E·XFL

Welcome to E-XFL.COM

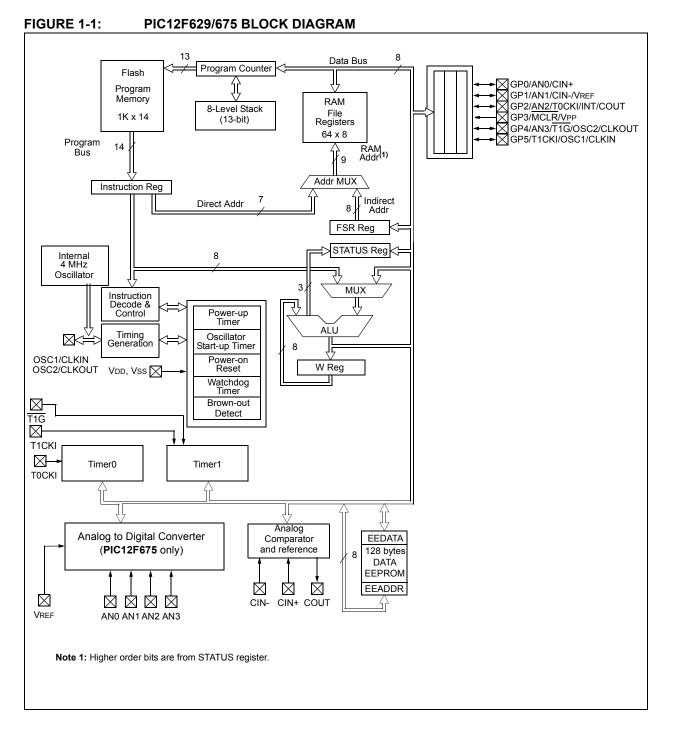
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN-S (6x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f675t-e-mf


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the PIC12F629/675. Additional information may be found in the PIC[®] Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this Data Sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The PIC12F629 and PIC12F675 devices are covered by this Data Sheet. They are identical, except the PIC12F675 has a 10-bit A/D converter. They come in 8-pin PDIP, SOIC, MLF-S and DFN packages. Figure 1-1 shows a block diagram of the PIC12F629/ 675 devices. Table 1-1 shows the pinout description.

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-2: DATA MEMORY MAP OF THE PIC12F629/675

	THE F	PIC12F629/675	
,	File Address	A	File ddress
Indirect addr. ⁽¹⁾	00h	Indirect addr. ⁽¹⁾	80h
TMR0	01h	OPTION_REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
GPIO	05h	TRISIO	85h
	06h		86h
	07h		87h
	08h		88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh		8Fh
T1CON	10h	OSCCAL	90h
	11h		91h
	12h		92h
	13h		93h
	14h		94h
	15h	WPU	95h
	16h	IOC	96h
	17h		97h
	18h		98h
CMCON	19h	VRCON	99h
	1Ah	EEDATA	9Ah
	1Bh	EEADR	9Bh
	1Ch	EECON1	9Ch
	1Dh	EECON2 ⁽¹⁾	9Dh
ADRESH ⁽²⁾	1Eh	ADRESL ⁽²⁾	9Eh
ADCON0 ⁽²⁾	1Fh	ANSEL ⁽²⁾	9Fh
	20h		A0h
General Purpose Registers 64 Bytes		accesses 20h-5Fh	
	5Fh		DFh
	60h		E0h
	754		FFL
Bank 0	7Fh	Bank 1	FFh
Danko		Bank i	
Unimplementer 1: Not a physical 2: PIC12F675 on	register.	mory locations, rea	d as '0'.

2.2.2.5 PIR1 Register

The PIR1 register contains the interrupt flag bits, as shown in Register 2-5.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REGISTER 1 (ADDRESS: 0Ch)

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0
EEIF	ADIF	—	_	CMIF	—	—	TMR1IF
bit 7							bit 0

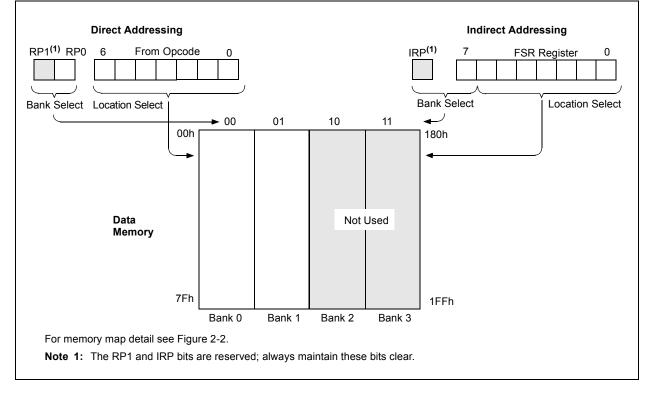
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEIF: EEPROM Write Operation Interrupt Flag bit 1 = The write operation completed (must be cleared in software) 0 = The write operation has not completed or has not been started
bit 6	ADIF: A/D Converter Interrupt Flag bit (PIC12F675 only)
	1 = The A/D conversion is complete (must be cleared in software)0 = The A/D conversion is not complete
bit 5-4	Unimplemented: Read as '0'
bit 3	CMIF: Comparator Interrupt Flag bit
	 1 = Comparator input has changed (must be cleared in software) 0 = Comparator input has not changed
bit 2-1	Unimplemented: Read as '0'
bit 0	TMR1IF: TMR1 Overflow Interrupt Flag bit
	1 = TMR1 register overflowed (must be cleared in software)

0 = TMR1 register did not overflow

2.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-2.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: INDIRECT ADDRESSING

	MOVLW	0x20	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	;clear INDF register
	INCF	FSR	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTINUE			;yes continue

FIGURE 2-2: DIRECT/INDIRECT ADDRESSING PIC12F629/675

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
05h	GPIO		—	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	uu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 000u
19h	CMCON	_	COUT	_	CINV	CIS	CM2	CM1	CM0	-0-0 0000	-0-0 0000
81h	OPTION_REG	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISIO	_	—	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISI00	11 1111	11 1111
95h	WPU	_	_	WPU5	WPU4	_	WPU2	WPU1	WPU0	11 -111	11 -111
96h	IOC	—	_	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	00 0000
9Fh	ANSEL	_	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0	-000 1111	-000 1111

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH GPIO

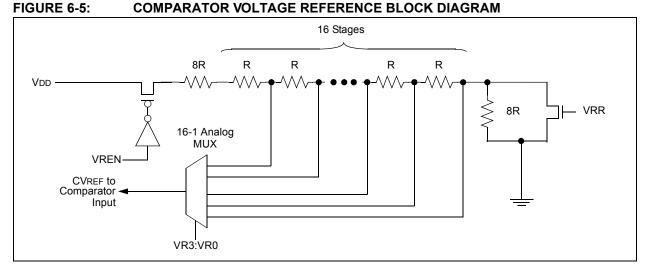
Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by GPIO.

NOTES:

6.5 Comparator Reference

The comparator module also allows the selection of an internally generated voltage reference for one of the comparator inputs. The internal reference signal is used for four of the eight Comparator modes. The VRCON register, Register 6-2, controls the voltage reference module shown in Figure 6-5.

6.5.1 CONFIGURING THE VOLTAGE REFERENCE


The voltage reference can output 32 distinct voltage levels, 16 in a high range and 16 in a low range.

The following equations determine the output voltages:

VRR = 1 (low range): CVREF = (VR3:VR0 / 24) x VDD VRR = 0 (high range): CVREF = (VDD / 4) + (VR3:VR0 x VDD / 32)

6.5.2 VOLTAGE REFERENCE ACCURACY/ERROR

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 6-5) keep CVREF from approaching VSS or VDD. The Voltage Reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in **Section 12.0 "Electrical Specifications"**.

6.6 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output is ensured to have a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (Table 12-7).

6.7 Operation During Sleep

Both the comparator and voltage reference, if enabled before entering Sleep mode, remain active during Sleep. This results in higher Sleep currents than shown in the power-down specifications. The additional current consumed by the comparator and the voltage reference is shown separately in the specifications. To minimize power consumption while in Sleep mode, turn off the comparator, CM2:CM0 = 111, and voltage refeence, VRCON<7> = 0. While the comparator is enabled during Sleep, an interrupt will wake-up the device. If the device wakes up from Sleep, the contents of the CMCON and VRCON registers are not affected.

6.8 Effects of a Reset

A device Reset forces the CMCON and VRCON registers to their Reset states. This forces the comparator module to be in the Comparator Reset mode, CM2:CM0 = 000 and the voltage reference to its off state. Thus, all potential inputs are analog inputs with the comparator and voltage reference disabled to consume the smallest current possible.

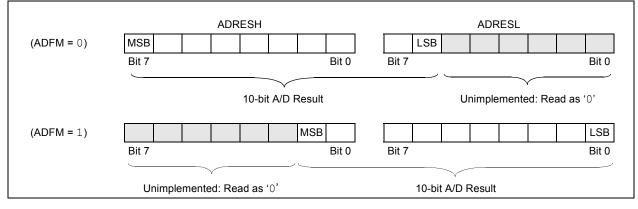
TABLE 7-1: TAD vs. DEVICE OPERATING FREQUENCIES

A/D Clock Source (TAD)		Device Frequency					
Operation	ADCS2:ADCS0	20 MHz	5 MHz	4 MHz	1.25 MHz		
2 Tosc	000	100 ns ⁽²⁾	400 ns ⁽²⁾	500 ns ⁽²⁾	1.6 μs		
4 Tosc	100	200 ns ⁽²⁾	800 ns ⁽²⁾	1.0 μs ⁽²⁾	3.2 μs		
8 Tosc	001	400 ns ⁽²⁾	1.6 μs	2.0 μs	6.4 μs		
16 Tosc	101	800 ns ⁽²⁾	3.2 μs	4.0 μs	12.8 μs ⁽³⁾		
32 Tosc	010	1.6 μs	6.4 μs	8.0 μs ⁽³⁾	25.6 μs ⁽³⁾		
64 Tosc	110	3.2 μs	12.8 μs ⁽³⁾	16.0 μs ⁽³⁾	51.2 μs ⁽³⁾		
A/D RC	x11	2 - 6 μs ^(1,4)					

Legend: Shaded cells are outside of recommended range.

Note 1: The A/D RC source has a typical TAD time of 4 μ s for VDD > 3.0V.

- 2: These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When the device frequency is greater than 1 MHz, the A/D RC clock source is only recommended if the conversion will be performed during Sleep.


7.1.5 STARTING A CONVERSION

The A/D conversion is initiated by setting the GO/DONE bit (ADCON0<1>). When the conversion is complete, the A/D module:

- Clears the GO/DONE bit
- Sets the ADIF flag (PIR1<6>)
- Generates an interrupt (if enabled)

If the conversion must be aborted, the GO/DONE bit can be cleared in software. The ADRESH:ADRESL registers will not be updated with the partially complete A/D conversion sample. Instead, the ADRESH:ADRESL registers will retain the value of the

FIGURE 7-2: 10-BIT A/D RESULT FORMAT

previous conversion. After an aborted conversion, a 2 TAD delay is required before another acquisition can be initiated. Following the delay, an input acquisition is automatically started on the selected channel.

Note: The GO/DONE bit should not be set in the same instruction that turns on the A/D.

7.1.6 CONVERSION OUTPUT

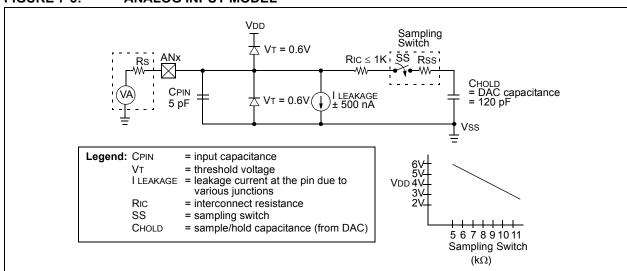
The A/D conversion can be supplied in two formats: left or right shifted. The ADFM bit (ADCON0<7>) controls the output format. Figure 7-2 shows the output formats.

7.2 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 7-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 7-3. The maximum recommended impedance for analog sources is 10 k\Omega. As the impedance

EQUATION 7-1: ACQUISITION TIME

is decreased, the acquisition time may be decreased. After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.


To calculate the minimum acquisition time, Equation 7-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

To calculate the minimum acquisition time, TACQ, see the $PIC^{\textcircled{0}}$ Mid-Range Reference Manual (DS33023).

TACQ	= Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
Тс	= TAMP + TC + TCOFF = $2\mu s$ + TC + [(Temperature -25°C)(0.05 μs /°C)] = CHOLD (RIC + RSS + RS) In(1/2047) = -120pF (1k Ω + 7k Ω + 10k Ω) In(0.0004885)
TACQ	= $16.47\mu s$ = $2\mu s + 16.47\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$ = $19.72\mu s$

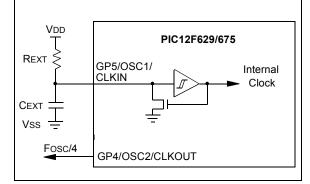
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- **2:** The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin leakage specification.

9.2.3 EXTERNAL CLOCK IN

For applications where a clock is already available elsewhere, users may directly drive the PIC12F629/ 675 provided that this external clock source meets the AC/DC timing requirements listed in **Section 12.0 "Electrical Specifications"**. Figure 9-2 shows how an external clock circuit should be configured.

9.2.4 RC OSCILLATOR


For applications where precise timing is not a requirement, the RC oscillator option is available. The operation and functionality of the RC oscillator is dependent upon a number of variables. The RC oscillator frequency is a function of:

- · Supply voltage
- Resistor (REXT) and capacitor (CEXT) values
- Operating temperature.

The oscillator frequency will vary from unit to unit due to normal process parameter variation. The difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to account for the tolerance of the external R and C components. Figure 9-3 shows how the R/C combination is connected.

Two options are available for this Oscillator mode which allow GP4 to be used as a general purpose I/O or to output Fosc/4.

FIGURE 9-3: RC OSCILLATOR MODE

9.2.5 INTERNAL 4 MHz OSCILLATOR

When calibrated, the internal oscillator provides a fixed 4 MHz (nominal) system clock. See Electrical Specifications, **Section 12.0** "Electrical Specifications", for information on variation over voltage and temperature.

Two options are available for this Oscillator mode which allow GP4 to be used as a general purpose I/O or to output Fosc/4.

9.2.5.1 Calibrating the Internal Oscillator

A calibration instruction is programmed into the last location of program memory. This instruction is a RETLW XX, where the literal is the calibration value. The literal is placed in the OSCCAL register to set the calibration of the internal oscillator. Example 9-1 demonstrates how to calibrate the internal oscillator. For best operation, decouple (with capacitance) VDD and Vss as close to the device as possible.

Note: Erasing the device will also erase the preprogrammed internal calibration value for the internal oscillator. The calibration value must be saved prior to erasing part as specified in the PIC12F629/675 Programming specification. Microchip Development Tools maintain all Calibration bits to factory settings.

EXAMPLE 9-1: CALIBRATING THE INTERNAL OSCILLATOR

BSF CALL MOVWF	STATUS, 3FFh OSCCAL		;Bank 1 ;Get the cal value ;Calibrate
BCF	STATUS,	RP0	;Bank 0

9.2.6 CLKOUT

The PIC12F629/675 devices can be configured to provide a clock out signal in the INTOSC and RC oscillator modes. When configured, the oscillator frequency divided by four (Fosc/4) is output on the GP4/OSC2/CLKOUT pin. Fosc/4 can be used for test purposes or to synchronize other logic.

9.3 Reset

The PIC12F629/675 differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- WDT Reset during Sleep C)
- MCLR Reset during normal operation d)
- e) MCLR Reset during Sleep
- Brown-out Detect (BOD) f)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:

- · Power-on Reset
- MCLR Reset
- · WDT Reset
- · WDT Reset during Sleep
- · Brown-out Detect (BOD) Reset

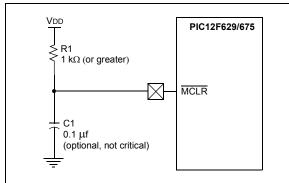
They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different Reset situations as indicated in Table 9-4. These bits are used in software to determine the nature of the Reset. See Table 9-7 for a full description of Reset states of all registers.

A simplified block diagram of the on-chip Reset Circuit is shown in Figure 9-4.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See Table 12-4 in Electrical Specifications Section for pulse-width specification.

FIGURE 9-4: External Reset MCLR/ VPP pin SLEEF WDT WDT Module Time-out Reset VDD Rise Detect Power-on Reset סס Brown-out Detect S Q BODEN OST/PWRT OST Chip_Reset 10-bit Ripple Counter Q R OSC1/ CLKIN pin PWRT On-chip⁽¹ 10-bit Ripple Counter RC OSC Enable PWRT See Table 9-3 for time-out situations. Enable OST Note 1: This is a separate oscillator from the INTOSC/EC oscillator.

SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT


9.3.1 MCLR

It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the MCLR pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both MCLR Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 9-5, is suggested.

An internal MCLR option is enabled by setting the MCLRE bit in the Configuration Word. When enabled, MCLR is internally tied to VDD. No internal pull-up option is available for the MCLR pin.

FIGURE 9-5: RECOMMENDED MCLR CIRCUIT

9.3.2 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. To take advantage of the POR, simply tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details (see Section 12.0 "Electrical Specifications"). If the BOD is enabled, the maximum rise time specification does not apply. The BOD circuitry will keep the device in Reset until VDD reaches VBOD (see Section 9.3.5 "Brown-Out Detect (BOD)").

Note:	The POR circuit does not produce a	in
	internal Reset when VDD declines.	

When the device starts normal operation (exits the Reset condition), device operating parameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

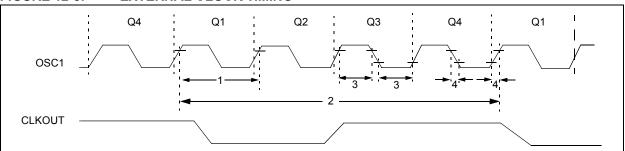
For additional information, refer to Application Note AN607, "Power-up Trouble Shooting".

9.3.3 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms (nominal) time-out on power-up only, from POR or Brown-out Detect. The Power-up Timer operates on an internal RC oscillator. The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the <u>VDD to</u> rise to an acceptable level. A Configuration bit, PWRTE can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should always be enabled when Brown-out Detect is enabled.

The Power-up Time delay will vary from chip to chip and due to:

- VDD variation
- Temperature variation
- · Process variation.


See DC parameters for details (Section 12.0 "Electrical Specifications").

9.3.4 OSCILLATOR START-UP TIMER (OST)

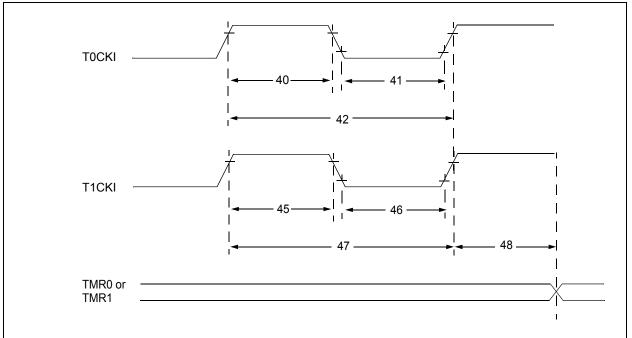
The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from Sleep.

12.9 AC CHARACTERISTICS: PIC12F629/675 (INDUSTRIAL, EXTENDED)

FIGURE 12-5: EXTERNAL CLOCK TIMING

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS


Param No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	37	kHz	LP Osc mode
			DC	_	4	MHz	XT mode
			DC	_	20	MHz	HS mode
			DC	_	20	MHz	EC mode
		Oscillator Frequency ⁽¹⁾	5	_	37	kHz	LP Osc mode
			—	4	—	MHz	INTOSC mode
			DC	—	4	MHz	RC Osc mode
			0.1	—	4	MHz	XT Osc mode
			1	_	20	MHz	HS Osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	27	_	×	μS	LP Osc mode
			50	—	∞	ns	HS Osc mode
			50	—	∞	ns	EC Osc mode
			250	—	∞	ns	XT Osc mode
		Oscillator Period ⁽¹⁾	27		200	μS	LP Osc mode
			—	250	—	ns	INTOSC mode
			250	—	—	ns	RC Osc mode
			250	—	10,000	ns	XT Osc mode
			50	—	1,000	ns	HS Osc mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	Tcy = 4/Fosc
3	TosL,	External CLKIN (OSC1) High	2*	_	—	μS	LP oscillator, Tosc L/H duty cycle
	TosH	External CLKIN Low	20*	—	—	ns	HS oscillator, Tosc L/H duty
							cycle
			100 *	—	—	ns	XT oscillator, Tosc L/H duty cycle
4	TosR,	External CLKIN Rise	—	—	50*	ns	LP oscillator
	TosF	External CLKIN Fall	—	—	25*	ns	XT oscillator
			—	—	15*	ns	HS oscillator

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

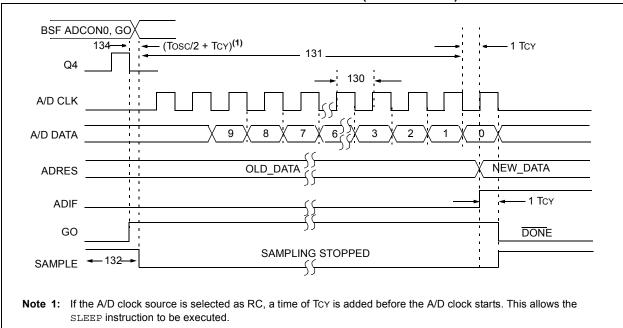
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the 'max' cycle time limit is "DC" (no clock) for all devices.

Param No.	Sym	с	Characteristic		Min	Тур†	Мах	Units	Conditions
40*	Tt0H	T0CKI High Pulse	OCKI High Pulse Width		0.5 Tcy + 20	—	_	ns	
				With Prescaler	10	—		ns	
41*	Tt0L	T0CKI Low Pulse Width		No Prescaler	0.5 Tcy + 20	—	_	ns	
				With Prescaler	10	—	_	ns	
42*	TtOP	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	_	_	ns	
			Synchronous, with Prescaler		15	—		ns	
			Asynchronous		30	—	_	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 TCY + 20	—	_	ns	
			Synchronous, with Prescaler		15	-	_	ns	
			Asynchronous		30	—		ns	
47*	Tt1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	-	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	_	_	ns	
	Ft1		nput frequency range I by setting bit T1OSCEN)		DC	-	200*	kHz	
48	TCKEZtmr1	Delay from externa	al clock edge to	timer increment	2 Tosc*	—	7 Tosc*	—	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
A01	NR	Resolution	_		10 bits	bit		
A02	Eabs	Total Absolute Error*	_	—	±1	LSb	VREF = 5.0V	
A03	EIL	Integral Error		_	±1	LSb	VREF = 5.0V	
A04	Edl	Differential Error	—	—	±1	LSb	No missing codes to 10 bits VREF = 5.0V	
A05	Efs	Full Scale Range	2.2*	—	5.5*	V		
A06	EOFF	Offset Error	_	—	±1	LSb	VREF = 5.0V	
A07	Egn	Gain Error	_	—	±1	LSb	VREF = 5.0V	
A10	—	Monotonicity	_	guaranteed ⁽³⁾	—	—	$VSS \leq VAIN \leq VREF+$	
A20 A20A	VREF	Reference Voltage	2.0 2.5	_	 Vdd + 0.3	V	Absolute minimum to ensure 10-bit accuracy	
A21	Vref	Reference V High (VDD or VREF)	Vss	—	Vdd	V		
A25	VAIN	Analog Input Voltage	Vss	—	VREF	V		
A30	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	10	kΩ		
A50	IREF	VREF Input Current ⁽²⁾	10	-	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN.	
				—	10	μA	During A/D conversion cycle.	


TABLE 12-8: PIC12F6/5 A/D CONVERTER CHARACTERISTICS	TABLE 12-8 :	PIC12F675 A/D CONVERTER CHARACTERISTICS:
---	---------------------	--

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from External VREF or VDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

FIGURE 12-11:	PIC12F675 A/D CONVERSION TIMING (SLEEP MODE)

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
130	Tad	A/D Clock Period	1.6	—	_	μS	$VREF \ge 3.0V$
			3.0*	—		μS	VREF full range
130	Tad	A/D Internal RC	0.0*		0.0+		ADCS<1:0> = 11 (RC mode)
		Oscillator Period	3.0*	6.0	9.0*	μs	At VDD = $2.5V$
			2.0*	4.0	6.0*	μs	At VDD = 5.0V
131	ΤΟΝΥ	Conversion Time (not including Acquisition Time) ⁽¹⁾	_	11	_	Tad	
132	TACQ	Acquisition Time	(Note 2)	11.5	_	μS	
			5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 4.1 mV @ 4.096V) from the last sampled voltage (as stored on CHOLD).
134	TGO	Q4 to A/D Clock Start		Tosc/2 + Tcy		_	If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 7.1 "A/D Configuration and Operation" for minimum conditions.

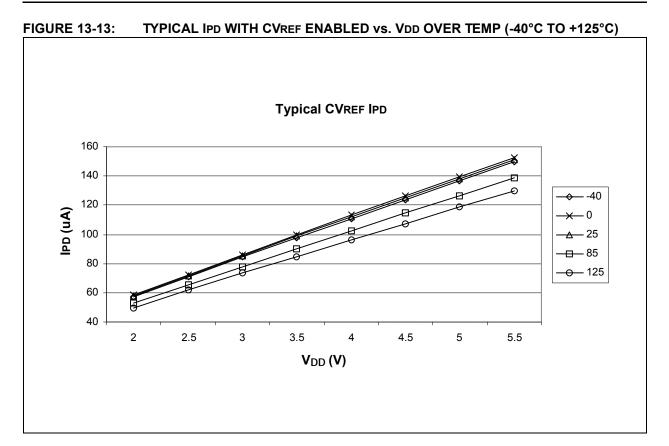
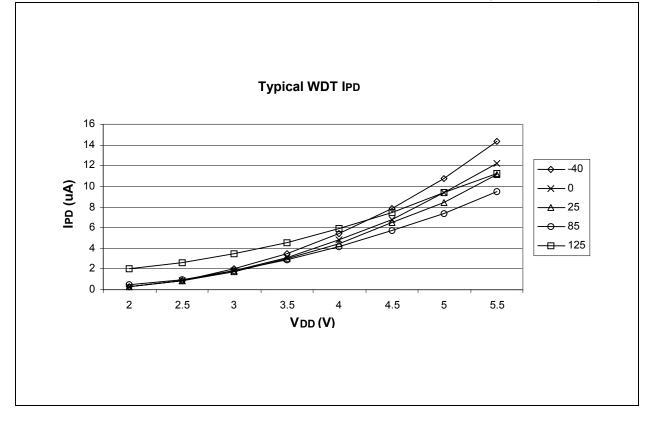



FIGURE 13-14: TYPICAL IPD WITH WDT ENABLED vs. VDD OVER TEMP (-40°C TO +125°C)

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC12F629/675	Literature Number: DS41190G
Que	stions:	
1. \	What are the best features of this do	cument?
_		
2. ł	How does this document meet your	hardware and software development needs?
_		
-		
3. I	Do you find the organization of this o	locument easy to follow? If not, why?
-		
-		
4. \	What additions to the document do y	you think would enhance the structure and subject?
-		
-		
5. \	What deletions from the document c	ould be made without affecting the overall usefulness?
-		
-		aformation (what and what 10
6. I	s there any incorrect or misleading i	nformation (what and where)?
-		
- 7. I	How would you improve this docume	ant?
<i>ı</i> . 1		ant :
-		
-		