

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f629t-i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	I	1		1	1	r		1	1	-	1
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 0											
00h	INDF ⁽¹⁾	Addressing	this Location	uses Conte	nts of FSR to	Address Dat	ta Memory			0000 0000	20,61
01h	TMR0	Timer0 Mod	ule's Registe	er						xxxx xxxx	29
02h	PCL	Program Co	unter's (PC)	Least Signifi	cant Byte					0000 0000	19
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	то	PD	Z	DC	С	0001 1xxx	14
04h	FSR	Indirect Data	a Memory Ac	Idress Pointe	er	•		•		xxxx xxxx	20
05h	GPIO	_	—	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0	xx xxxx	21
06h	-	Unimplemen	nted							—	_
07h	_	Unimpleme	nted							—	_
08h	—	Unimpleme	nted							_	_
09h	—	Unimpleme	nted							—	_
0Ah	PCLATH			_	Write Buffer	for Upper 5	bits of Progra	am Counter		0 0000	19
0Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	15
0Ch	PIR1	EEIF	ADIF	—	—	CMIF	—	—	TMR1IF	0000	17
0Dh	—	Unimpleme	nted							—	_
0Eh	TMR1L	Holding Reg	jister for the	Least Signifi	cant Byte of t	he 16-bit Tim	ner1			xxxx xxxx	32
0Fh	TMR1H	Holding Reg	jister for the	Most Signific	ant Byte of th	ne 16-bit Time	er1			xxxx xxxx	32
10h	T1CON	_	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	-000 0000	35
11h	—	Unimpleme	nted							—	_
12h	—	Unimpleme	nted							—	_
13h	—	Unimpleme	nted							—	_
14h	—	Unimpleme	nted							—	_
15h	—	Unimpleme	nted							—	_
16h	—	Unimplemen	nted							—	—
17h	—	Unimplemen	nted							—	—
18h	—	Unimplemen	nted							—	—
19h	CMCON	—	COUT	—	CINV	CIS	CM2	CM1	CM0	-0-0 0000	38
1Ah	—	Unimplemen	nted							—	—
1Bh	—	Unimplemented							—	—	
1Ch	—	Unimplemented							—	—	
1Dh	—	Unimplemen	Unimplemented							—	_
1Eh	ADRESH ⁽³⁾	Most Signifi	Nost Significant 8 bits of the Left Shifted A/D Result or 2 bits of the Right Shifted Result							xxxx xxxx	44
1Fh	ADCON0 ⁽³⁾	ADFM	VCFG	_	_	CHS1	CHS0	GO/DONE	ADON	00 0000	45,61

TABLE 2-1.	SPECIAL	FUNCTION	REGISTERS	SUMMARY
IADLL 2-1.	SFLUIAL		NEGISTENS	SUMMART

Legend: — = unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: This is not a physical register.

2: These bits are reserved and should always be maintained as '0'.

3: PIC12F675 only.

2.3 PCL and PCLATH

The Program Counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-3 shows the two situations for the loading of the PC. The upper example in Figure 2-3 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-3 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the PC (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note, *"Implementing a Table Read"* (AN556).

2.3.2 STACK

The PIC12F629/675 family has an 8-level deep x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no Status bits to indicate Stack Overflow or Stack Underflow conditions.

2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

3.3 Pin Descriptions and Diagrams

Each GPIO pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comparator or the A/D, refer to the appropriate section in this Data Sheet.

3.3.1 GP0/AN0/CIN+

Figure 3-1 shows the diagram for this pin. The GP0 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D (PIC12F675 only)
- an analog input to the comparator

3.3.2 GP1/AN1/CIN-/VREF

Figure 3-1 shows the diagram for this pin. The GP1 pin is configurable to function as one of the following:

- as a general purpose I/O
- an analog input for the A/D (PIC12F675 only)
- · an analog input to the comparator
- a voltage reference input for the A/D (PIC12F675 only)

FIGURE 3-1: BLOCK DIAGRAM OF GP0 AND GP1 PINS

NOTES:

4.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- · Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 4-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

Note:	Additional	information	on	the	Timer0	
	module is available in the PIC® Mid-Range					
	Reference Manual, (DS33023).					

4.1 Timer0 Operation

Timer mode is selected by clearing the T0CS bit (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit (OPTION_REG<5>). In this mode, the Timer0 module will increment either on every rising or falling edge of pin GP2/T0CKI. The incrementing edge is determined by the source edge (T0SE) control bit (OPTION_REG<4>). Clearing the T0SE bit selects the rising edge.

Note:	Counter mode requirements.	has specifi Additional	c external clock information on			
	these requirements is available in the PIC®					
	Mid-Range	Reference	e Manual,			
	(DS33023).					

4.2 Timer0 Interrupt

A Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) must be cleared in software by the Timer0 module Interrupt Service Routine before reenabling this interrupt. The Timer0 interrupt cannot wake the processor from Sleep since the timer is shut-off during Sleep.

6.0 COMPARATOR MODULE

The PIC12F629/675 devices have one analog comparator. The inputs to the comparator are multiplexed with the GP0 and GP1 pins. There is an on-chip Comparator Voltage Reference that can also be applied to an input of the comparator. In addition, GP2 can be configured as the comparator output.

The Comparator Control Register (CMCON), shown in Register 6-1, contains the bits to control the comparator.

REGISTER 6-1: CMCON: COMPARATOR CONTROL REGISTER (ADDRESS: 19h)

U-0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	COUT	—	CINV	CIS	CM2	CM1	CM0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	COUT: Comparator Output bit
	When CINV = 0:
	1 = VIN + > VIN -
	0 = VIN+ < VIN-
	When CINV = 1:
	1 = VIN + < VIN-
	0 = VIN + > VIN -
bit 5	Unimplemented: Read as '0'
bit 4	CINV: Comparator Output Inversion bit
	1 = Output inverted
	0 = Output not inverted
bit 3	CIS: Comparator Input Switch bit
	When CM2:CM0 = 110 or 101:
	1 = VIN- connects to CIN+
	0 = VIN- connects to CIN-
bit 2-0	CM2:CM0: Comparator Mode bits
	Figure 6-2 shows the Comparator modes and CM2:CM0 bit settings

7.3 A/D Operation During Sleep

The A/D converter module can operate during Sleep. This requires the A/D clock source to be set to the internal RC oscillator. When the RC clock source is selected, the A/D waits one instruction before starting the conversion. This allows the SLEEP instruction to be executed, thus eliminating much of the switching noise from the conversion. When the conversion is complete, the GO/DONE bit is cleared, and the result is loaded into the ADRESH:ADRESL registers. If the A/D interrupt is enabled, the device awakens from Sleep. If the A/D interrupt is not enabled, the A/D module is turned off, although the ADON bit remains set. When the A/D clock source is something other than RC, a SLEEP instruction causes the present conversion to be aborted, and the A/D module is turned off. The ADON bit remains set.

7.4 Effects of Reset

A device Reset forces all registers to their Reset state. Thus the A/D module is turned off and any pending conversion is aborted. The ADRESH:ADRESL registers are unchanged.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
05h	GPIO		—	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0	xx xxxx	uu uuuu
0Bh, 8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 000u
0Ch	PIR1	EEIF	ADIF			CMIF	_	—	TMR1IF	00 00	00 00
1Eh	ADRESH	Most Signif	icant 8 bits c	f the Left Sh	ifted A/D res	sult or 2 bits	of the Right	Shifted Re	esult	XXXX XXXX	սսսս սսսս
1Fh	ADCON0	ADFM	VCFG	-	-	CHS1	CHS0	GO	ADON	00 0000	00 0000
85h	TRISIO	_	_	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISI00	11 1111	11 1111
8Ch	PIE1	EEIE	ADIE	-	-	CMIE	—	—	TMR1IE	00 00	00 00
9Eh	ADRESL	Least Signi	east Significant 2 bits of the Left Shifted A/D Result or 8 bits of the Right Shifted Result						uuuu uuuu		
9Fh	ANSEL		ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0	-000 1111	-000 1111

TABLE 7-2: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D converter module.

8.3 Reading the EEPROM Data Memory

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>), as shown in Example 8-1. The data is available, in the very next cycle, in the EEDATA register. Therefore, it can be read in the next instruction. EEDATA holds this value until another read, or until it is written to by the user (during a write operation).

EXAMPLE 8-1: DATA EEPROM READ

BSF	STATUS, RPO	;Bank 1
MOVLW	CONFIG_ADDR	;
MOVWF	EEADR	;Address to read
BSF	EECON1,RD	;EE Read
MOVF	EEDATA,W	;Move data to W

8.4 Writing to the EEPROM Data Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte, as shown in Example 8-2.

EXAMPLE 8-2: DATA EEPROM WRITE

	BSF	STATUS, RPO	;Bank 1
	BSF	EECON1,WREN	;Enable write
	BCF	INTCON,GIE	;Disable INTs
	MOVLW	55h	;Unlock write
ed	MOVWF	EECON2	;
quir	MOVLW	AAh	;
Sec	MOVWF	EECON2	;
	BSF	EECON1,WR	;Start the write
	BSF	INTCON,GIE	;Enable INTS

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. A cycle count is executed during the required sequence. Any number that is not equal to the required cycles to execute the required sequence will prevent the data from being written into the EEPROM.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware. After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. The EEIF bit (PIR<7>) register must be cleared by software.

8.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the data EEPROM should be verified (see Example 8-3) to the desired value to be written.

EXAMPLE 8-3: WRITE VERIFY

BCF	STATUS, RPO	;Bank 0
:		;Any code
BSF	STATUS, RPO	;Bank 1 READ
MOVF	EEDATA,W	;EEDATA not changed
		;from previous write
BSF	EECON1,RD	;YES, Read the
		;value written
XORWF	EEDATA,W	
BTFSS	STATUS,Z	;Is data the same
GOTO	WRITE_ERR	;No, handle error
:		;Yes, continue

8.5.1 USING THE DATA EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than specifications D120 or D120A. If this is not the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

8.6 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during:

- brown-out
- power glitch
- software malfunction

Occillator Configuration	Powe	er-up	Brown-o	Wake-up	
	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	from Sleep
XT, HS, LP	Tpwrt + 1024•Tosc	1024•Tosc	Tpwrt + 1024•Tosc	1024•Tosc	1024•Tosc
RC, EC, INTOSC	TPWRT	—	TPWRT	—	—

TABLE 9-3: TIME-OUT IN VARIOUS SITUATIONS

TABLE 9-4: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOD	то	PD	
0	u	1	1	Power-on Reset
1	0	1	1	Brown-out Detect
u	u	0	u	WDT Reset
u	u	0	0	WDT Wake-up
u	u	u	u	MCLR Reset during normal operation
u	u	1	0	MCLR Reset during Sleep

Legend: u = unchanged, x = unknown

TABLE 9-5: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets ⁽¹⁾
03h	STATUS	IRP	RP1	RPO	TO	PD	Z	DC	С	0001 1xxx	000q quuu
8Eh	PCON	_						POR	BOD	0x	uq

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. **Note 1:** Other (non Power-up) Resets include MCLR Reset, Brown-out Detect and Watchdog Timer Reset during normal operation.

TABLE 9-6: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during Sleep	000h	0001 Ouuu	uu
WDT Reset	000h	0000 uuuu	uu
WDT Wake-up	PC + 1	uuu0 Ouuu	uu
Brown-out Detect	000h	0001 luuu	10
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

NOTES:

12.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings†

Ambient temperature under bias	40 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3 to +6.5V
Voltage on MCLR with respect to Vss	0.3 to +13.5V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iık (Vı < 0 or Vı > VDD)	± 20 mA
Output clamp current, Iok (Vo < 0 or Vo >VDD)	± 20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by all GPIO	
Maximum current sourced all GPIO	

Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOI x IOL).

† NOTICE: Stresses above those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin, rather than pulling this pin directly to Vss.

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

12.5 DC Characteristics: PIC12F629/675-E (Extended)

		Standa Operat	ard Operat	t ing Co rature	nditions (unless otherwise stated) -40°C \leq TA \leq +125°C for extended						
Param	Davias Characteristics	Min	Turnt	Mox	Unito		Conditions				
No.	Device Characteristics	WIN	турт	wax	Units	Vdd	Note				
D020E	Power-down Base Current	—	0.00099	3.5	μA	2.0	WDT, BOD, Comparators, VREF,				
	(IPD)	_	0.0012	4.0	μA	3.0	and T1OSC disabled				
		—	0.0029	8.0	μA	5.0					
D021E		_	0.3	6.0	μA	2.0	WDT Current ⁽¹⁾				
		_	1.8	9.0	μA	3.0					
		—	8.4	20	μA	5.0					
D022E		—	58	70	μA	3.0	BOD Current ⁽¹⁾				
		—	109	130	μA	5.0					
D023E			3.3	10	μA	2.0	Comparator Current ⁽¹⁾				
		_	6.1	13	μA	3.0					
		—	11.5	24	μA	5.0					
D024E		_	58	70	μA	2.0	CVREF Current ⁽¹⁾				
		_	85	100	μA	3.0					
		—	138	165	μA	5.0					
D025E		_	4.0	10	μA	2.0	T1 Osc Current ⁽¹⁾				
		_	4.6	12	μA	3.0					
		_	6.0	20	μA	5.0					
D026E			0.0012	6.0	μA	3.0	A/D Current ⁽¹⁾				
		_	0.0022	8.5	μA	5.0					

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

12.6 DC Characteristics: PIC12F629/675-I (Industrial), PIC12F629/675-E (Extended)

DC CH#	ARACT	ERISTICS	Standard Opera Operating tempe	ating C erature	onditions -40°C ≤ -40°C ≤ 1	(unles Га ≤ +8 Га ≤ +1	s otherwise stated) 5°C for industrial 25°C for extended
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
		Input Low Voltage					
	VIL	I/O ports					
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \le VDD \le 5.5V$
D030A			Vss	—	0.15 Vdd	V	Otherwise
D031		with Schmitt Trigger buffer	Vss	_	0.2 Vdd	V	Entire range
D032		MCLR, OSC1 (RC mode)	Vss	_	0.2 VDD	V	
D033		OSC1 (XT and LP modes)	Vss	_	0.3	V	(Note 1)
D033A		OSC1 (HS mode)	Vss	_	0.3 Vdd	V	(Note 1)
		Input High Voltage					
	Vih	I/O ports		—			
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			(0.25 VDD+0.8)	—	Vdd	V	otherwise
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd		entire range
D042		MCLR	0.8 Vdd	—	Vdd	V	
D043		OSC1 (XT and LP modes)	1.6	—	Vdd	V	(Note 1)
D043A		OSC1 (HS mode)	0.7 Vdd	—	Vdd	V	(Note 1)
D043B		OSC1 (RC mode)	0.9 Vdd	_	Vdd	V	
D070	IPUR	GPIO Weak Pull-up Current	50*	250	400*	μA	VDD = 5.0V, VPIN = VSS
		Input Leakage Current ⁽³⁾					
D060	lı∟	I/O ports	—	± 0.1	± 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
D060A		Analog inputs	—	±0.1	± 1	μA	$VSS \le VPIN \le VDD$
D060B		VREF	—	±0.1	± 1	μA	$VSS \leq VPIN \leq VDD$
D061		MCLR ⁽²⁾	—	±0.1	± 5	μA	$VSS \leq VPIN \leq VDD$
D063		OSC1	—	± 0.1	± 5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
-		Output Low Voltage					
D080	Vol	I/O ports	_	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V (Ind.)
D083		OSC2/CLKOUT (RC mode)	—	—	0.6	V	Io∟ = 1.6 mA, VDD = 4.5V (Ind.) Io∟ = 1.2 mA, VDD = 4.5V (Ext.)
		Output High Voltage					
D090	Vон	I/O ports	Vdd - 0.7	_	_	V	ІОН = -3.0 mA, VDD = 4.5V (Ind.)
D092		OSC2/CLKOUT (RC mode)	Vdd - 0.7	—	-	V	ІОН = -1.3 mA, VDD = 4.5V (Ind.) ІОН = -1.0 mA, VDD = 4.5V (Ext.)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

12.8 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	t0	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (High-Impedance)	V	Valid
L	Low	Z	High-Impedance

FIGURE 12-4: LOAD CONDITIONS

TABLE 12-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT DETECT REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
30	ТмсL	MCLR Pulse Width (low)	2 TBD	— TBD	 TBD	μs ms	VDD = 5V, -40°C to +85°C Extended temperature
31	Тwdt	Watchdog Timer Time-out Period (No Prescaler)	10 10	17 17	25 30	ms ms	VDD = 5V, -40°C to +85°C Extended temperature
32	Tost	Oscillation Start-up Timer Period		1024Tosc		_	Tosc = OSC1 period
33*	TPWRT	Power-up Timer Period	28* TBD	72 TBD	132* TBD	ms ms	V _{DD} = 5V, -40°C to +85°C Extended Temperature
34	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset	_		2.0	μS	
	Bvdd	Brown-out Detect Voltage	2.025	_	2.175	V	
		Brown-out Hysteresis	TBD	—	—	—	
35	Твор	Brown-out Detect Pulse Width	100*	_	_	μS	$VDD \le BVDD (D005)$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 12-5:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	с	haracteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse	Width No Prescaler		0.5 Tcy + 20	—	—	ns	
				With Prescaler	10	—		ns	
41*	Tt0L	T0CKI Low Pulse	Width	No Prescaler	0.5 Tcy + 20	—	—	ns	
				With Prescaler	10	—		ns	
42*	Tt0P	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous,	No Prescaler	0.5 Tcy + 20	_	_	ns	
			Synchronous, with Prescaler		15	-	—	ns	
			Asynchronous		30	—	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous,	No Prescaler	0.5 Tcy + 20	—	—	ns	
			Synchronous, with Prescaler		15	-	—	ns	
			Asynchronous		30	—		ns	
47*	Tt1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	—	—	ns	
	Ft1	Timer1 oscillator in (oscillator enabled	nput frequency range I by setting bit T1OSCEN)		DC	—	200*	kHz	
48	TCKEZtmr1	Delay from externa	al clock edge to	timer increment	2 Tosc*	—	7 Tosc*	—	
*	Those par	amotors are charac	torized but not t	ostod					

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

14.2 Package Details

The following sections give the technical details of the packages.

8-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		8		
Pitch	е		.100 BSC		
Top to Seating Plane	Α	-	_	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.290	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.348	.365	.400	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	_	.430	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located with the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B

NOTES: