

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f675-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Pin Flash-Based 8-Bit CMOS Microcontroller

High-Performance RISC CPU:

- · Only 35 Instructions to Learn
- All single-cycle instructions except branches
- · Operating Speed:
 - DC 20 MHz oscillator/clock input
 - DC 200 ns instruction cycle
- Interrupt Capability
- 8-Level Deep Hardware Stack
- · Direct, Indirect, and Relative Addressing modes

Special Microcontroller Features:

- Internal and External Oscillator Options
 - Precision Internal 4 MHz oscillator factory calibrated to ±1%
 - External Oscillator support for crystals and resonators
 - 5 µs wake-up from Sleep, 3.0V, typical
- Power-Saving Sleep mode
- Wide Operating Voltage Range 2.0V to 5.5V
- Industrial and Extended Temperature Range
- Low-Power Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- · Brown-out Detect (BOD)
- Watchdog Timer (WDT) with Independent Oscillator for Reliable Operation
- Multiplexed MCLR/Input Pin
- Interrupt-on-Pin Change
- Individual Programmable Weak Pull-ups
- Programmable Code Protection
- High Endurance Flash/EEPROM Cell
 - 100,000 write Flash endurance
 - 1,000,000 write EEPROM endurance
 - Flash/Data EEPROM Retention: > 40 years

Low-Power Features:

- Standby Current:
 - 1 nA @ 2.0V, typical
- Operating Current:
 - 8.5 μA @ 32 kHz, 2.0V, typical
 - 100 μA @ 1 MHz, 2.0V, typical
- Watchdog Timer Current
 300 nA @ 2.0V, typical
- 300 TA @ 2.00, typical
- Timer1 Oscillator Current:
 - 4 μA @ 32 kHz, 2.0V, typical

Peripheral Features:

- · 6 I/O Pins with Individual Direction Control
- High Current Sink/Source for Direct LED Drive
- Analog Comparator module with:
 - One analog comparator
 - Programmable on-chip comparator voltage reference (CVREF) module
 - Programmable input multiplexing from device inputs
 - Comparator output is externally accessible
- Analog-to-Digital Converter module (PIC12F675):
 - 10-bit resolution
 - Programmable 4-channel input
 - Voltage reference input
- Timer0: 8-Bit Timer/Counter with 8-Bit Programmable Prescaler
- Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Gate Input mode
 - Option to use OSC1 and OSC2 in LP mode as Timer1 oscillator, if INTOSC mode selected
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins

Device	Program Memory	Data Memory		I/O	10-bit A/D	Comparators	Timers
	Flash (words)	SRAM (bytes)	EEPROM (bytes)	1/0	(ch)	Comparators	8/16-bit
PIC12F629	1024	64	128	6	-	1	1/1
PIC12F675	1024	64	128	6	4	1	1/1

* 8-bit, 8-pin devices protected by Microchip's Low Pin Count Patent: U.S. Patent No. 5,847,450. Additional U.S. and foreign patents and applications may be issued or pending.

Table of Contents

1.0	Device Overview	7
2.0	Memory Organization	9
3.0	GPIO Port	21
4.0	Timer0 Module	. 29
5.0	Timer1 Module with Gate Control	. 32
6.0	Comparator Module	. 37
7.0	Analog-to-Digital Converter (A/D) Module (PIC12F675 only)	43
8.0	Data EEPROM Memory	49
9.0	Special Features of the CPU	
10.0	Instruction Set Summary	71
11.0	Development Support	81
12.0	Electrical Specifications	85
13.0	DC and AC Characteristics Graphs and Tables	107
14.0	Packaging Information	117
Apper	ndix A: Data Sheet Revision History	127
Apper	ndix B: Device Differences	127
Apper	ndix C: Device Migrations	128
Apper	ndix D: Migrating from other PIC [®] Devices	128
Index		129
On-Li	ne Support	133
Syste	ns Information and Upgrade Hot Line	133
Reade	er Response	134
Produ	ct Identification System	135

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

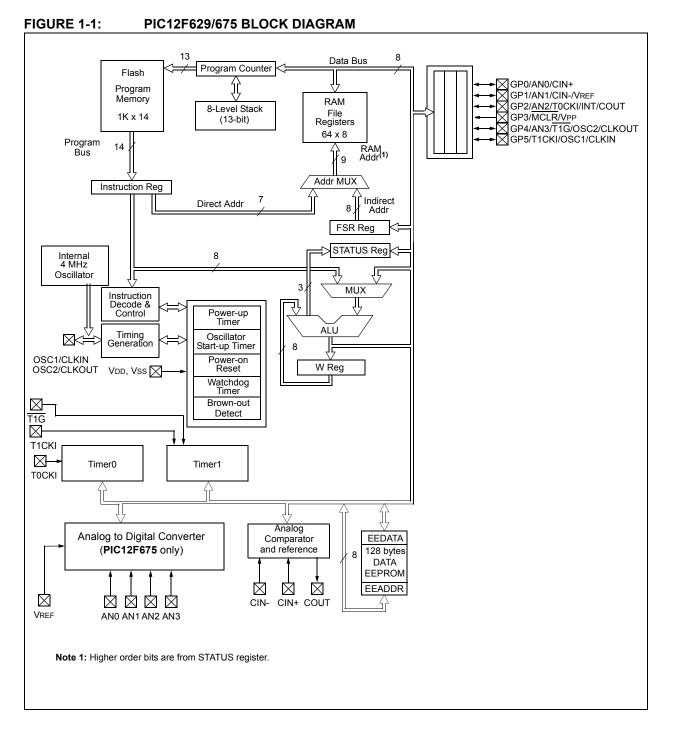
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System


Register on our web site at www.microchip.com to receive the most current information on all of our products.

NOTES:

1.0 DEVICE OVERVIEW

This document contains device specific information for the PIC12F629/675. Additional information may be found in the PIC[®] Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this Data Sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The PIC12F629 and PIC12F675 devices are covered by this Data Sheet. They are identical, except the PIC12F675 has a 10-bit A/D converter. They come in 8-pin PDIP, SOIC, MLF-S and DFN packages. Figure 1-1 shows a block diagram of the PIC12F629/ 675 devices. Table 1-1 shows the pinout description.

TABLE 1-1: PIC12F629/675 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
GP0/AN0/CIN+/ICSPDAT	GP0	TTL	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change
	AN0	AN		A/D Channel 0 input
	CIN+	AN		Comparator input
	ICSPDAT	TTL	CMOS	Serial programming I/O
GP1/AN1/CIN-/VREF/ ICSPCLK	GP1	TTL	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change
	AN1	AN		A/D Channel 1 input
	CIN-	AN		Comparator input
	VREF	AN		External voltage reference
	ICSPCLK	ST		Serial programming clock
GP2/AN2/T0CKI/INT/COUT	GP2	ST	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change
	AN2	AN		A/D Channel 2 input
	T0CKI	ST		TMR0 clock input
	INT	ST		External interrupt
	COUT		CMOS	Comparator output
GP3/MCLR/Vpp	GP3	TTL		Input port w/ interrupt-on-change
	MCLR	ST		Master Clear
	VPP	HV		Programming voltage
GP4/AN3/T1G/OSC2/ CLKOUT	GP4	TTL	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change
	AN3	AN		A/D Channel 3 input
	T1G	ST		TMR1 gate
	OSC2		XTAL	Crystal/resonator
	CLKOUT		CMOS	Fosc/4 output
GP5/T1CKI/OSC1/CLKIN	GP5	TTL	CMOS	Bidirectional I/O w/ programmable pull-up and interrupt-on-change
	T1CKI	ST		TMR1 clock
	OSC1	XTAL		Crystal/resonator
	CLKIN	ST		External clock input/RC oscillator connection
Vss	Vss	Power		Ground reference
Vdd	Vdd	Power		Positive supply

Legend: Shade = PIC12F675 only

TTL = TTL input buffer, ST = Schmitt Trigger input buffer

2.2.2.4 PIE1 Register

The PIE1 register contains the interrupt enable bits, as shown in Register 2-4.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS: 8Ch)

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0
EEIE	ADIE	—	_	CMIE	—	—	TMR1IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEIE: EE Write Complete Interrupt Enable bit 1 = Enables the EE write complete interrupt 0 = Disables the EE write complete interrupt
bit 6	ADIE: A/D Converter Interrupt Enable bit (PIC12F675 only) 1 = Enables the A/D converter interrupt
	0 = Disables the A/D converter interrupt
bit 5-4	Unimplemented: Read as '0'
bit 3	CMIE: Comparator Interrupt Enable bit
	1 = Enables the comparator interrupt
	0 = Disables the comparator interrupt
bit 2-1	Unimplemented: Read as '0'
bit 0	TMR1IE: TMR1 Overflow Interrupt Enable bit
	1 = Enables the TMR1 overflow interrupt0 = Disables the TMR1 overflow interrupt

2.2.2.6 PCON Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Detect (BOD)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON Register bits are shown in Register 2-6.

REGISTER 2-6: PCON: POWER CONTROL REGISTER (ADDRESS: 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x
	—	—	—	—	—	POR	BOD
bit 7 bit 0							

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-2	Unimplemented: Read as '0'
bit 1	POR: Power-on Reset Status bit
	 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOD: Brown-out Detect Status bit
	 1 = No Brown-out Detect occurred 0 = A Brown-out Detect occurred (must be set in software after a Brown-out Detect occurs)

2.2.2.7 OSCCAL Register

The Oscillator Calibration register (OSCCAL) is used to calibrate the internal 4 MHz oscillator. It contains 6 bits to adjust the frequency up or down to achieve 4 MHz.

The OSCCAL register bits are shown in Register 2-7.

REGISTER 2-7: OSCCAL: OSCILLATOR CALIBRATION REGISTER (ADDRESS: 90h)

					•	,	
R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_
bit 7		·				·	bit 0
Legend:							
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 7-2 CAL5:CAL0: 6-bit Sig				oration bits			
		aximum frequer					

100000 =	Center	frequency	

000000 = Minimum frequency

bit 1-0 Unimplemented: Read as '0'

NOTES:

5.4 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 5.4.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note: The ANSEL (9Fh) and CMCON (19h) registers must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'. The ANSEL register is defined for the PIC12F675.

5.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Examples 12-2 and 12-3 in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023) show how to read and write Timer1 when it is running in Asynchronous mode.

5.5 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins OSC1 (input) and OSC2 (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator rated up to 37 kHz. It will continue to run during Sleep. It is primarily intended for a 32 kHz crystal. Table 9-2 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is shared with the system LP oscillator. Thus, Timer1 can use this mode only when the system clock is derived from the internal oscillator. As with the system LP oscillator, the user must provide a software time delay to ensure proper oscillator start-up.

While enabled, TRISIO4 and TRISIO5 are set. GP4 and GP5 read '0' and TRISIO4 and TRISIO5 are read '1'.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to enabling Timer1.

5.6 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To setup the timer to wake the device:

- Timer1 must be on (T1CON<0>)
- TMR1IE bit (PIE1<0>) must be set
- PEIE bit (INTCON<6>) must be set

The device will wake-up on an overflow. If the GIE bit (INTCON<7>) is set, the device will wake-up and jump to the Interrupt Service Routine on an overflow.

IADEL (ABEL 3-1. REGISTERS ASSOCIATED WITH HMERTAS A HMER/COUNTER												
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		allo	e on other sets
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000	0000	0000	000u
0Ch	PIR1	EEIF	ADIF	_	_	CMIF	—	—	TMR1IF	00	00	00	00
0Eh	TMR1L	Holding	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register							XXXX	XXXX	uuuu	uuuu
0Fh	TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register							XXXX	XXXX	uuuu	uuuu	
10h	T1CON		TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	-000	0000	-uuu	uuuu
8Ch	PIE1	EEIE	ADIE		_	CMIE	_	_	TMR1IE	00	00	00	00

TABLE 5-1: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

8.7 Data EEPROM Operation During Code Protect

Data memory can be code protected by programming the CPD bit to '0'.

When the data memory is code protected, the CPU is able to read and write data to the data EEPROM. It is recommended to code protect the program memory when code protecting data memory. This prevents anyone from programming zeroes over the existing code (which will execute as NOPS) to reach an added routine, programmed in unused program memory, which outputs the contents of data memory. Programming unused locations to '0' will also help prevent data memory code protection from becoming breached.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on	Value oth Res	ner
0Ch	PIR1	EEIF	ADIF	_		CMIF	_	—	TMR1IF	00	00	00	00
9Ah	EEDATA	TA EEPROM Data Register						0000	0000	0000	0000		
9Bh	EEADR	_	EEPRON	1 Address	Register					-000	0000	-000	0000
9Ch	EECON1	_	—	—	—	WRERR	WREN	WR	RD		x000		q000
9Dh	EECON2 ⁽¹⁾	EEPROM	I Control F	Register 2									

TABLE 8-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

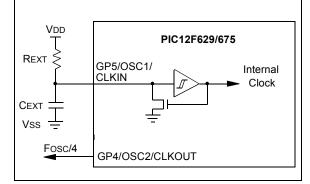
 $\label{eq:logarder} \mbox{Legend: x = unknown, u = unchanged, - = unimplemented read as `0', q = value depends upon condition. Shaded cells are not used by data EEPROM module.}$

Note 1: EECON2 is not a physical register.

9.2.3 EXTERNAL CLOCK IN

For applications where a clock is already available elsewhere, users may directly drive the PIC12F629/ 675 provided that this external clock source meets the AC/DC timing requirements listed in **Section 12.0 "Electrical Specifications"**. Figure 9-2 shows how an external clock circuit should be configured.

9.2.4 RC OSCILLATOR


For applications where precise timing is not a requirement, the RC oscillator option is available. The operation and functionality of the RC oscillator is dependent upon a number of variables. The RC oscillator frequency is a function of:

- · Supply voltage
- Resistor (REXT) and capacitor (CEXT) values
- Operating temperature.

The oscillator frequency will vary from unit to unit due to normal process parameter variation. The difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to account for the tolerance of the external R and C components. Figure 9-3 shows how the R/C combination is connected.

Two options are available for this Oscillator mode which allow GP4 to be used as a general purpose I/O or to output Fosc/4.

FIGURE 9-3: RC OSCILLATOR MODE

9.2.5 INTERNAL 4 MHz OSCILLATOR

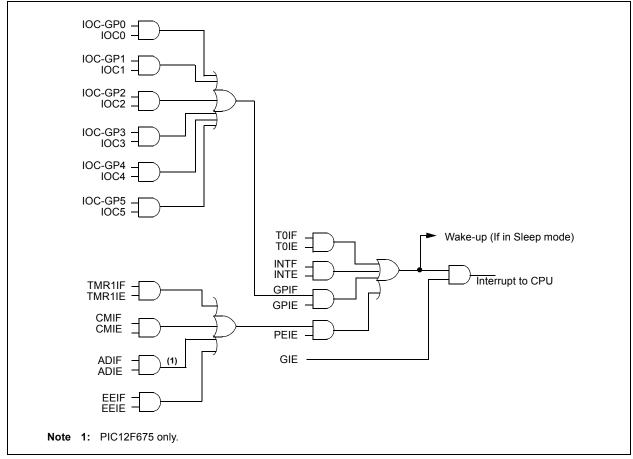
When calibrated, the internal oscillator provides a fixed 4 MHz (nominal) system clock. See Electrical Specifications, **Section 12.0** "Electrical Specifications", for information on variation over voltage and temperature.

Two options are available for this Oscillator mode which allow GP4 to be used as a general purpose I/O or to output Fosc/4.

9.2.5.1 Calibrating the Internal Oscillator

A calibration instruction is programmed into the last location of program memory. This instruction is a RETLW XX, where the literal is the calibration value. The literal is placed in the OSCCAL register to set the calibration of the internal oscillator. Example 9-1 demonstrates how to calibrate the internal oscillator. For best operation, decouple (with capacitance) VDD and Vss as close to the device as possible.

Note: Erasing the device will also erase the preprogrammed internal calibration value for the internal oscillator. The calibration value must be saved prior to erasing part as specified in the PIC12F629/675 Programming specification. Microchip Development Tools maintain all Calibration bits to factory settings.


EXAMPLE 9-1: CALIBRATING THE INTERNAL OSCILLATOR

	cal value e
BCF STATUS, RPO ;Bank O	

9.2.6 CLKOUT

The PIC12F629/675 devices can be configured to provide a clock out signal in the INTOSC and RC oscillator modes. When configured, the oscillator frequency divided by four (Fosc/4) is output on the GP4/OSC2/CLKOUT pin. Fosc/4 can be used for test purposes or to synchronize other logic.

FIGURE 9-10: INTERRUPT LOGIC

TABLE 10-2: PIC12F629/675 INSTRUCTION SET

Mnemonic, Operands		Description	Cycles		14-Bit	Opcode	Status	Notes	
		Description		MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE RE	GISTER OPE	RATIC	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101		ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100		ffff	Ċ	1,2
SUBWF	f, d	Subtract W from f	1	00	0010		ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110		ffff	0,20,2	1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
-	, -	BIT-ORIENTED FILE REC		RATION					,
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01		bfff			1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01		bfff			3
DIF33	Ι, Β	LITERAL AND CONTI	()		ddil	DIII	LLLL		3
ADDLW	Ŀ	Add literal and W						C,DC,Z	
	k		1	11		kkkk			
ANDLW	k	AND literal with W		11	1001			Z	
	k	Call subroutine	2	10		kkkk		TO,PD	
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10		kkkk		-	
IORLW	k	Inclusive OR literal with W	1	11	1000		kkkk	Z	
MOVLW	k	Move literal to W	1	11		kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11		kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11		kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
Note 1:		/O register is modified as a function of itself (e							

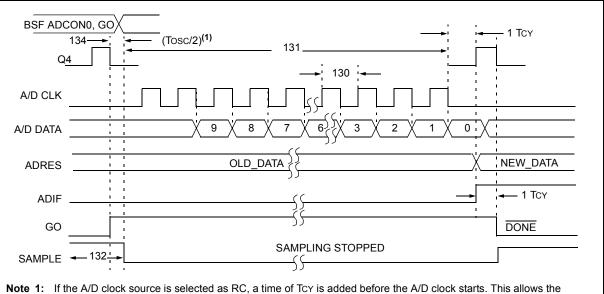
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

NOTES:


TABLE 12-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT DETECT REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2 TBD	 TBD	 TBD	μs ms	VDD = 5V, -40°C to +85°C Extended temperature
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	10 10	17 17	25 30	ms ms	VDD = 5V, -40°C to +85°C Extended temperature
32	Tost	Oscillation Start-up Timer Period	—	1024Tosc	_		Tosc = OSC1 period
33*	TPWRT	Power-up Timer Period	28* TBD	72 TBD	132* TBD	ms ms	VDD = 5V, -40°C to +85°C Extended Temperature
34	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset	—	_	2.0	μS	
	BVDD	Brown-out Detect Voltage	2.025	—	2.175	V	
		Brown-out Hysteresis	TBD	—		—	
35	TBOD	Brown-out Detect Pulse Width	100*		—	μS	$VDD \le BVDD$ (D005)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

SLEEP instruction to be executed.

TABLE 12-9:	PIC12F675 A/D CONVERSION REQUIREMENTS

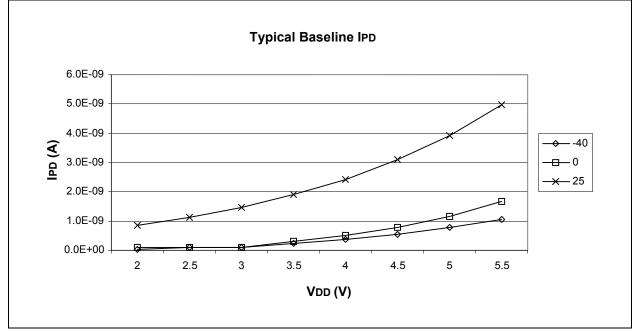
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
130	TAD	A/D Clock Period	1.6	—	—	μS	Tosc based, VREF $\geq 3.0V$
			3.0*	—	—	μS	Tosc based, VREF full range
130	Tad	A/D Internal RC Oscillator Period	3.0*	6.0	9.0*	μs	ADCS<1:0> = 11 (RC mode) At VDD = 2.5V
			2.0*	4.0	6.0*	μS	At VDD = 5.0V
131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	_	11	_	Tad	Set GO bit to new data in A/D result register
132	TACQ	Acquisition Time	(Note 2)	11.5	—	μs	
			5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 4.1 mV @ 4.096V) from the last sampled voltage (as stored on CHOLD).
134	TGO	Q4 to A/D Clock Start	_	Tosc/2	_	-	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.

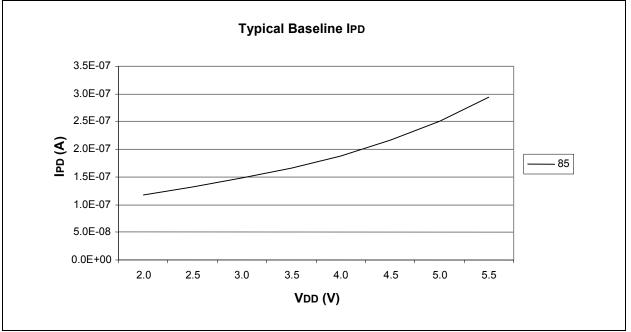
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

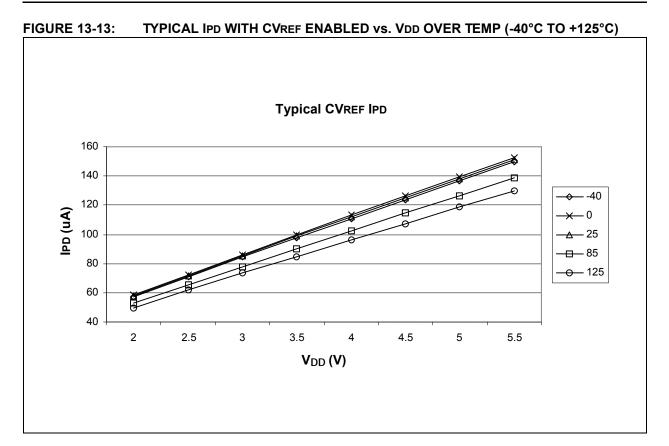
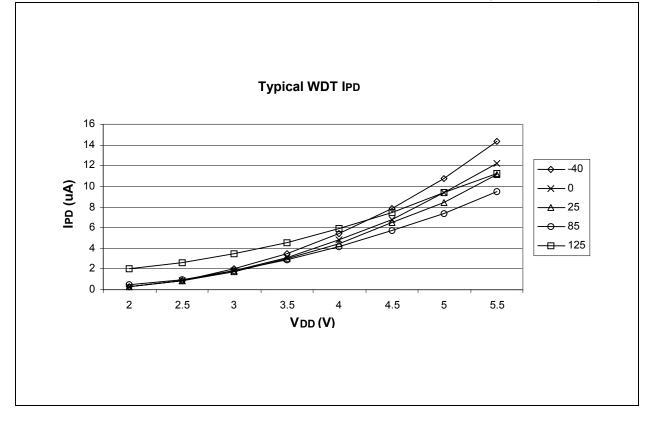
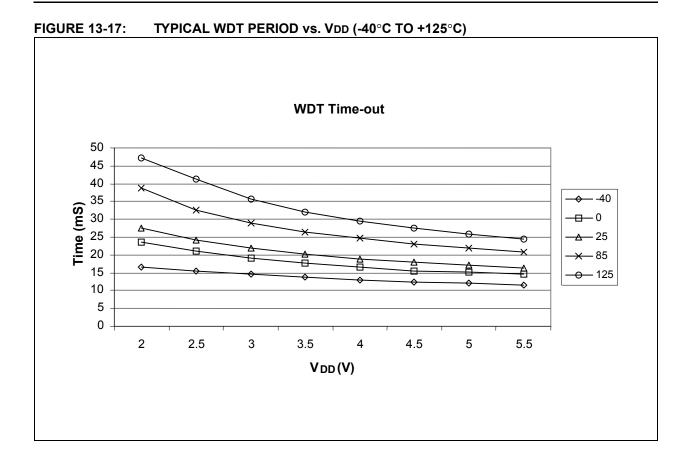
2: See Section 7.1 "A/D Configuration and Operation" for minimum conditions.

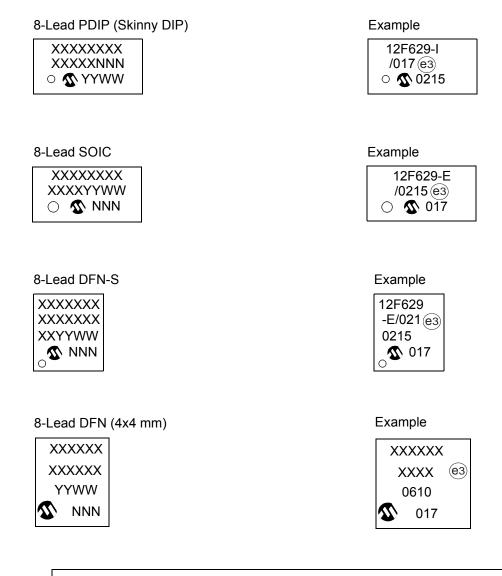

13.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for design guidance and are not tested.


In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. "Typical" represents the mean of the distribution at 25°C. "Max" or "min" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.


FIGURE 13-14: TYPICAL IPD WITH WDT ENABLED vs. VDD OVER TEMP (-40°C TO +125°C)

14.0 PACKAGING INFORMATION

14.1 Package Marking Information

Legend	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.