E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN-S (6x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f675t-i-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-2: DATA MEMORY MAP OF THE PIC12F629/675

		10121 025/075	
,	File Address	A	File ddress
Indirect addr (1)	00h	Indirect addr (1)	80h
TMPO	01h		81h
	02h		92h
	0211		0211
514105	0.4h	514105	0311
FSR	04n	FSR	84n
GPIO	05h	TRISIO	85h
	06h		86h
	07h		87h
	08h		88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh		8Fh
T1CON	10h	OSCCAL	90h
	11h		91h
	12h		92h
	13h		93h
	14h		94h
	15h	WPU	95h
	16h	100	96h
	17h		97h
	18h		98h
CMCON	10h	VRCON	aah
	14h	FEDATA	QAh
	1Dh		0Ph
	10h		9DH 0Ch
			9011 0Dh
			9Dn
ADRESH ⁽⁻⁾		ADRESL ⁽⁻⁾	9En
ADCON0-	1Fn	ANSEL -/	9Fn
	20h		A0h
General Purpose Registers		accesses 20h-5Fh	
64 Bytes			
	5Fh		DFh
	60h		E0h
	0011		Lon
	7Fh		FFh
Bank 0		Bank 1	
Unimplemented 1: Not a physical	d data mei register.	mory locations, rea	d as '0'.
2: PIC12F675 onl	у.		

2.2.2.5 PIR1 Register

The PIR1 register contains the interrupt flag bits, as shown in Register 2-5.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REGISTER 1 (ADDRESS: 0Ch)

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0
EEIF	ADIF	—	—	CMIF	—	—	TMR1IF
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEIF: EEPROM Write Operation Interrupt Flag bit
	1 = The write operation completed (must be cleared in software)
	0 = The write operation has not completed or has not been started
bit 6	ADIF: A/D Converter Interrupt Flag bit (PIC12F675 only)
	1 = The A/D conversion is complete (must be cleared in software)
	0 = The A/D conversion is not complete
bit 5-4	Unimplemented: Read as '0'
bit 3	CMIF: Comparator Interrupt Flag bit
	1 = Comparator input has changed (must be cleared in software)
	0 = Comparator input has not changed
bit 2-1	Unimplemented: Read as '0'
bit 0	TMR1IF: TMR1 Overflow Interrupt Flag bit
	1 = TMR1 register overflowed (must be cleared in software)

0 = TMR1 register did not overflow

2.2.2.6 PCON Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Detect (BOD)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON Register bits are shown in Register 2-6.

REGISTER 2-6: PCON: POWER CONTROL REGISTER (ADDRESS: 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x
—	_	_	—	—	—	POR	BOD
bit 7			•	•			bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-2	Unimplemented: Read as '0'
bit 1	POR: Power-on Reset Status bit
	 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOD: Brown-out Detect Status bit
	 1 = No Brown-out Detect occurred 0 = A Brown-out Detect occurred (must be set in software after a Brown-out Detect occurs)

2.2.2.7 OSCCAL Register

The Oscillator Calibration register (OSCCAL) is used to calibrate the internal 4 MHz oscillator. It contains 6 bits to adjust the frequency up or down to achieve 4 MHz.

The OSCCAL register bits are shown in Register 2-7.

REGISTER 2-7: OSCCAL: OSCILLATOR CALIBRATION REGISTER (ADDRESS: 90h)

R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 7-2	CAL5:CAL0:	6-bit Signed O	scillator Calib	ration bits			
111111 = Maximum frequency							

100000 =	Center	frequency

000000 = Minimum frequency

bit 1-0 Unimplemented: Read as '0'

NOTES:

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
h:+ 7		tad. Daad as f	o'							
DIL 7		ieu: Reau as	U bla bit							
DILO										
	This bit is ign	<u>ored</u>								
	If TMR10N =	<u>1:</u>								
	1 = Timer1 is	on if T1G pin is	s low							
	0 = Timer1 is	on								
bit 5-4	T1CKPS1:T1	CKPS0: Limer	1 Input Clock	Prescale Selec	ct bits					
	11 = 1:8 Pres	cale Value								
	01 = 1:2 Pres	cale Value	ale Value							
	00 = 1:1 Pres	cale Value								
bit 3	T1OSCEN: L	P Oscillator En	able Control b	pit						
	If INTOSC with	thout CLKOUT	oscillator is a	<u>ctive:</u>						
	1 = LP oscilla 0 = LP oscilla	tor is enabled to tor is off	for Timer1 clo	CK						
	Else:									
	This bit is igno	ored								
bit 2	T1SYNC: Tim	ner1 External C	lock Input Syr	nchronization C	Control bit					
	TMR1CS = 1	<u>.</u>								
	1 = Do not synchronize external clock input									
	0 = SynchronTMR1CS = 0	0 = Synchronize external clock input TMR1CS = 0:								
	This bit is igno	_ ored. Timer1 u	ses the interna	al clock.						
bit 1	TMR1CS: Tin	ner1 Clock Sou	irce Select bit							
	1 = External o	clock from T1O	SO/T1CKI pin	(on the rising	edge)					
	0 = Internal cl	lock (Fosc/4)								
bit 0	TMR1ON: Tir	ner1 On bit								
	1 = Enables T	Fimer1								
	0 = Stops I m	ieri								

REGISTER 5-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS: 10h)

6.0 COMPARATOR MODULE

The PIC12F629/675 devices have one analog comparator. The inputs to the comparator are multiplexed with the GP0 and GP1 pins. There is an on-chip Comparator Voltage Reference that can also be applied to an input of the comparator. In addition, GP2 can be configured as the comparator output.

The Comparator Control Register (CMCON), shown in Register 6-1, contains the bits to control the comparator.

REGISTER 6-1: CMCON: COMPARATOR CONTROL REGISTER (ADDRESS: 19h)

U-0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	COUT	—	CINV	CIS	CM2	CM1	CM0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	COUT: Comparator Output bit
	When CINV = 0:
	1 = VIN + > VIN -
	0 = VIN+ < VIN-
	When CINV = 1:
	1 = VIN + < VIN-
	0 = VIN + > VIN -
bit 5	Unimplemented: Read as '0'
bit 4	CINV: Comparator Output Inversion bit
	1 = Output inverted
	0 = Output not inverted
bit 3	CIS: Comparator Input Switch bit
	When CM2:CM0 = 110 or 101:
	1 = VIN- connects to CIN+
	0 = VIN- connects to CIN-
bit 2-0	CM2:CM0: Comparator Mode bits
	Figure 6-2 shows the Comparator modes and CM2:CM0 bit settings

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
0Bh, 8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 000u
0Ch	PIR1	EEIF	ADIF	_	_	CMIF	_	_	TMR1IF	00 00	00 00
8Ch	PIE1	EEIE	ADIE		_	CMIE	_	_	TMR1IE	00 00	00 00

TABLE 9-8:SUMMARY OF INTERRUPT REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by the interrupt module.

9.5 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This must be implemented in software.

Example 9-2 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x20 in Bank 0 and it must also be defined at 0xA0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 9-2:

- · Stores the W register
- Stores the STATUS register in Bank 0
- · Executes the ISR code
- Restores the STATUS (and bank select bit register)
- · Restores the W register

EXAMPLE 9-2: SAVING THE STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;copy W to temp register, could be in either bank
SWAPF BCF	STATUS,W STATUS,RPO	<pre>;swap status to be saved into W ;change to bank 0 regardless of current bank</pre>
MOVWF :	STATUS_TEMP	;save status to bank 0 register
: (ISR)	
SWAPF	STATUS_TEMP,	W;swap STATUS_TEMP register into W, sets bank to original state
MOVWF	STATUS	;move W into STATUS register
SWAPF	W TEMP,F	;swap W TEMP
SWAPF	W_TEMP,W	;swap W_TEMP into W

9.6 Watchdog Timer (WDT)

The Watchdog Timer is a free running, on-chip RC oscillator, which requires no external components. This RC oscillator is separate from the external RC oscillator of the CLKIN pin and INTOSC. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped (for example, by execution of a SLEEP instruction). During normal operation, a WDT Time-out generates a device Reset. If the device is in Sleep mode, a WDT Time-out causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the Configuration bit WDTE as clear (Section 9.1 "Configuration Bits").

9.6.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the prescaler, if assigned to the WDT, and prevent it from timing out and generating a device Reset.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer Time-out.

9.6.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worstcase conditions (i.e., VDD = Min., Temperature = Max., Max. WDT prescaler) it may take several seconds before a WDT Time-out occurs.

TABLE 9-9: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other Resets
81h	OPTION_REG	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
2007h	Config. bits	CP	BODEN	MCLRE	PWRTE	WDTE	F0SC2	F0SC1	F0SC0	uuuu uuuu	uuuu uuuu

Legend: u = Unchanged, shaded cells are not used by the Watchdog Timer.

9.7 Power-Down Mode (Sleep)

The Power-down mode is entered by executing a SLEEP instruction.

If the Watchdog Timer is enabled:

- · WDT will be cleared but keeps running
- PD bit in the STATUS register is cleared
- TO bit is set
- · Oscillator driver is turned off
- I/O ports maintain the status they had before Sleep was executed (driving high, low, or high-impedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin and the comparators and CVREF should be disabled. I/O pins that are high-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on GPIO should be considered.

The MCLR pin must be at a logic high level (VIHMC).

Note: It should be noted that a Reset generated by a WDT Time-out does not drive MCLR pin low.

9.7.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin
- 2. Watchdog Timer Wake-up (if WDT was enabled)
- Interrupt from GP2/INT pin, GPIO change, or a peripheral interrupt.

The first event will cause a device Reset. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. TO bit is cleared if WDT Wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the SLEEP instruction of the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from Sleep. The SLEEP instruction is completely executed.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

FIGURE 9-13: WAKE-UP FROM SLEEP THROUGH INTERRUPT

10.0 INSTRUCTION SET SUMMARY

The PIC12F629/675 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

Each PIC12F629/675 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type, and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 10-1, while the various opcode fields are summarized in Table 10-1.

Table 10-2 lists the instructions recognized by the MPASMTM assembler. A complete description of each instruction is also available in the PIC[®] Mid-Range Reference Manual (DS33023).

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

Note:	To maintain upward compatibility with
	future products, do not use the OPTION
	and TRISIO instructions.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

10.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. For example, a CLRF GPIO instruction will read GPIO, clear all the data bits, then write the result back to GPIO. This example would have the unintended result that the condition that sets the GPIF flag would be cleared.

TABLE 10-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
то	Time-out bit
PD	Power-down bit

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

TABLE 10-2: PIC12F629/675 INSTRUCTION SET

Mnemonic, Operands		Description	Cycles		14-Bit	Opcode	Status	N	
		Description		MSb			LSb	Affected	Notes
	BYTE-ORIENTED FILE REGISTER OPERATIONS								
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE REGIST	ER OPER	RATION	IS			1	
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
Note 1:	Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present								

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

BTFSC	Bit Test, Skip if Clear
Syntax:	[<i>label</i>] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.

CLRF	Clear f			
Syntax:	[<i>label</i>] CLRF f			
Operands:	$0 \leq f \leq 127$			
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Description:	The contents of register 'f' are cleared and the Z bit is set.			

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

CLRW	Clear W			
Syntax:	[label] CLRW			
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Description:	W register is cleared. Zero bit (Z) is set.			

RETFIE	Return from Interrupt	RETLW	Retur	
Syntax:	[label] RETFIE	Syntax:	[labe	
Operands:	None	Operands:	0 ≤ k :	
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$	Operation:	$k \rightarrow (1)$ TOS -	
Status Affected:	None	Status Affected:	None	
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE	Description:	The V eight- count the st This i	
	(INTCON<7>). This is a two-cycle	Words:	1	
Mordo		Cycles:	2	
Cycles:	2 DETETE	Example:	CAL tab	
	After Interrupt PC = TOS GIE = 1	TABLE	• • ADDI RETI	

RETLW	Return with literal in W				
Syntax:	[<i>label</i>] RETLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC				
Status Affected:	None				
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.				
Words:	1				
Cycles:	2				
Example:	CALL TABLE;W contains table				
TABLE	<pre>;offset value ;W now has table value ADDWF PCL;W = offset RETLW k1 ;Begin table RETLW k2 ; RETLW kn ; End of table Before Instruction W = 0x07 After Instruction W = value of k8</pre>				
RETURN	Return from Subroutine				
Syntax:	[label] RETURN				
Operands:	None				
Operation:	$TOS \rightarrow PC$				
Status Affected:	None				
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle				

instruction.

12.9 AC CHARACTERISTICS: PIC12F629/675 (INDUSTRIAL, EXTENDED)

FIGURE 12-5: EXTERNAL CLOCK TIMING

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
	Fosc	External CLKIN Frequency ⁽¹⁾	DC		37	kHz	LP Osc mode	
			DC	—	4	MHz	XT mode	
			DC	—	20	MHz	HS mode	
			DC	—	20	MHz	EC mode	
		Oscillator Frequency ⁽¹⁾	5	_	37	kHz	LP Osc mode	
			—	4	—	MHz	INTOSC mode	
			DC	—	4	MHz	RC Osc mode	
			0.1	—	4	MHz	XT Osc mode	
			1	_	20	MHz	HS Osc mode	
1	Tosc	External CLKIN Period ⁽¹⁾	27		8	μS	LP Osc mode	
			50	_	×	ns	HS Osc mode	
			50	—	∞	ns	EC Osc mode	
			250	—	∞	ns	XT Osc mode	
		Oscillator Period ⁽¹⁾	27		200	μS	LP Osc mode	
			—	250	—	ns	INTOSC mode	
			250	—	—	ns	RC Osc mode	
			250	—	10,000	ns	XT Osc mode	
			50	_	1,000	ns	HS Osc mode	
2	Тсү	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc	
3	TosL,	External CLKIN (OSC1) High	2*		_	μS	LP oscillator, Tosc L/H duty cycle	
	TosH	External CLKIN Low	20*	—	—	ns	HS oscillator, Tosc L/H duty	
							cycle	
			100 *	—	—	ns	XT oscillator, Tosc L/H duty cycle	
4	TosR,	External CLKIN Rise	—	—	50*	ns	LP oscillator	
	IosF	External CLKIN Fall	—	—	25*	ns	XT oscillator	
			—	—	15*	ns	HS oscillator	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the 'max' cycle time limit is "DC" (no clock) for all devices.

FIGURE 12-8: BROWN-OUT DETECT TIMING AND CHARACTERISTICS

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
A01	NR	Resolution		—	10 bits	bit		
A02	Eabs	Total Absolute Error*	_	—	±1	LSb	VREF = 5.0V	
A03	EIL	Integral Error	_	—	±1	LSb	VREF = 5.0V	
A04	Edl	Differential Error	_	_	±1	LSb	No missing codes to 10 bits VREF = 5.0V	
A05	Efs	Full Scale Range	2.2*	—	5.5*	V		
A06	EOFF	Offset Error		—	±1	LSb	VREF = 5.0V	
A07	Egn	Gain Error	—	—	±1	LSb	VREF = 5.0V	
A10	—	Monotonicity	—	guaranteed ⁽³⁾	_	—	$Vss \leq Vain \leq Vref+$	
A20 A20A	VREF	Reference Voltage	2.0 2.5	_	 Vdd + 0.3	V	Absolute minimum to ensure 10-bit accuracy	
A21	VREF	Reference V High (VDD or VREF)	Vss	_	Vdd	V		
A25	Vain	Analog Input Voltage	Vss	_	VREF	V		
A30	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	10	kΩ		
A50	IREF	VREF Input Current ⁽²⁾	10	—	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN.	
*	These				10	μA	During A/D conversion cycle.	

TABLE 12-8:	PIC12F675 A/D CONVERTER CHARACTERISTICS:
-------------	--

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from External VREF or VDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

NOTES:

8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		8		
Pitch	е		1.27 BSC		
Overall Height	А	-	-	1.75	
Molded Package Thickness	A2	1.25	-	—	
Standoff §	A1	0.10	-	0.25	
Overall Width	E	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	4.90 BSC			
Chamfer (optional)	h	0.25 – 0.50			
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.04 REF			
Foot Angle	ф	0°	-	8°	
Lead Thickness	С	0.17	-	0.25	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	_	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-057B

NOTES:

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A

This is a new data sheet.

Revision B

Added characterization graphs.

Updated specifications.

Added notes to indicate Microchip programmers maintain all Calibration bits to factory settings and the PIC12F675 ANSEL register must be initialized to configure pins as digital I/O.

Updated MLF-S package name to DFN-S.

Revision C

Revision D (01/2007)

Updated Package Drawings; Replace PICmicro with PIC; Revised Product ID example (b).

Revision E (03/2007)

Replaced Package Drawings (Rev. AM); Replaced Development Support Section.

Revision F (09/2009)

Updated Registers to new format; Added information to the "Package Marking Information" (8-Lead DFN) and "Package Details" sections (8-Lead Dual Flat, No Lead Package (MD) 4X4X0.9 mm Body (DFN)); Added Land Patterns for SOIC (SN) and DFN-S (MF) packages; Updated Register 3-2; Added MD Package to the Product identification System chapter; Other minor corrections.

Revision G (03/2010)

Updated the Instruction Set Summary section, adding pages 76 and 77.

APPENDIX B: DEVICE DIFFERENCES

The differences between the PIC12F629/675 devices listed in this data sheet are shown in Table B-1.

TABLE B-1: DEVICE DIFFERENCES

Feature	PIC12F629	PIC12F675
A/D	No	Yes