ct Identification System	135

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

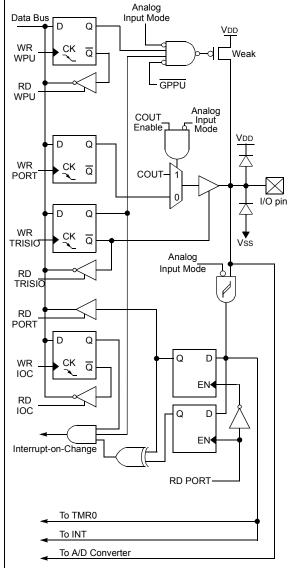
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

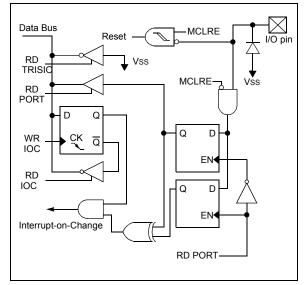

Register on our web site at www.microchip.com to receive the most current information on all of our products.

3.3.3 GP2/AN2/T0CKI/INT/COUT

Figure 3-2 shows the diagram for this pin. The GP2 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D (PIC12F675 only)
- the clock input for TMR0
- an external edge triggered interrupt
- · a digital output from the comparator

FIGURE 3-2: BLOCK DIAGRAM OF GP2



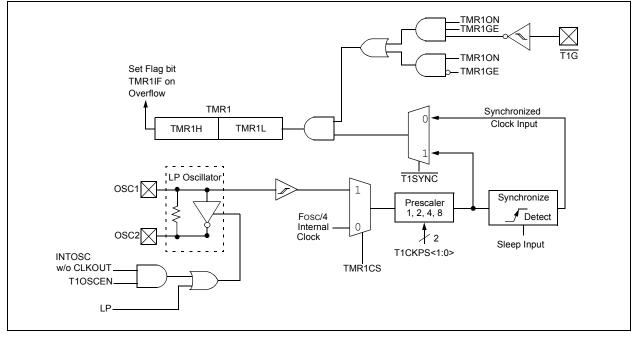
3.3.4 GP3/MCLR/VPP

Figure 3-3 shows the diagram for this pin. The GP3 pin is configurable to function as one of the following:

- a general purpose input
- as Master Clear Reset

FIGURE 3-3: BLOCK DIAGRAM OF GP3

5.0 TIMER1 MODULE WITH GATE CONTROL


The PIC12F629/675 devices have a 16-bit timer. Figure 5-1 shows the basic block diagram of the Timer1 module. Timer1 has the following features:

- 16-bit timer/counter (TMR1H:TMR1L)
- · Readable and writable
- Internal or external clock selection
- Synchronous or asynchronous operation
- Interrupt on overflow from FFFFh to 0000h
- Wake-up upon overflow (Asynchronous mode)
- Optional external enable input (T1G)
- · Optional LP oscillator

FIGURE 5-1: TIMER1 BLOCK DIAGRAM

The Timer1 Control register (T1CON), shown in Register 5.1, is used to enable/disable Timer1 and select the various features of the Timer1 module.

Note: Additional information on timer modules is available in the PIC[®] Mid-Range Reference Manual, (DS33023).

5.4 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 5.4.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note: The ANSEL (9Fh) and CMCON (19h) registers must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'. The ANSEL register is defined for the PIC12F675.

5.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Examples 12-2 and 12-3 in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023) show how to read and write Timer1 when it is running in Asynchronous mode.

5.5 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins OSC1 (input) and OSC2 (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator rated up to 37 kHz. It will continue to run during Sleep. It is primarily intended for a 32 kHz crystal. Table 9-2 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is shared with the system LP oscillator. Thus, Timer1 can use this mode only when the system clock is derived from the internal oscillator. As with the system LP oscillator, the user must provide a software time delay to ensure proper oscillator start-up.

While enabled, TRISIO4 and TRISIO5 are set. GP4 and GP5 read '0' and TRISIO4 and TRISIO5 are read '1'.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to enabling Timer1.

5.6 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To setup the timer to wake the device:

- Timer1 must be on (T1CON<0>)
- TMR1IE bit (PIE1<0>) must be set
- PEIE bit (INTCON<6>) must be set

The device will wake-up on an overflow. If the GIE bit (INTCON<7>) is set, the device will wake-up and jump to the Interrupt Service Routine on an overflow.

IADEL (ABEE 5-1. REGISTERS ASSOCIATED WITH HIMERTAS A HIMER COUNTER												
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		allo	e on other sets
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000	0000	0000	000u
0Ch	PIR1	EEIF	ADIF	_	—	CMIF	—	_	TMR1IF	00	00	00	00
0Eh	TMR1L	Holding	g Register f	or the Least	t Significant	Byte of the	16-bit TM	R1 Registe	r	XXXX	XXXX	uuuu	uuuu
0Fh	TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register									XXXX	XXXX	uuuu	uuuu
10h	T1CON	_	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	-000	0000	-uuu	uuuu
8Ch	PIE1	EEIE	ADIE	_	_	CMIE	_	_	TMR1IE	00	00	00	00

TABLE 5-1: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

_ _ _ _ _ _

- -----

REGISTER 7-	1: ADCO	N0: A/D CON	TROL REG	ISTER (ADD	RESS: 1Fh)		
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	VCFG	—		CHS1	CHS0	GO/DONE	ADON
bit 7							bit C
Legend:							
R = Readable b	bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own
bit 7	ADFM: A/D R 1 = Right just 0 = Left justifi		Select bit				
bit 6	VCFG: Voltag 1 = VREF pin 0 = VDD	e Reference bi	t				
bit 5-4	Unimplemen	ted: Read as 'o)'				
bit 3-2	CHS1:CHS0:	Analog Chann	el Select bits				
	00 = Channel 01 = Channel 10 = Channel 11 = Channel	01 (AN1) 02 (AN2)					
bit 1	GO/DONE: A	/D Conversion	Status bit				
	This bit is	ersion cycle in p automatically c ersion complete	leared by ha	rdware when th		version cycle. ion has complete	ed.
bit 0	ADON: A/D C	conversion State	us bit				
		erter module is erter is shut-off		es no operating	g current		

8.1 EEADR

The EEADR register can address up to a maximum of 128 bytes of data EEPROM. Only seven of the eight bits in the register (EEADR<6:0>) are required. The MSb (bit 7) is ignored.

The upper bit should always be '0' to remain upward compatible with devices that have more data EEPROM memory.

8.2 EECON1 and EECON2 Registers

EECON1 is the control register with four low-order bits physically implemented. The upper four bits are non-implemented and read as '0's.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion

of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit, clear it, and rewrite the location. The data and address will be cleared, therefore, the EEDATA and EEADR registers will need to be re-initialized.

Interrupt flag bit EEIF in the PIR1 register is set when write is complete. This bit must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence.

REGISTER 0-). LLCO		CONTROL	REGISTER	(ADDRESS. 3		
U-0	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0
—		_	—	WRERR	WREN	WR	RD
bit 7							bit 0

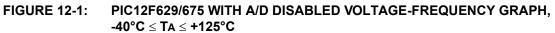
REGISTER 8-3: EECON1: EEPROM CONTROL REGISTER (ADDRESS: 9Ch)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	Unimplemented: Read as '0'
bit 3	WRERR: EEPROM Error Flag bit
	 1 = A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during normal operation or BOD detect) 0 = The write operation completed
bit 2	WREN: EEPROM Write Enable bit
	1 = Allows write cycles
	0 = Inhibits write to the data EEPROM
bit 1	WR: Write Control bit
	 1 = Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit can only be set, not cleared, in software.)
	0 = Write cycle to the data EEPROM is complete
bit 0	RD: Read Control bit
	 1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set, not cleared, in software).
	0 = Does not initiate an EEPROM read

8.7 Data EEPROM Operation During Code Protect

Data memory can be code protected by programming the CPD bit to '0'.


When the data memory is code protected, the CPU is able to read and write data to the data EEPROM. It is recommended to code protect the program memory when code protecting data memory. This prevents anyone from programming zeroes over the existing code (which will execute as NOPS) to reach an added routine, programmed in unused program memory, which outputs the contents of data memory. Programming unused locations to '0' will also help prevent data memory code protection from becoming breached.

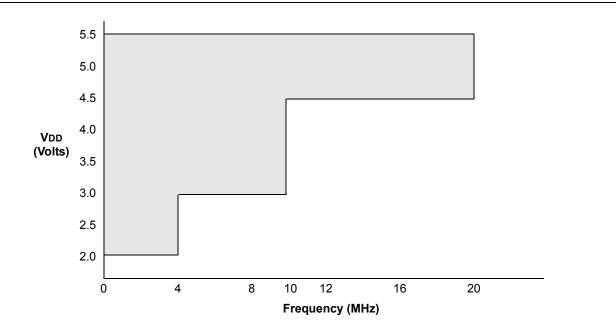
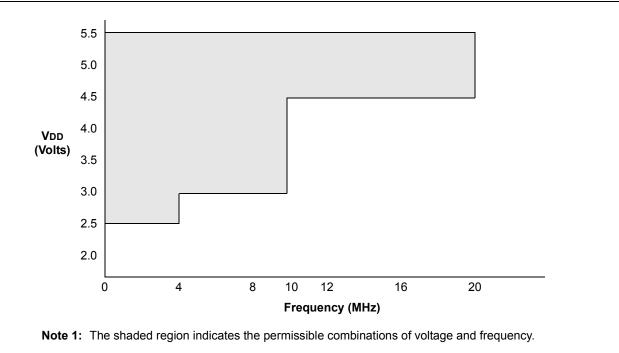

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on	Value oth Res	ner
0Ch	PIR1	EEIF	ADIF	_		CMIF	_		TMR1IF	00	00	00	00
9Ah	EEDATA	EEPROM	I Data Re	gister						0000	0000	0000	0000
9Bh	9Bh EEADR — EEPROM Address Register								-000	0000	-000	0000	
9Ch	EECON1	_	— — — WRERR WREN WR RD							x000		q000	
9Dh	EECON2 ⁽¹⁾	EEPROM	I Control F	Register 2									

TABLE 8-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

 $\label{eq:logarder} \mbox{Legend: x = unknown, u = unchanged, - = unimplemented read as `0', q = value depends upon condition. Shaded cells are not used by data EEPROM module.}$


Note 1: EECON2 is not a physical register.

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

12.6 DC Characteristics: PIC12F629/675-I (Industrial), PIC12F629/675-E (Extended)

DC CHA	ARACT	ERISTICS			-40°C ≤ 1	ГА ≤ +8	s otherwise stated) 5°C for industrial 25°C for extended
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Input Low Voltage					
	VIL	I/O ports					
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \le VDD \le 5.5V$
D030A			Vss		0.15 Vdd	V	Otherwise
D031		with Schmitt Trigger buffer	Vss	_	0.2 Vdd	V	Entire range
D032		MCLR, OSC1 (RC mode)	Vss		0.2 Vdd	V	
D033		OSC1 (XT and LP modes)	Vss		0.3	V	(Note 1)
D033A		OSC1 (HS mode)	Vss	_	0.3 Vdd	V	(Note 1)
		Input High Voltage					
	Vін	I/O ports		_			
D040		with TTL buffer	2.0		Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			(0.25 VDD+0.8)		Vdd	V	otherwise
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd		entire range
D042		MCLR	0.8 Vdd		Vdd	V	
D043		OSC1 (XT and LP modes)	1.6		Vdd	V	(Note 1)
D043A		OSC1 (HS mode)	0.7 Vdd	—	Vdd	V	(Note 1)
D043B		OSC1 (RC mode)	0.9 Vdd	—	Vdd	V	
D070	Ipur	GPIO Weak Pull-up Current	50*	250	400*	μA	VDD = 5.0V, VPIN = VSS
		Input Leakage Current ⁽³⁾					
D060	lı∟	I/O ports	—	± 0.1	± 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
D060A		Analog inputs	—	± 0.1	± 1	μA	$VSS \le VPIN \le VDD$
D060B		VREF	—	± 0.1	± 1	μA	$VSS \le VPIN \le VDD$
D061		MCLR ⁽²⁾	—	± 0.1	± 5	μA	$VSS \le VPIN \le VDD$
D063		OSC1	—	± 0.1	± 5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
		Output Low Voltage					
D080	Vol	I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V (Ind.)
D083		OSC2/CLKOUT (RC mode)	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V (Ind.) IOL = 1.2 mA, VDD = 4.5V (Ext.)
		Output High Voltage					
D090	Vон	I/O ports	Vdd - 0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V (Ind.)
D092		OSC2/CLKOUT (RC mode)	Vdd - 0.7	_	—	V	ІОН = -1.3 mA, VDD = 4.5V (Ind.) ІОН = -1.0 mA, VDD = 4.5V (Ext.)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

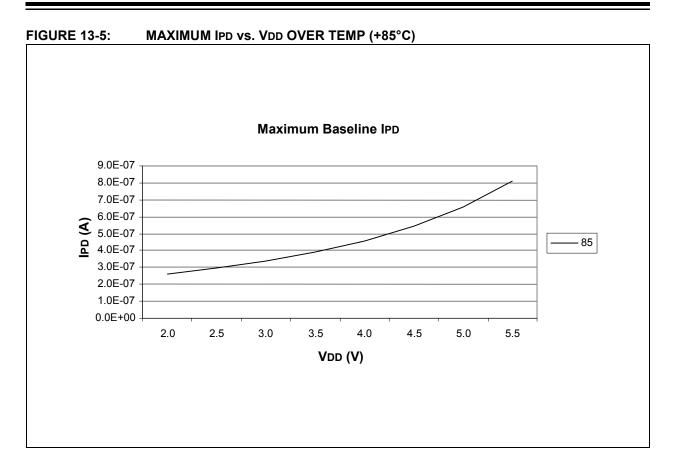
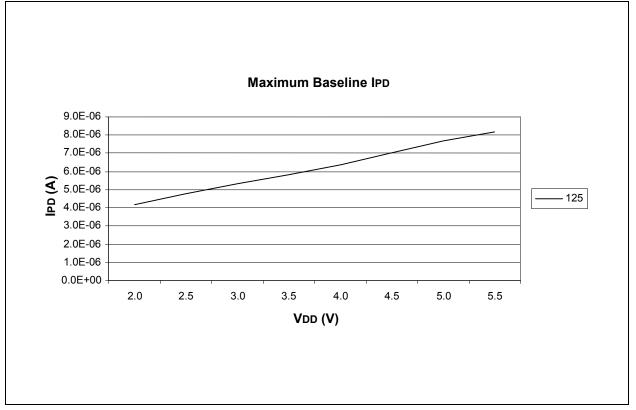



FIGURE 13-6: MAXIMUM IPD vs. VDD OVER TEMP (+125°C)

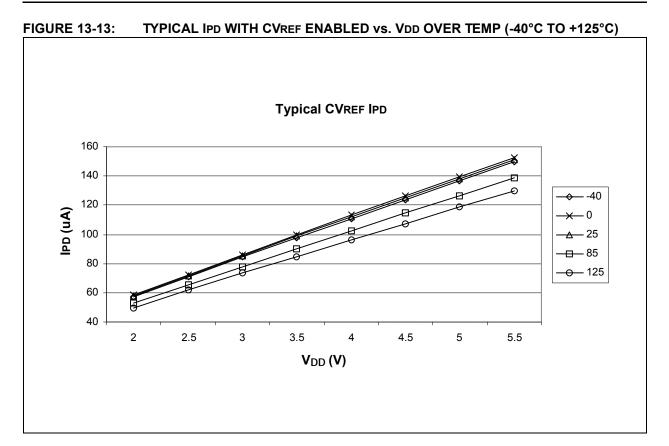
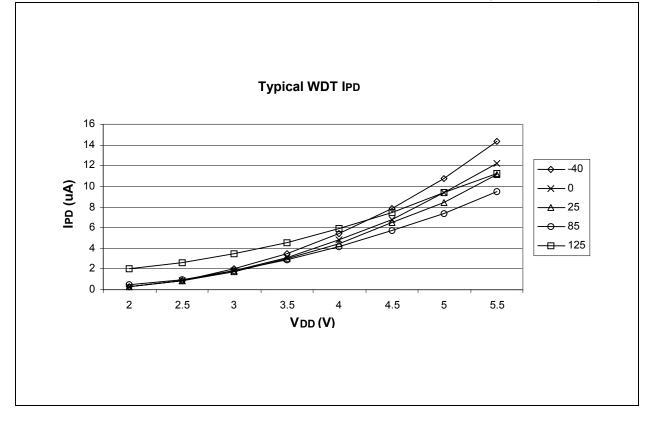
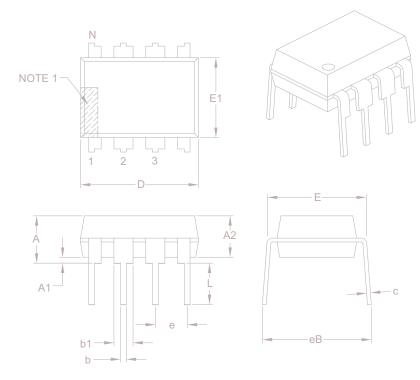



FIGURE 13-14: TYPICAL IPD WITH WDT ENABLED vs. VDD OVER TEMP (-40°C TO +125°C)



14.2 Package Details

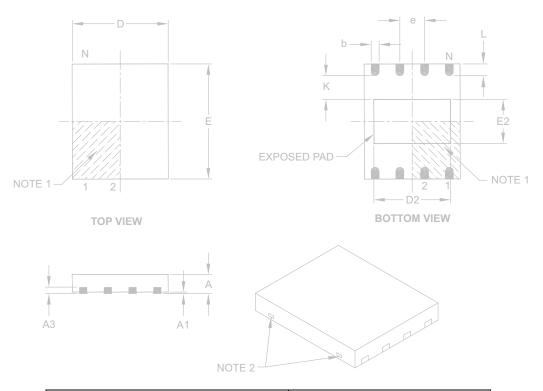
The following sections give the technical details of the packages.

8-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		8	
Pitch	e		.100 BSC	
Top to Seating Plane	A	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.348	.365	.400
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

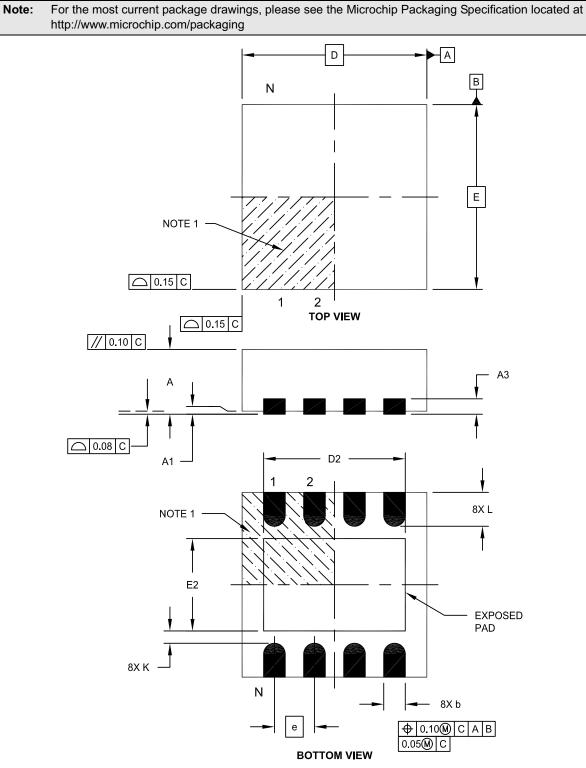

- 1. Pin 1 visual index feature may vary, but must be located with the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B

8-Lead Plastic Dual Flat, No Lead Package (MF) – 6x5 mm Body [DFN-S]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


	Units		MILLIMETERS			
Dimer	nsion Limits	MIN	NOM	MAX		
Number of Pins	Ν		8			
Pitch	е		1.27 BSC			
Overall Height	Α	0.80	0.85	1.00		
Standoff	A1	0.00	0.01	0.05		
Contact Thickness	A3	0.20 REF				
Overall Length	D	5.00 BSC				
Overall Width	E		6.00 BSC			
Exposed Pad Length	D2	3.90	4.00	4.10		
Exposed Pad Width	E2	2.20	2.30	2.40		
Contact Width	b	0.35	0.40	0.48		
Contact Length	L	0.50	0.60	0.75		
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-122B

8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]

Microchip Technology Drawing C04-131E Sheet 1 of 2

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A

This is a new data sheet.

Revision B

Added characterization graphs.

Updated specifications.

Added notes to indicate Microchip programmers maintain all Calibration bits to factory settings and the PIC12F675 ANSEL register must be initialized to configure pins as digital I/O.

Updated MLF-S package name to DFN-S.

Revision C

Revision D (01/2007)

Updated Package Drawings; Replace PICmicro with PIC; Revised Product ID example (b).

Revision E (03/2007)

Replaced Package Drawings (Rev. AM); Replaced Development Support Section.

Revision F (09/2009)

Updated Registers to new format; Added information to the "Package Marking Information" (8-Lead DFN) and "Package Details" sections (8-Lead Dual Flat, No Lead Package (MD) 4X4X0.9 mm Body (DFN)); Added Land Patterns for SOIC (SN) and DFN-S (MF) packages; Updated Register 3-2; Added MD Package to the Product identification System chapter; Other minor corrections.

Revision G (03/2010)

Updated the Instruction Set Summary section, adding pages 76 and 77.

APPENDIX B: DEVICE DIFFERENCES

The differences between the PIC12F629/675 devices listed in this data sheet are shown in Table B-1.

TABLE B-1: DEVICE DIFFERENCES

Feature	PIC12F629	PIC12F675
A/D	No	Yes

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com