E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f675-e-md

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.6 PCON Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Detect (BOD)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON Register bits are shown in Register 2-6.

REGISTER 2-6: PCON: POWER CONTROL REGISTER (ADDRESS: 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x
	—	—	—	—	—	POR	BOD
bit 7	•						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2	Unimplemented: Read as '0'
bit 1	POR: Power-on Reset Status bit
	 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOD: Brown-out Detect Status bit
	 1 = No Brown-out Detect occurred 0 = A Brown-out Detect occurred (must be set in software after a Brown-out Detect occurs)

2.2.2.7 OSCCAL Register

The Oscillator Calibration register (OSCCAL) is used to calibrate the internal 4 MHz oscillator. It contains 6 bits to adjust the frequency up or down to achieve 4 MHz.

The OSCCAL register bits are shown in Register 2-7.

REGISTER 2-7: OSCCAL: OSCILLATOR CALIBRATION REGISTER (ADDRESS: 90h)

					•	,			
R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0		
CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_		
bit 7		·				·	bit 0		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'			
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 7-2		6-bit Signed O		oration bits					
		aximum frequer							

100000 =	Center	frequency	

000000 = Minimum frequency

bit 1-0 Unimplemented: Read as '0'

U-0	U-0	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1	
_		TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISI00	
bit 7	·						bit	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
LH 7 0		ta di Danadara (i	.,					
bit 7-6	-	ted: Read as '		ata Cantral hit				
bit 5-0		: General Purp configured as						
		configured as		aleu)				
Note: TR	RISIO<3> always	•	anouput					
REGISTER	3-3: WPU:	WEAK PULL	-UP REGIS	FER (ADDRE	SS: 95h)			
U-0	U-0	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1	
		WPU5	WPU4		WPU2	WPU1	WPU0	
bit 7							bit	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
	-	ted: Read as '						
bit 7-6	14/0011 .00 4. 1	Noak Dull up D	onistor hit					
	WPU<5:4>: \	•	cylater bit					
bit 7-6 bit 5-4	1 = Pull-up er	nabled						
bit 5-4	1 = Pull-up er 0 = Pull-up di	nabled sabled						
bit 5-4 bit 3	1 = Pull-up er 0 = Pull-up di Unimplemen	nabled sabled I ted: Read as 'i	ס'					
bit 5-4 bit 3	1 = Pull-up er 0 = Pull-up di Unimplemen WPU<2:0>: V	nabled sabled i ted: Read as 'i Neak Pull-up R	ס'					
bit 5-4 bit 3	1 = Pull-up er 0 = Pull-up di Unimplemen WPU<2:0>: V 1 = Pull-up er	nabled sabled I ted: Read as 'i Neak Pull-up R nabled	ס'					
bit 5-4 bit 3 bit 2-0	1 = Pull-up er 0 = Pull-up di Unimplemen WPU<2:0>: V 1 = Pull-up er 0 = Pull-up di	nabled sabled I ted: Read as f Weak Pull-up R nabled sabled	⊃' egister bit					
bit 5-4 bit 3 bit 2-0 Note 1: Glo	1 = Pull-up er 0 = Pull-up di Unimplemen WPU<2:0>: V 1 = Pull-up er	nabled sabled I ted: Read as f Weak Pull-up R nabled sabled it be enabled fo	י egister bit r individual pu	•				

REGISTER 3-2: TRISIO: GPIO TRI-STATE REGISTER (ADDRESS: 85h)

6.1 Comparator Operation

A single comparator is shown in Figure 6-1, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 6-1 represent the uncertainty due to input offsets and response time.

Note: To use CIN+ and CIN- pins as analog inputs, the appropriate bits must be programmed in the CMCON (19h) register.

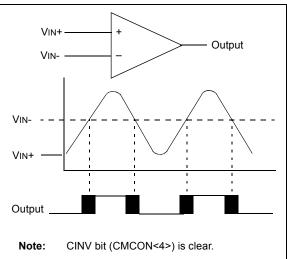

The polarity of the comparator output can be inverted by setting the CINV bit (CMCON<4>). Clearing CINV results in a non-inverted output. A complete table showing the output state versus input conditions and the polarity bit is shown in Table 6-1.

TABLE 6-1: OUTPUT STATE VS. INPUT CONDITIONS

Input Conditions	CINV	COUT
VIN- > VIN+	0	0
VIN- < VIN+	0	1
VIN- > VIN+	1	1
VIN- < VIN+	1	0

SINGLE COMPARATOR

REGISTER	6-2: VRCO	N: VOLTAGE	REFEREN	CE CONTRO	L REGISTER	R (ADDRESS:	99h)
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
VREN		VRR	_	VR3	VR2	VR1	VR0
bit 7							bit (
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
	0 = CVREF cir	cuit powered o cuit powered d	own, no Idd o	drain			
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	VRR: CVREF	Range Selection	on bit				
	1 = Low rang 0 = High rang						
bit 4	Unimplemen	ted: Read as '	0'				
bit 3-0	When VRR =	/REF value sele 1: CVREF = (VI 0: CVREF = VD	R3:VR0 / 24)	* VDD			

6.9 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of the comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<6>, to determine the actual change that has occurred. The CMIF bit, PIR1<3>, is the comparator interrupt flag. This bit must be reset in software by clearing it to '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<3>) and the PEIE bit (INT-CON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are cleared, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON. This will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition, and allow flag bit CMIF to be cleared.

Note: If a change in the CMCON register (COUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF (PIR1<3>) interrupt flag may not get set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 000u
0Ch	PIR1	EEIF	ADIF	_	—	CMIF	_	_	TMR1IF	00 00	00 00
19h	CMCON	_	COUT	—	CINV	CIS	CM2	CM1	CM0	-0-0 0000	-0-0 0000
8Ch	PIE1	EEIE	ADIE	—		CMIE	—	—	TMR1IE	00 00	00 00
85h	TRISIO	_	_	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111
99h	VRCON	VREN	_	VRR		VR3	VR2	VR1	VR0	0-0- 0000	0-0- 0000

TABLE 6-2: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the comparator module.

9.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1') to select various device configurations, as shown in Register 9.2. These bits are mapped in program memory location 2007h.

Note: Address 2007h is beyond the user program memory space. It belongs to the special configuration memory space (2000h-3FFFh), which can be accessed only during programming. See PIC12F629/675 Programming Specification for more information.

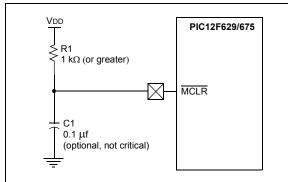
REGISTER 9-1: CONFIG: CONFIGURATION WORD (ADDRESS: 2007h)

R/P-1	R/P-1	U-0	U-0	U-0	R/P-1								
BG1	BG0	Ι	Ι	_	CPD	CP	BODEN	MCLRE	PWRTE	WDTE	F0SC2	F0SC1	F0SC0
bit 13													bit 0

Legend:			
P = Programmed using ICSP™			
R = Readable bit	Writable bit	U = Unimplemented b	pit, read as '0'
-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown

bit 13-12	BG1:BG0: Bandgap Calibration bits for BOD and POR voltage ⁽¹⁾ 00 = Lowest bandgap voltage 11 = Highest bandgap voltage
h:+ 44 O	
bit 11-9	Unimplemented: Read as '0'
bit 8	CPD: Data Code Protection bit ⁽²⁾ 1 = Data memory code protection is disabled 0 = Data memory code protection is enabled
bit 7	\overline{CP} : Code Protection bit ⁽³⁾
Dit 7	1 = Program Memory code protection is disabled
	0 = Program Memory code protection is enabled
bit 6	BODEN: Brown-out Detect Enable bit ⁽⁴⁾
	1 = BOD enabled
	0 = BOD disabled
bit 5	MCLRE: GP3/MCLR Pin Function Select bit ⁽⁵⁾
	1 = GP3/MCLR pin function is MCLR
	0 = GP3/MCLR pin function is digital I/O, MCLR internally tied to VDD
bit 4	PWRTE: Power-up Timer Enable bit
	1 = PWRT disabled
	0 = PWRT enabled
bit 3	WDTE: Watchdog Timer Enable bit
	1 = WDT enabled 0 = WDT disabled
bit 2-0	FOSC2:FOSC0 : Oscillator Selection bits 111 = RC oscillator: CLKOUT function on GP4/OSC2/CLKOUT pin, RC on GP5/OSC1/CLKIN
	110 = RC oscillator: I/O function on GP4/OSC2/CLKOUT pin, RC on GP5/OSC1/CLKIN
	101 = INTOSC oscillator: CLKOUT function on GP4/OSC2/CLKOUT pin, I/O function on GP5/OSC1/CLKIN
	100 = INTOSC oscillator: I/O function on GP4/OSC2/CLKOUT pin, I/O function on GP5/OSC1/CLKIN
	011 = EC: I/O function on GP4/OSC2/CLKOUT pin, CLKIN on GP5/OSC1/CLKIN
	010 = HS oscillator: High speed crystal/resonator on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN
	001 = XT oscillator: Crystal/resonator on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN 000 = LP oscillator: Low-power crystal on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN
Note 1	
Note 1	: The Bandgap Calibration bits are factory programmed and must be read and saved prior to erasing the device as spec- ified in the PIC12F629/675 Programming Specification. These bits are reflected in an export of the Configuration Word.
	Microchip Development Tools maintain all Calibration bits to factory settings.
2	The entire data EEPROM will be erased when the code protection is turned off.
3	: The entire program memory will be erased, including OSCCAL value, when the code protection is turned off.
4	Enabling Brown-out Detect does not automatically enable Power-up Timer.

5: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.


9.3.1 MCLR

It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the MCLR pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both MCLR Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 9-5, is suggested.

An internal MCLR option is enabled by setting the MCLRE bit in the Configuration Word. When enabled, MCLR is internally tied to VDD. No internal pull-up option is available for the MCLR pin.

FIGURE 9-5: RECOMMENDED MCLR CIRCUIT

9.3.2 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. To take advantage of the POR, simply tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details (see Section 12.0 "Electrical Specifications"). If the BOD is enabled, the maximum rise time specification does not apply. The BOD circuitry will keep the device in Reset until VDD reaches VBOD (see Section 9.3.5 "Brown-Out Detect (BOD)").

Note:	The POR circuit does not produce a	in
	internal Reset when VDD declines.	

When the device starts normal operation (exits the Reset condition), device operating parameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting".

9.3.3 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms (nominal) time-out on power-up only, from POR or Brown-out Detect. The Power-up Timer operates on an internal RC oscillator. The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the <u>VDD to</u> rise to an acceptable level. A Configuration bit, PWRTE can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should always be enabled when Brown-out Detect is enabled.

The Power-up Time delay will vary from chip to chip and due to:

- VDD variation
- Temperature variation
- · Process variation.

See DC parameters for details (Section 12.0 "Electrical Specifications").

9.3.4 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from Sleep.

9.4.1 GP2/INT INTERRUPT

External interrupt on GP2/INT pin is edge-triggered; either rising if INTEDG bit (OPTION<6>) is set, of falling, if INTEDG bit is clear. When a valid edge appears on the GP2/INT pin, the INTF bit (INT-CON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The GP2/INT interrupt can wake-up the processor from Sleep if the INTE bit was set prior to going into Sleep. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See **Section 9.7 "Power-Down Mode (Sleep)"** for details on Sleep and Figure 9-13 for timing of wake-up from Sleep through GP2/INT interrupt.

Note: The ANSEL (9Fh) and CMCON (19h) registers must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'. The ANSEL register is defined for the PIC12F675.

9.4.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see **Section 4.0 "Timer0 Module"**.

9.4.3 GPIO INTERRUPT

An input change on GPIO change sets the GPIF (INTCON<0>) bit. The interrupt can be enabled/ disabled by setting/clearing the GPIE (INTCON<3>) bit. Plus individual pins can be configured through the IOC register.

Note:	If a change on the I/O pin should occur							
	when the read operation is being executed							
	(start of the Q2 cycle), then the GPIF							
	interrupt flag may not get set.							

9.4.4 COMPARATOR INTERRUPT

See **Section 6.9 "Comparator Interrupts"** for description of comparator interrupt.

9.4.5 A/D CONVERTER INTERRUPT

After a conversion is complete, the ADIF flag (PIR<6>) is set. The interrupt can be enabled/disabled by setting or clearing ADIE (PIE<6>).

See Section 7.0 "Analog-to-Digital Converter (A/D) Module (PIC12F675 only)" for operation of the A/D converter interrupt.

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1 /					
CLKOUT ③	(4)		1/ ¦	\/	
INT pin		• ①	1 1 1	1 1 1	1 1 1 1
INTF Flag (INTCON<1>)	,1 /5		Interrupt Latency 2	1 1 1 1	
GIE bit (INTCON<7>)	- - - - - - - - - - - - - - - - - - -			, , , ,	
INSTRUCTION I	FLOW		· — — — — —	- — — — — — !	· — — — —
PC	C PC	X PC + 1	X PC + 1	X 0004h	X <u>0005h</u>
Instruction (Fetched	Inst (PC)	Inst (PC+1)	-	Inst (0004h)	Inst (0005h)
Instruction {	Inst (PC - 1)	Inst (PC)	Dummy Cycle	Dummy Cycle	Inst (0004h)

FIGURE 9-11: INT PIN INTERRUPT TIMING

Note 1: INTF flag is sampled here (every Q1).

- 2: Asynchronous interrupt latency = 3-4 Tcy. Synchronous latency = 3 Tcy, where Tcy = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in RC Oscillator mode.
- **4:** For minimum width of INT pulse, refer to AC specs.
- **5:** INTF is enabled to be set any time during the Q4-Q1 cycles.

9.8 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: The entire data EEPROM and Flash program memory will be erased when the code protection is turned off. The INTOSC calibration data is also erased. See PIC12F629/675 Programming Specification for more information.

9.9 ID Locations

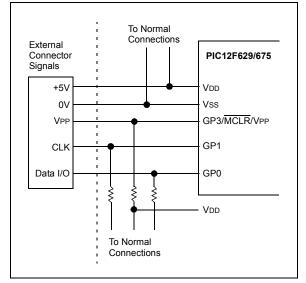
Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify. Only the Least Significant 7 bits of the ID locations are used.

9.10 In-Circuit Serial Programming

The PIC12F629/675 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for:

- power
- ground
- programming voltage

This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.


The device is placed into a Program/Verify mode by holding the GP0 and GP1 pins low, while raising the $\overline{\text{MCLR}}$ (VPP) pin from VIL to VIHH (see Programming Specification). GP0 becomes the programming data and GP1 becomes the programming clock. Both GP0 and GP1 are Schmitt Trigger inputs in this mode.

After Reset, to place the device into Programming/ Verify mode, the PC is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending on whether the command was a load or a read. For complete details of serial programming, please refer to the Programming Specifications.

A typical In-Circuit Serial Programming connection is shown in Figure 9-14.

FIGURE 9-14:

TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

9.11 In-Circuit Debugger

Since in-circuit debugging requires the loss of clock, data and MCLR pins, MPLAB[®] ICD 2 development with an 8-pin device is not practical. A special 14-pin PIC12F675-ICD device is used with MPLAB ICD 2 to provide separate clock, data and MCLR pins and frees all normally available pins to the user.

This special ICD device is mounted on the top of the header and its signals are routed to the MPLAB ICD 2 connector. On the bottom of the header is an 8-pin socket that plugs into the user's target via the 8-pin stand-off connector.

When the ICD pin on the PIC12F675-ICD device is held low, the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB ICD 2. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 9-10 shows which features are consumed by the background debugger:

TABLE 9-10: DEBUGGER RESOURCES

I/O pins	ICDCLK, ICDDATA
Stack	1 level
Program Memory	Address 0h must be NOP 300h-3FEh

For more information, see 8-Pin MPLAB ICD 2 Header Information Sheet (DS51292) available on Microchip's web site (www.microchip.com).

DECFSZ	Decrement f, Skip if 0					
Syntax:	[<i>label</i>] DECFSZ f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0					
Status Affected:	None					
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making it a 2TCY instruction.					

INCFSZ	Increment f, Skip if 0				
Syntax:	[<i>label</i>] INCFSZ f,d				
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$				
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0				
Status Affected:	None				
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, a NOP is executed instead, making it a 2Tcy instruction.				

GOTO	Unconditional Branch					
Syntax:	[<i>label</i>] GOTO k					
Operands:	$0 \leq k \leq 2047$					
Operation:	k → PC<10:0> PCLATH<4:3> → PC<12:11>					
Status Affected:	None					
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.					

IORLW	Inclusive OR Literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z					
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.					

INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param	Device Characteristics	Min	Typ†	Max	Units		Conditions
No.	Device Characteristics	IVIIII	iypi	WIAN	Units	VDD	Note
D010E	Supply Current (IDD)	-	9	16	μA	2.0	Fosc = 32 kHz
		—	18	28	μA	3.0	LP Oscillator Mode
		_	35	54	μA	5.0	
D011E		-	110	150	μA	2.0	Fosc = 1 MHz
		_	190	280	μA	3.0	XT Oscillator Mode
		_	330	450	μA	5.0	
D012E		-	220	280	μA	2.0	Fosc = 4 MHz
		—	370	650	μA	3.0	XT Oscillator Mode
		_	0.6	1.4	mA	5.0	
D013E		-	70	110	μA	2.0	Fosc = 1 MHz
		—	140	250	μA	3.0	EC Oscillator Mode
		—	260	390	μA	5.0	
D014E		—	180	250	μA	2.0	Fosc = 4 MHz
		—	320	470	μA	3.0	EC Oscillator Mode
		—	580	850	μA	5.0	
D015E		—	340	450	μA	2.0	Fosc = 4 MHz
		—	500	780	μA	3.0	INTOSC Mode
		—	0.8	1.1	mA	5.0	
D016E			180	250	μA	2.0	Fosc = 4 MHz
		_	320	450	μA	3.0	EXTRC Mode
		_	580	800	μA	5.0	
D017E		_	2.1	2.95	mA	4.5	Fosc = 20 MHz
		_	2.4	3.0	mA	5.0	HS Oscillator Mode

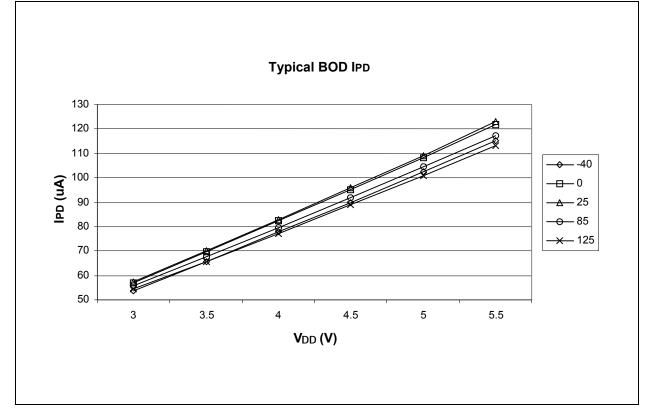
12.4 DC Characteristics: PIC12F629/675-E (Extended)

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

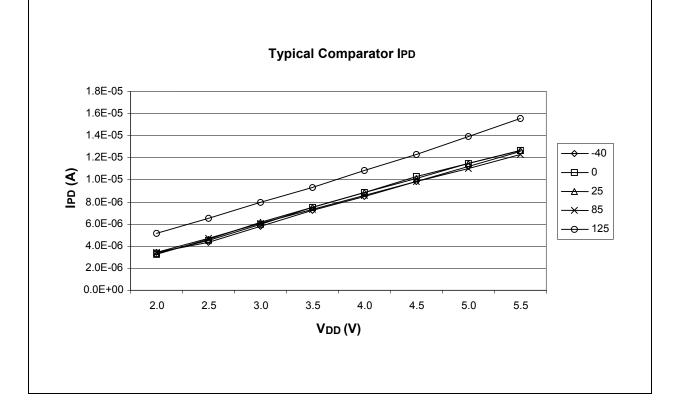
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

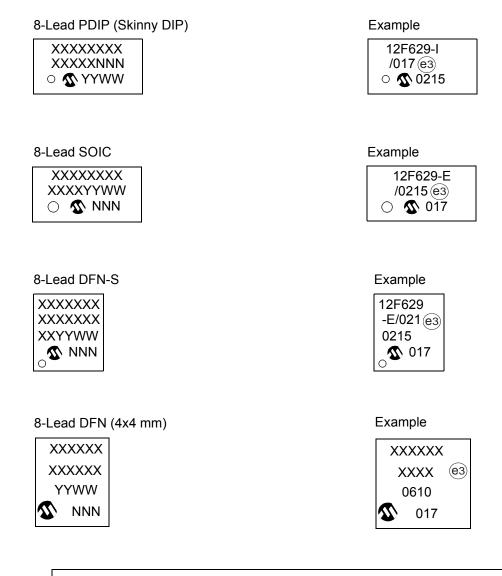
12.5 DC Characteristics: PIC12F629/675-E (Extended)


Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param	Device Characteristics	Min	Typ†	Мах	Units		Conditions
No.	Device characteristics with Typ1 wax Onits	Units	VDD	Note			
D020E	Power-down Base Current	_	0.00099	3.5	μA	2.0	WDT, BOD, Comparators, VREF,
	(IPD)		0.0012	4.0	μA	3.0	and T1OSC disabled
		_	0.0029	8.0	μA	5.0	
D021E		_	0.3	6.0	μA	2.0	WDT Current ⁽¹⁾
		_	1.8	9.0	μA	3.0	
		_	8.4	20	μA	5.0	
D022E		_	58	70	μA	3.0	BOD Current ⁽¹⁾
		_	109	130	μA	5.0	
D023E			3.3	10	μA	2.0	Comparator Current ⁽¹⁾
			6.1	13	μA	3.0	
			11.5	24	μA	5.0	
D024E			58	70	μA	2.0	CVREF Current ⁽¹⁾
		_	85	100	μA	3.0	
			138	165	μA	5.0	
D025E		_	4.0	10	μA	2.0	T1 Osc Current ⁽¹⁾
		_	4.6	12	μA	3.0	
		_	6.0	20	μA	5.0	
D026E		_	0.0012	6.0	μA	3.0	A/D Current ⁽¹⁾
		_	0.0022	8.5	μA	5.0	

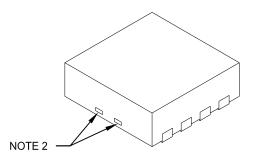
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.



14.0 PACKAGING INFORMATION


14.1 Package Marking Information

Legend	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it wil be carried over to the next line, thus limiting the number of available characters for customer-specific information.	

8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		8	
Pitch	е	0.80 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Length	D	4.00 BSC		
Exposed Pad Width	E2	2.60	2.70	2.80
Overall Width	E		4.00 BSC	
Exposed Pad Length	D2	3.40	3.50	3.60
Contact Width	b	0.25	0.30	0.35
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-131E Sheet 2 of 2

CLKOUT and I/O98					
External Clock96					
INT Pin Interrupt65					
PIC12F675 A/D Conversion (Normal Mode) 104					
PIC12F675 A/D Conversion Timing					
(SLEEP Mode)					
RESET, Watchdog Timer, Oscillator Start-up Timer					
and Power-up Timer					
Time-out Sequence on Power-up (MCLR not Tied to					
Vdd)/					
Case 1 62					
Case 2					
Time-out Sequence on Power-up					
(MCLR Tied to VDD)62					
Timer0 and Timer1 External Clock 101					
Timer1 Incrementing Edge					
Timing Parameter Symbology95					
TRISIO — GPIO Tri-state REGISTER (Address					
85H)22					
V					
Voltage Reference Accuracy/Error41					
W					
Watchdog Timer					
Summary of Registers					
Watchdog Timer (WDT)					
WPU — Weak pull-up Register (ADDRESS					
95h)					
WWW Address					
WWW, On-Line Support					

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent			
RE:	Reader Response				
From	n: Name				
	Address				
	City / State / ZIP / Country				
	Telephone: ()	FAX: ()			
Appl	ication (optional):				
Wou	ld you like a reply?YN				
Devi	ce: PIC12F629/675	Literature Number: DS41190G			
Ques	stions:				
1. \	What are the best features of this do	cument?			
_					
2. ł	How does this document meet your	hardware and software development needs?			
_					
-					
3. E	3. Do you find the organization of this document easy to follow? If not, why?				
-					
_					
4. \	What additions to the document do y	you think would enhance the structure and subject?			
-					
-					
5. \	What deletions from the document c	ould be made without affecting the overall usefulness?			
-					
- -					
6. I	s there any incorrect or misleading i	nformation (what and where)?			
-					
- 7. ł	How would you improve this docume	ant?			
<i>ı</i> . r		ant :			
-					
-					