E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f675-i-md

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-60932-160-4

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

The PIC12F629/675 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h-03FFh) for the PIC12F629/675 devices is physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 1K x 14 space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1).

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK FOR THE DSTEMP/675

2.2 Data Memory Organization

The data memory (see Figure 2-2) is partitioned into two banks, which contain the General Purpose Registers and the Special Function Registers. The Special Function Registers are located in the first 32 locations of each bank. Register locations 20h-5Fh are General Purpose Registers, implemented as static RAM and are mapped across both banks. All other RAM is unimplemented and returns '0' when read. RP0 (STATUS<5>) is the bank select bit.

- RP0 = 0 Bank 0 is selected
- RP0 = 1 Bank 1 is selected

Note:	The IRP and RP1 bits STATUS<7:6> are
	reserved and should always be maintained
	as '0's.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 64 x 8 in the PIC12F629/675 devices. Each register is accessed, either directly or indirectly, through the File Select Register FSR (see Section 2.4 "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-2: DATA MEMORY MAP OF THE PIC12F629/675

		10121 025/075	
,	File Address	A	File ddress
Indirect addr (1)	00h	Indirect addr (1)	80h
TMPO	01h		81h
	02h		92h
F CL	0211		0211
514105	0.4h	514105	0311
FSR	04n	FSR	84n
GPIO	05h	TRISIO	85h
	06h		86h
	07h		87h
	08h		88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh		8Fh
T1CON	10h	OSCCAL	90h
	11h		91h
	12h		92h
	13h		93h
	14h		94h
	15h	WPU	95h
	16h	100	96h
	17h		97h
	18h		98h
CMCON	10h	VRCON	aah
	14h	FEDATA	QAh
	1Dh		0Ph
	1011 10h		9DH 0Ch
			9011 0Dh
			9Dn
ADRESH ⁽⁻⁾		ADRESL ⁽⁻⁾	9En
ADCON0-	1Fn	ANSEL -/	9Fn
	20h		A0h
General Purpose Registers		accesses 20h-5Fh	
64 Bytes			
	5Fh		DFh
	60h		E0h
	0011		Lon
	7Fh		FFh
Bank 0		Bank 1	
Unimplemented 1: Not a physical	d data mei register.	mory locations, rea	d as '0'.
2: PIC12F675 onl	у.		

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 1											
80h	INDF ⁽¹⁾	Addressing	this Location	uses Conter	nts of FSR to	Address Dat	ta Memory			0000 0000	20,61
81h	OPTION_REG	GPPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	14,31
82h	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	19
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	14
84h	FSR	Indirect Data	ndirect Data Memory Address Pointer								20
85h	TRISIO	_	—	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISI01	TRISIO0	11 1111	21
86h	_	Unimpleme	nimplemented								_
87h	_	Unimpleme	implemented								_
88h	_	Unimpleme	implemented								_
89h	_	Unimpleme	implemented								—
8Ah	PCLATH	_	—	_	Write Buffer	for Upper 5	bits of Progra	am Counter		0 0000	19
8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	15
8Ch	PIE1	EEIE	ADIE	_	_	CMIE	_	_	TMR1IE	0000	16
8Dh	—	Unimpleme	nted							_	—
8Eh	PCON	—	_	—	—	—	—	POR	BOD	0x	18
8Fh	—	Unimpleme	nted							—	—
90h	OSCCAL	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	—	_	1000 00	18
91h	—	Unimpleme	nted							—	—
92h	—	Unimpleme	nted							—	—
93h	—	Unimpleme	nted							—	—
94h	—	Unimpleme	nted							—	—
95h	WPU	—	—	WPU5	WPU4	—	WPU2	WPU1	WPU0	11 -111	21
96h	IOC	—	—	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	23
97h	—	Unimpleme	nted							—	—
98h	—	Unimplemen	nted							—	—
99h	VRCON	VREN	—	VRR	—	VR3	VR2	VR1	VR0	0-0- 0000	42
9Ah	EEDATA	Data EEPR	OM Data Reg	gister						0000 0000	49
9Bh	EEADR	—	Data EEPR	OM Address	Register					-000 0000	49
9Ch	EECON1	_	—	_	—	WRERR	WREN	WR	RD	x000	50
9Dh	EECON2 ⁽¹⁾	EEPROM C	ontrol Regist	er 2							50
9Eh	ADRESL ⁽³⁾	Least Signif	icant 2 bits o	f the Left Shi	fted A/D Res	ult of 8 bits o	r the Right S	hifted Result		xxxx xxxx	44
9Fh	ANSEL ⁽³⁾	—	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0	-000 1111	46,61

TABLE 2-1: SPECIAL FUNCTION REGISTERS SUMMARY (CONTINUED)

Legend: — = unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: This is not a physical register.

2: These bits are reserved and should always be maintained as '0'.

3: PIC12F675 only.

3.3 Pin Descriptions and Diagrams

Each GPIO pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comparator or the A/D, refer to the appropriate section in this Data Sheet.

3.3.1 GP0/AN0/CIN+

Figure 3-1 shows the diagram for this pin. The GP0 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D (PIC12F675 only)
- an analog input to the comparator

3.3.2 GP1/AN1/CIN-/VREF

Figure 3-1 shows the diagram for this pin. The GP1 pin is configurable to function as one of the following:

- as a general purpose I/O
- an analog input for the A/D (PIC12F675 only)
- · an analog input to the comparator
- a voltage reference input for the A/D (PIC12F675 only)

FIGURE 3-1: BLOCK DIAGRAM OF GP0 AND GP1 PINS

4.4 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer. For simplicity, this counter will be referred to as "prescaler" throughout this Data Sheet. The prescaler assignment is controlled in software by the control bit PSA (OPTION_REG<3>). Clearing the PSA bit will assign the prescaler to Timer0. Prescale values are selectable via the PS2:PS0 bits (OPTION_REG<2:0>).

The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x...etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer.

4.4.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device Reset, the following instruction sequence (Example 4-1) must be executed when changing the prescaler assignment from Timer0 to WDT.

EXAMPLE 4-1: CHANGING PRESCALER (TIMER0→WDT)

BCF	STATUS, RPO	;Bank 0
CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 and
		; prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'00101111'	;Required if desired
MOVWF	OPTION_REG	; PS2:PS0 is
CLRWDT		; 000 or 001
		;
MOVLW	b'00101xxx'	;Set postscaler to
MOVWF	OPTION_REG	; desired WDT rate
BCF	STATUS, RPO	;Bank 0

To change prescaler from the WDT to the TMR0 module, use the sequence shown in Example 4-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 4-2: CHANGING PRESCALER (WDT→TIMER0)

CI	RWDT		;Clear WDT and
BS	F	STATUS, RPO	; postscaler ;Bank 1
MC	VLW	b'xxxx0xxx'	;Select TMR0, ; prescale, and ; clock source
MC BC	VWF F	OPTION_REG STATUS,RP0	; ;Bank 0

TABLE 4-1:REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
01h	TMR0	Timer0 M	odule Reg		XXXX XXXX	uuuu uuuu					
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 000u
81h	OPTION_REG	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISIO	_	-	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISI00	11 1111	11 1111

Legend: — = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

_ _ _ _ _ _

- -----

REGISTER 7	-1: ADCO	N0: A/D CON	ITROL REG	ISTER (ADD	RESS: 1Fh)		
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	VCFG	—	_	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 7	ADFM: A/D R	esult Formed	Select bit				
	1 = Right just	fied					
	0 = Left justifi	ed					
bit 6	VCFG: Voltag	e Reference bi	it				
	1 = VREF pin						
	0 = V DD						
bit 5-4	Unimplemen	ted: Read as ')'				
bit 3-2	CHS1:CHS0:	Analog Chann	el Select bits				
	00 = Channel	00 (AN0)					
	01 = Channel	01 (AN1)					
	10 = Channel	02 (AN2)					
bit 1		(D Conversion	Statua bit				
DICI	GO/DONE: A	D Conversion					
	⊥ = A/D CONVe This bit is	ersion cycle in automatically (progress. Set	ting this bit sta	rts an A/D convers	version cycle.	ed
	0 = A/D conve	ersion complete	ed/not in prog	ress		son nas complet	cu.
bit 0	ADON: A/D C	onversion Stat	us bit				
	1 = A/D conve	erter module is	operating				
	0 = A/D conve	erter is shut-off	and consume	es no operatino	g current		
					-		

7.3 A/D Operation During Sleep

The A/D converter module can operate during Sleep. This requires the A/D clock source to be set to the internal RC oscillator. When the RC clock source is selected, the A/D waits one instruction before starting the conversion. This allows the SLEEP instruction to be executed, thus eliminating much of the switching noise from the conversion. When the conversion is complete, the GO/DONE bit is cleared, and the result is loaded into the ADRESH:ADRESL registers. If the A/D interrupt is enabled, the device awakens from Sleep. If the A/D interrupt is not enabled, the A/D module is turned off, although the ADON bit remains set.

When the A/D clock source is something other than RC, a SLEEP instruction causes the present conversion to be aborted, and the A/D module is turned off. The ADON bit remains set.

7.4 Effects of Reset

A device Reset forces all registers to their Reset state. Thus the A/D module is turned off and any pending conversion is aborted. The ADRESH:ADRESL registers are unchanged.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
05h	GPIO		—	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0	xx xxxx	uu uuuu
0Bh, 8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 000u
0Ch	PIR1	EEIF	ADIF			CMIF	_	—	TMR1IF	00 00	00 00
1Eh	ADRESH	Most Signif	icant 8 bits c	f the Left Sh	ifted A/D res	sult or 2 bits	of the Right	Shifted Re	esult	XXXX XXXX	սսսս սսսս
1Fh	ADCON0	ADFM	VCFG	-	-	CHS1	CHS0	GO	ADON	00 0000	00 0000
85h	TRISIO	_	_	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISI00	11 1111	11 1111
8Ch	PIE1	EEIE	ADIE	-	-	CMIE	—	—	TMR1IE	00 00	00 00
9Eh	ADRESL	Least Signi	Least Significant 2 bits of the Left Shifted A/D Result or 8 bits of the Right Shifted Result								uuuu uuuu
9Fh	ANSEL		ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0	-000 1111	-000 1111

TABLE 7-2: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D converter module.

9.3.5 BROWN-OUT DETECT (BOD)

The PIC12F629/675 members have on-chip Brown-out Detect circuitry. A Configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Detect circuitry. If VDD falls below VBOD for greater than parameter (TBOD) in Table 12-4 (see **Section 12.0 "Electrical Specifications"**), the Brown-out situation will reset the device. This will occur regardless of VDD slew-rate. A Reset is not guaranteed to occur if VDD falls below VBOD for less than parameter (TBOD). On any Reset (Power-on, Brown-out, Watchdog, etc.), the chip will remain in Reset until VDD rises above BVDD (see Figure 9-6). The Power-up Timer will now be invoked, if enabled, and will keep the chip in Reset an additional 72 ms.

Note: A Brown-out Detect does not enable the Power-up Timer if the PWRTE bit in the Configuration Word is set.

If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Detect and the Power-up Timer will be re-initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms Reset.

9.3.6 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows: first, PWRT time-out is invoked after POR has expired. Then, OST is activated. The total time-out will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in EC mode with <u>PWRTE</u> bit erased (PWRT disabled), there will be no time-out at all. Figure 9-7, Figure 9-8 and Figure 9-9 depict time-out sequences.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 9-8). This is useful for testing purposes or to synchronize more than one PIC12F629/675 device operating in parallel.

Table 9-6 shows the Reset conditions for some special registers, while Table 9-7 shows the Reset conditions for all the registers.

9.3.7 POWER CONTROL (PCON) STATUS REGISTER

The power CONTROL/STATUS register, PCON (address 8Eh) has two bits.

Bit 0 is \overline{BOD} (Brown-out). \overline{BOD} is unknown on Poweron Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{BOD} = 0$, indicating that a brown-out has occurred. The \overline{BOD} Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by setting \overline{BODEN} bit = 0 in the Configuration Word).

Bit 1 is \overrightarrow{POR} (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if \overrightarrow{POR} is '0', it will indicate that a Power-on Reset must have occurred (i.e., VDD may have gone too low).

Oscillator Configuration	Powe	er-up	Brown-o	Wake-up	
	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	from Sleep
XT, HS, LP	Tpwrt + 1024•Tosc	1024•Tosc	Tpwrt + 1024•Tosc	1024•Tosc	1024•Tosc
RC, EC, INTOSC	TPWRT	—	TPWRT	—	—

TABLE 9-3: TIME-OUT IN VARIOUS SITUATIONS

TABLE 9-4: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOD	то	PD	
0	u	1	1	Power-on Reset
1	0	1	1	Brown-out Detect
u	u	0	u	WDT Reset
u	u	0	0	WDT Wake-up
u	u	u	u	MCLR Reset during normal operation
u	u	1	0	MCLR Reset during Sleep

Legend: u = unchanged, x = unknown

TABLE 9-5: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets ⁽¹⁾
03h	STATUS	IRP	RP1	RPO	TO	PD	Z	DC	С	0001 1xxx	000q quuu
8Eh	PCON	_						POR	BOD	0x	uq

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. **Note 1:** Other (non Power-up) Resets include MCLR Reset, Brown-out Detect and Watchdog Timer Reset during normal operation.

TABLE 9-6: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during Sleep	000h	0001 Ouuu	uu
WDT Reset	000h	0000 uuuu	uu
WDT Wake-up	PC + 1	uuu0 Ouuu	uu
Brown-out Detect	000h	0001 luuu	10
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
0Bh, 8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 000u
0Ch	PIR1	EEIF	ADIF	_	_	CMIF	_	_	TMR1IF	00 00	00 00
8Ch	PIE1	EEIE	ADIE		_	CMIE	_	_	TMR1IE	00 00	00 00

TABLE 9-8:SUMMARY OF INTERRUPT REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by the interrupt module.

9.5 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This must be implemented in software.

Example 9-2 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x20 in Bank 0 and it must also be defined at 0xA0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 9-2:

- · Stores the W register
- Stores the STATUS register in Bank 0
- · Executes the ISR code
- Restores the STATUS (and bank select bit register)
- · Restores the W register

EXAMPLE 9-2: SAVING THE STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;copy W to temp register, could be in either bank
SWAPF BCF	STATUS,W STATUS,RPO	<pre>;swap status to be saved into W ;change to bank 0 regardless of current bank</pre>
MOVWF :	STATUS_TEMP	;save status to bank 0 register
: (ISR)	
SWAPF	STATUS_TEMP,	W;swap STATUS_TEMP register into W, sets bank to original state
MOVWF	STATUS	;move W into STATUS register
SWAPF	W TEMP,F	;swap W TEMP
SWAPF	W_TEMP,W	;swap W_TEMP into W

9.6 Watchdog Timer (WDT)

The Watchdog Timer is a free running, on-chip RC oscillator, which requires no external components. This RC oscillator is separate from the external RC oscillator of the CLKIN pin and INTOSC. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped (for example, by execution of a SLEEP instruction). During normal operation, a WDT Time-out generates a device Reset. If the device is in Sleep mode, a WDT Time-out causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the Configuration bit WDTE as clear (Section 9.1 "Configuration Bits").

9.6.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the prescaler, if assigned to the WDT, and prevent it from timing out and generating a device Reset.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer Time-out.

9.6.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worstcase conditions (i.e., VDD = Min., Temperature = Max., Max. WDT prescaler) it may take several seconds before a WDT Time-out occurs.

DECFSZ	Decrement f, Skip if 0		
Syntax:	[<i>label</i>] DECFSZ f,d		
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$		
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0		
Status Affected:	None		
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making it a 2TcY instruction.		

INCFSZ	Increment f, Skip if 0
Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, a NOP is executed instead, making it a 2TCY instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 2047$
Operation:	$k \rightarrow PC < 10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.

IORLW	Inclusive OR Literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.

INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, the destination is W register. If $d =$ 1, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \to (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVWF OPTION
	Before Instruction OPTION = 0xFF W = 0x4F After Instruction OPTION = 0x4F W = 0x4F

MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.
Words:	1
Cycles:	1
Example:	MOVLW 0x5A
	After Instruction W = 0x5A

No Operation
[label] NOP
None
No operation
None
No operation.
1
1
NOP

12.5 DC Characteristics: PIC12F629/675-E (Extended)

		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param	Davias Characteristics	Min	Turnt	Mox	Unito	Conditions			
No.	Device Characteristics		турт	wax	Units	Vdd	Note		
D020E	Power-down Base Current	—	0.00099	3.5	μA	2.0	WDT, BOD, Comparators, VREF,		
	(IPD)		0.0012	4.0	μA	3.0	and T1OSC disabled		
		—	0.0029	8.0	μA	5.0			
D021E		_	0.3	6.0	μA	2.0	WDT Current ⁽¹⁾		
		_	1.8	9.0	μA	3.0			
		—	8.4	20	μA	5.0			
D022E		—	58	70	μA	3.0	BOD Current ⁽¹⁾		
		—	109	130	μA	5.0			
D023E			3.3	10	μA	2.0	Comparator Current ⁽¹⁾		
		_	6.1	13	μA	3.0			
		—	11.5	24	μA	5.0			
D024E		_	58	70	μA	2.0	CVREF Current ⁽¹⁾		
		_	85	100	μA	3.0			
		—	138	165	μA	5.0			
D025E		_	4.0	10	μA	2.0	T1 Osc Current ⁽¹⁾		
		_	4.6	12	μA	3.0			
		_	6.0	20	μA	5.0			
D026E			0.0012	6.0	μA	3.0	A/D Current ⁽¹⁾		
		_	0.0022	8.5	μA	5.0			

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

	TABLE 12-3:	CLKOUT AND I/O TIMING REQUIREMENTS
--	-------------	---

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
10	TosH2ckL	OSC1↑ to CLOUT↓	—	75	200	ns	(Note 1)
11	TosH2ckH	OSC1↑ to CLOUT↑	—	75	200	ns	(Note 1)
12	TckR	CLKOUT rise time	—	35	100	ns	(Note 1)
13	TckF	CLKOUT fall time	—	35	100	ns	(Note 1)
14	TckL2ioV	CLKOUT↓ to Port out valid	—	_	20	ns	(Note 1)
15	TioV2ckH	Port in valid before CLKOUT↑	Tosc + 200 ns	_	_	ns	(Note 1)
16	TckH2iol	Port in hold after CLKOUT↑	0	—	—	ns	(Note 1)
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	—	50	150 *	ns	
			—	—	300	ns	
18	TosH2iol	OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)	100	_	_	ns	
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	0	_	_	ns	
20	TioR	Port output rise time	—	10	40	ns	
21	TioF	Port output fall time	—	10	40	ns	
22	Tinp	INT pin high or low time	25	_	_	ns	
23	Trbp	GPIO change INT high or low time	Тсү	_	_	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4xTosc.

TABLE 12-5:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	с	haracteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse	Width No Prescaler		0.5 Tcy + 20	—	—	ns	
				With Prescaler	10	—		ns	
41*	Tt0L	T0CKI Low Pulse	Width No Prescaler		0.5 Tcy + 20	—	—	ns	
				With Prescaler	10	—		ns	
42*	Tt0P	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	_	_	ns	
			Synchronous, with Prescaler		15	-	—	ns	
			Asynchronous		30	—	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous,	No Prescaler	0.5 Tcy + 20	—	—	ns	
			Synchronous, with Prescaler		15	-	—	ns	
			Asynchronous		30	—		ns	
47*	Tt1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	—	—	ns	
	Ft1	Timer1 oscillator in (oscillator enabled	nput frequency range by setting bit T1OSCEN)		DC	—	200*	kHz	
48	TCKEZtmr1	Delay from externa	al clock edge to	timer increment	2 Tosc*	—	7 Tosc*	—	
*	* These parameters are characterized but not tested								

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

SLEEP instruction to be executed.

TABLE 12-9: PIC12F6/5 A/D CONVERSION REQUIREMENTS	TABLE 12-9:	PIC12F675 A/D CONVERSION REQUIREMENTS
---	-------------	---------------------------------------

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
130	TAD	A/D Clock Period	1.6	—	_	μS	Tosc based, VREF $\geq 3.0V$
			3.0*	—	—	μs	Tosc based, VREF full range
130	Tad	A/D Internal RC Oscillator Period	3.0*	6.0	9.0*	μs	ADCS<1:0> = 11 (RC mode) At VDD = 2.5V
			2.0*	4.0	6.0*	μs	At VDD = 5.0V
131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	_	11	_	TAD	Set GO bit to new data in A/D result register
132	TACQ	Acquisition Time	(Note 2)	11.5		μS	
			5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 4.1 mV @ 4.096V) from the last sampled voltage (as stored on CHOLD).
134	TGO	Q4 to A/D Clock Start		Tosc/2	_	_	If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 7.1 "A/D Configuration and Operation" for minimum conditions.

TYPICAL IPD WITH A/D ENABLED vs. VDD OVER TEMP (+125°C) FIGURE 13-11:

FIGURE 13-14: TYPICAL IPD WITH WDT ENABLED vs. VDD OVER TEMP (-40°C TO +125°C)

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fron	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC12F629/675	Literature Number: DS41190G
Que	stions:	
1. \	What are the best features of this do	cument?
-		
-		
2. I	How does this document meet your I	hardware and software development needs?
-		
-		
3. I	Do you find the organization of this d	locument easy to follow? If not, why?
-		
-	Albet additions to the decument de l	an think would only one the structure and subject?
4. \	what additions to the document do y	ou think would enhance the structure and subject?
-		
5. \	What deletions from the document o	ould be made without affecting the overall usefulness?
-		
6. I	s there any incorrect or misleading i	nformation (what and where)?
-		
7. I	How would you improve this docume	ent?
-		
-		