

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-28-16
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1302t028x0128abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

- Ultra low power consumption
- Nested Vectored Interrupt Controller (NVIC)
- · Event Request Unit (ERU) for processing of external and internal service requests
- MATH Co-processor (MATH)
 - CORDIC unit for trigonometric calculation
 - division unit

On-Chip Memories

- 8 kbytes on-chip ROM
- 16 kbytes on-chip high-speed SRAM
- up to 200 kbytes on-chip Flash program and data memory

Communication Peripherals

• Two Universal Serial Interface Channels (USIC), usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces

Analog Frontend Peripherals

- A/D Converters
 - up to 12 analog input pins
 - 2 sample and hold stages with 8 analog input channels each
 - fast 12-bit analog to digital converter with adjustable gain
- Up to 8 channels of out of range comparators (ORC)
- Up to 3 fast analog comparators (ACMP)
- Temperature Sensor (TSE)

Industrial Control Peripherals

- Capture/Compare Units 4 (CCU4) as general purpose timers
- Capture/Compare Units 8 (CCU8) for motor control and power conversion
- · Position Interfaces (POSIF) for hall and quadrature encoders and motor positioning
- Brightness and Colour Control Unit (BCCU), for LED color and dimming application

System Control

- Window Watchdog Timer (WDT) for safety sensitive applications
- Real Time Clock module with alarm support (RTC)
- System Control Unit (SCU) for system configuration and control
- Pseudo random number generator (PRNG) for fast random data generation

Input/Output Lines

- Tri-stated in input mode
- Push/pull or open drain output mode

Summary of Features

Table 1 Synopsis of XMC1300 Device Types (cont'd)

Derivative	Package	Flash Kbytes	SRAM Kbytes
XMC1302-T016X0016	PG-TSSOP-16-8	16	16
XMC1302-T016X0032	PG-TSSOP-16-8	32	16
XMC1302-T028X0016	PG-TSSOP-28-8	16	16
XMC1302-T028X0032	PG-TSSOP-28-8	32	16
XMC1302-T028X0064	PG-TSSOP-28-8	64	16
XMC1302-T028X0128	PG-TSSOP-28-8	128	16
XMC1302-T028X0200	PG-TSSOP-28-8	200	16
XMC1301-T038F0008	PG-TSSOP-38-9	8	16
XMC1301-T038F0016	PG-TSSOP-38-9	16	16
XMC1301-T038F0032	PG-TSSOP-38-9	32	16
XMC1301-T038X0032	PG-TSSOP-38-9	32	16
XMC1301-T038F0064	PG-TSSOP-38-9	64	16
XMC1302-T038X0016	PG-TSSOP-38-9	16	16
XMC1302-T038X0032	PG-TSSOP-38-9	32	16
XMC1302-T038X0064	PG-TSSOP-38-9	64	16
XMC1302-T038X0128	PG-TSSOP-38-9	128	16
XMC1302-T038X0200	PG-TSSOP-38-9	200	16
XMC1301-Q024F0008	PG-VQFN-24-19	8	16
XMC1301-Q024F0016	PG-VQFN-24-19	16	16
XMC1302-Q024F0016	PG-VQFN-24-19	16	16
XMC1302-Q024F0032	PG-VQFN-24-19	32	16
XMC1302-Q024F0064	PG-VQFN-24-19	64	16
XMC1302-Q024X0016	PG-VQFN-24-19	16	16
XMC1302-Q024X0032	PG-VQFN-24-19	32	16
XMC1302-Q024X0064	PG-VQFN-24-19	64	16
XMC1301-Q040F0008	PG-VQFN-40-13	8	16
XMC1301-Q040F0016	PG-VQFN-40-13	16	16
XMC1301-Q040F0032	PG-VQFN-40-13	32	16
XMC1302-Q040X0016	PG-VQFN-40-13	16	16
XMC1302-Q040X0032	PG-VQFN-40-13	32	16

General Device Information

2.2.1 Package Pin Summary

The following general building block is used to describe each pin:

Table 5 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type
Px.y	Ν	Ν	Pad Class

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type:

- STD_INOUT(standard bi-directional pads)
- STD_INOUT/AN (standard bi-directional pads with analog input)
- High Current (high current bi-directional pads)
- STD_IN/AN (standard input pads with analog input)
- Power (power supply)

Details about the pad properties are defined in the Electrical Parameters.

Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes
P0.0	23	17	13	15	7	STD_IN OUT	
P0.1	24	18	-	-	-	STD_IN OUT	
P0.2	25	19	-	-	-	STD_IN OUT	
P0.3	26	20	-	-	-	STD_IN OUT	
P0.4	27	21	14	-	-	STD_IN OUT	
P0.5	28	22	15	16	8	STD_IN OUT	
P0.6	29	23	16	17	9	STD_IN OUT	

Table 6 Package Pin Mapping

General Device Information

Table 0	Fach	ayerini	napping	(cont u)			
Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes
P2.1	2	36	26	2	-	STD_IN OUT/AN	
P2.2	3	37	27	3	-	STD_IN/ AN	
P2.3	4	38	-	-	-	STD_IN/ AN	
P2.4	5	1	-	-	-	STD_IN/ AN	
P2.5	6	2	28	-	-	STD_IN/ AN	
P2.6	7	3	1	4	16	STD_IN/ AN	
P2.7	8	4	2	5	1	STD_IN/ AN	
P2.8	9	5	3	5	1	STD_IN/ AN	
P2.9	10	6	4	6	2	STD_IN/ AN	
P2.10	11	7	5	7	3	STD_IN OUT/AN	
P2.11	12	8	6	8	4	STD_IN OUT/AN	
VSS	13	9	7	9	5	Power	Supply GND, ADC reference GND
VDD	14	10	8	10	6	Power	Supply VDD, ADC reference voltage/ ORC reference voltage
VDDP	15	10	8	10	6	Power	When VDD is supplied, VDDP has to be supplied with the same voltage.

General Device Information

Figure 9 Simplified Port Structure

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.

Up to seven alternate output functions (ALT1/2/3/4/5/6/7) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

Please refer to the Port I/O Functions table for the complete Port I/O function mapping.

Table 2-1	٩	ort I/O	Funct	tions (conťd)												
Function				Outputs								du	uts				
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input	Input	Input	Input	Input	Input	Input	nput	Input	nput
P0.14	BCCU0. OUT7				CCU80. OUT31	USIC0_C H0.DOUT 0	USIC0_C H0.SCLK OUT			POSIF0. IN1B		USIC0_C H0.DX0A	USIC0_C H0.DX1A				
P0.15	BCCU0. OUT8				CCU80. OUT30	USIC0_C H0.DOUT 0	USIC0_C H1.MCLK OUT			POSIF0. IN2B		USICO_C H0.DX0B					
P1.0	BCCU0. OUT0	CCU40. OUT0			CCUB0. OUT00	ACMP1. OUT	USIC0_C H0.DOUT 0			POSIF0. IN2A		USIC0_C H0.DX0C					
P1.1	VADC0. EMUX00	CCU40. 0UT1			CCU80. OUT01	USIC0_C H0.DOUT 0	USIC0_C H1.SELO 0			POSIF0. IN1A		USIC0_C H0.DX0D	USIC0_C H0.DX1D	USIC0_C H1.DX2E			
P1.2	VADC0. EMUX01	CCU40. 0UT2			CCU80. OUT10	ACMP2. OUT	USIC0_C H1.DOUT 0			POSIF0. IN0A		USIC0_C H1.DX0B					
P1.3	VADC0. EMUX02	CCU40. 0UT3			CCU80. OUT 11	USIC0_C H1.SCLK OUT	USIC0_C H1.DOUT 0					USIC0_C H1.DX0A	USIC0_C H1.DX1A				
P1.4	VADC0. EMUX10	USIC0_C H1.SCLK OUT			CCU80. OUT 20	USIC0_C H0.SELO 0	USIC0_C H1.SELO 1					USICO_C H0.DX5E	USIC0_C H1.DX5E				
P1.5	VADC0. EMUX11	USIC0_C H0.DOUT 0		BCCU0. OUT1	CCU80. OUT21	USIC0_C H0.SELO 1	USIC0_C H1.SELO 2					USIC0_C H1.DX5F					
P1.6	VADC0. EMUX12	USIC0_C H1.DOUT 0		USIC0_C H0.SCLK OUT	BCCU0. OUT2	USIC0_C H0.SELO 2	USIC0_C H1.SELO 3			USIC0_C H0.DX5F							
P2.0	ERU0. PDOUT3	CCU40. OUT0	ERU0. GOUT3		CCU80. OUT 20	USIC0_C H0.DOUT 0	USIC0_C H0.SCLK OUT		VADC0. GOCH5		ERU0.0B 0	USICO_C H0.DX0E	USIC0_C H0.DX1E	USIC0_C H1.DX2F			
P2.1	ERU0. PDOUT2	CCU40. OUT1	ERU0. GOUT2		CCU80. OUT21	USIC0_C H0.DOUT 0	USIC0_C H1.SCLK OUT	ACMP2.I NP	VADC0. G0CH6		ERU0.1B 0	USIC0_C H0.DX0F	USIC0_C H1.DX3A	USIC0_C H1.DX4A			
P2.2								ACMP2.I NN	VADC0. G0CH7		ERU0.0B 1	USIC0_C H0.DX3A	USIC0_C H0.DX4A	USIC0_C H1.DX5A	DRC0.AI N		
P2.3									VADC0. G1CH5		ERU0.1B 1	USIC0_C H0.DX5B	USIC0_C H1.DX3C	USIC0_C H1.DX4C	ORC1.AI N		
P2.4									VADC0. G1CH6		ERU0.0A 1	USIC0_C H0.DX3B	USIC0_C H0.DX4B	USICO_C H1.DX5B	ORC2.AI N		

XMC1300 AB-Step XMC1000 Family

3 Electrical Parameters

This section provides the electrical parameters which are implementation-specific for the XMC1300.

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XMC1300 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

Such parameters indicate **C**ontroller **C**haracteristics, which are distinctive feature of the XMC1300 and must be regarded for a system design.

• SR

Such parameters indicate **S**ystem Requirements, which must be provided by the application system in which the XMC1300 is designed in.

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symb	ol		Va	lues	Unit	Note /
			Min	Тур.	Max.		Test Cond ition
Junction temperature	T_{J}	SR	-40	-	115	°C	-
Storage temperature	$T_{\rm ST}$	SR	-40	-	125	°C	-
Voltage on power supply pin with respect to $V_{\rm SSP}$	V_{DDP}	SR	-0.3	-	6	V	-
Voltage on digital pins with respect to $V_{\rm SSP}{}^{1)}$	V_{IN}	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	whichever is lower
Voltage on P2 pins with respect to $V_{\rm SSP}{}^{2)}$	V_{INP2}	SR	-0.3	-	V _{DDP} + 0.3	V	-
Voltage on analog input pins with respect to $V_{\rm SSP}$	V_{AIN} V_{AREF}	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	whichever is lower
Input current on any pin during overload condition	I _{IN}	SR	-10	-	10	mA	-
Absolute maximum sum of all input currents during overload condition	ΣI _{IN}	SR	-50	-	+50	mA	-

Table 9 Absolute Maximum Rating Parameters

1) Excluding port pins P2.[1,2,6,7,8,9,11].

2) Applicable to port pins P2.[1,2,6,7,8,9,11].

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 10 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Parameter	Sym	Symbol		Values	;	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Input current on any port pin during overload condition	I _{OV}	SR	-5	-	5	mA	
Absolute sum of all input circuit currents during overload condition	I _{OVS}	SR	_	-	25	mA	

Table 10 Overload Parameters

Figure 10 shows the path of the input currents during overload via the ESD protection structures. The diodes against V_{DDP} and ground are a simplified representation of these ESD protection structures.

Table 14 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol	Limit	/alues	Unit	Test Conditions
		Min.	Max.		
Maximum current out of $V_{\rm SS}$ (TSSOP16, VQFN24)	I _{MVSS1} SR	-	130	mA	18)
Maximum current out of V_{SS} (TSSOP38, VQFN40)	I _{MVSS2} SR	-	260	mA	18)

1) Rise/Fall time parameters are taken with 10% - 90% of supply.

2) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.150 ns/pF at 5 V supply voltage.

3) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.205 ns/pF at 3.3 V supply voltage.

4) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.445 ns/pF at 1.8 V supply voltage.

5) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.225 ns/pF at 5 V supply voltage.

6) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.288 ns/pF at 3.3 V supply voltage.

7) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.588 ns/pF at 1.8 V supply voltage.

 Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

9) An additional error current (I_{INI}) will flow if an overload current flows through an adjacent pin.

10) However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V_{DDP} is powered off.

Table 15	ADC Characteristics	Operating	Conditions	apply)1) (cont'	d)
----------	---------------------	-----------	-------------------	-----------------	----

Parameter	Symbol	١	Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Gain settings	$G_{\sf IN} {\sf CC}$	1			-	GNCTRxz.GAINy=00 _B (unity gain)
		3			_	GNCTRxz.GAINy=01 _B (gain g1)
		6			-	GNCTRxz.GAINy=10 _B (gain g2)
		12			-	$GNCTRxz.GAINy = 11_B$ (gain g3)
Sample Time	t _{sample} CC	3	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DD}$ = 5.0 V
		3	-	-	1 / f _{ADC}	V _{DD} = 3.3 V
		30	-	-	1 / <i>f</i> _{ADC}	V _{DD} = 2.0 V
Sigma delta loop hold time	t _{SD_hold} CC	20	-	-	μS	Residual charge stored in an active sigma delta loop remains available
Conversion time in fast compare mode	t _{CF} CC	9	1		1 / <i>f</i> _{ADC}	2)
Conversion time in 12-bit mode	<i>t</i> _{C12} CC	20			1 / <i>f</i> _{ADC}	2)
Maximum sample rate in 12-bit mode ³⁾	$f_{C12} \mathrm{CC}$	-	-	f _{ADC} / 42.5	-	1 sample pending
		-	-	f _{ADC} / 62.5	_	2 samples pending
Conversion time in 10-bit mode	<i>t</i> _{C10} CC	18			1 / <i>f</i> _{ADC}	2)
Maximum sample rate in 10-bit mode ³⁾	<i>f</i> _{C10} CC	-	-	f _{ADC} / 40.5	_	1 sample pending
		-	-	f _{ADC} / 58.5	-	2 samples pending
Conversion time in 8-bit mode	t _{C8} CC	16			1 / <i>f</i> _{ADC}	2)

Table 15 ADC Characteristics (Operating Conditions apply)¹⁾ (cont'd)

Parameter	Symbol	١	/alues	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Maximum sample rate in 8-bit mode ³⁾	f_{C8} CC	-	-	f _{ADC} / 38.5	-	1 sample pending
		-	-	f _{ADC} / 54.5	-	2 samples pending
RMS noise ⁴⁾	EN _{RMS} CC	-	1.5	_	LSB 12	DC input, $V_{DD} = 5.0 \text{ V},$ $V_{AIN = 2.5 \text{ V}},$ 25°C
DNL error	EA _{DNL} CC	-	±2.0	-	LSB 12	
INL error	EA _{INL} CC	-	±4.0	-	LSB 12	
Gain error with external reference	EA _{GAIN} CC	-	±0.5	-	%	SHSCFG.AREF = 00_B (calibrated)
Gain error with internal reference 5)	EA _{GAIN} CC	-	±3.6	-	%	SHSCFG.AREF = $1X_B$ (calibrated), -40°C - 105°C
		_	±2.0	-	%	SHSCFG.AREF = $1X_B$ (calibrated), 0°C - 85°C
Offset error	EA _{OFF} CC	-	±8.0	-	mV	Calibrated, $V_{\rm DD}$ = 5.0 V

1) The parameters are defined for ADC clock frequency f_{SH} = 32MHz, SHSCFG.DIVS = 0000_B. Usage of any other frequencies may affect the ADC performance.

2) No pending samples assumed, excluding sampling time and calibration.

3) Includes synchronization and calibration (average of gain and offset calibration).

4) This parameter can also be defined as an SNR value: SNR[dB] = $20 \times \log(A_{MAXeff} / N_{RMS})$. With $A_{MAXeff} = 2^N / 2$, SNR[dB] = $20 \times \log (2048 / N_{RMS})$ [N = 12]. $N_{RMS} = 1.5 \text{ LSB12}$, therefore, equals SNR = $20 \times \log (2048 / 1.5) = 62.7 \text{ dB}$.

5) Includes error from the reference voltage.

XMC1300 AB-Step XMC1000 Family

Electrical Parameters

Parameter	Symbol	Values			Unit	Note /	
		Min	Typ. ¹⁾	Max.	_	Test Condition	
Sleep mode current Peripherals clock disabled Flash active $f_{\rm MCLK}/f_{\rm PCLK}$ in MHz ⁵⁾	I _{DDPSD} CC	-	1.8	-	mA	32 / 64	
			1.7	-	mA	24 / 48	
			1.6	-	mA	16 / 32	
			1.5	-	mA	8 / 16	
			1.4	-	mA	1/1	
Sleep mode current Peripherals clock disabled Flash powered down $f_{\rm MCLK}/f_{\rm PCLK}$ in MHz ⁶⁾	I _{DDPSR} CC	-	1.2	-	mA	32 / 64	
			1.1	-	mA	24 / 48	
			1.0	-	mA	16 / 32	
			0.8	-	mA	8 / 16	
			0.7	-	mA	1/1	
Deep Sleep mode current ⁷⁾	$I_{\rm DDPDS}{\rm CC}$	-	0.24	-	mA		
Wake-up time from Sleep to Active mode ⁸⁾	t _{SSA} CC	-	6	-	cycles		
Wake-up time from Deep Sleep to Active mode ⁹⁾	t _{DSA} CC	-	280	-	μsec		

Table 19Power Supply Parameters; V_{DDP} = 5V

1) The typical values are measured at $T_A = +25 \text{ °C}$ and VDDP = 5 V.

2) CPU and all peripherals clock enabled, Flash is in active mode.

3) CPU enabled, all peripherals clock disabled, Flash is in active mode.

4) CPU in sleep, all peripherals clock enabled and Flash is in active mode.

5) CPU in sleep, Flash is in active mode.

6) CPU in sleep, Flash is powered down and code executed from RAM after wake-up.

7) CPU in sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wake-up.

8) CPU in sleep, Flash is in active mode during sleep mode.

9) CPU in sleep, Flash is in powered down mode during deep sleep mode.

Figure 14 shows typical graphs for active mode supply current for $V_{DDP} = 5V$, $V_{DDP} = 3.3V$, $V_{DDP} = 1.8V$ across different clock frequencies.

Figure 14 Active mode, a) peripherals clocks enabled, b) peripherals clocks disabled: Supply current I_{DDPA} over supply voltage V_{DDP for different clock}

frequencies

3.3.3 On-Chip Oscillator Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

 Table 23 provides the characteristics of the 64 MHz clock output from the digital controlled oscillator, DCO1 in XMC1300.

Parameter	Symbol		Limit Values			Unit	Test Conditions	
			Min.	Typ. Max.				
Nominal frequency	f _{nom}	CC	-	64	_	MHz	under nominal conditions ¹⁾ after trimming	
Accuracy ²⁾	Δf_{LT}	Δf _{LT} CC	-1.7	-	3.4	%	with respect to f_{NOM} (typ), over temperature $(T_A = 0 \degree C to 85 \degree C)$	
			-3.9	-	4.0	%	with respect to f_{NOM} (typ), over temperature $(T_A = -40 \text{ °C to } 105 \text{ °C})$	

Table 23 64 MHz DCO1 Characteristics (Operating Conditions apply)

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and T_{A} = + 25 °C.

2) The accuracy can be further improved through alternative methods, refer to XMC1000 Oscillator Handling Application Note.

3.3.4 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 25	SWD Interface	Timing Parameters	Operating	Conditions	(vlqqs

Parameter	Symbol	Values			Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
SWDCLK high time	t1 SR	50	-	500000	ns	-	
SWDCLK low time	t_2 SR	50	-	500000	ns	-	
SWDIO input setup to SWDCLK rising edge	<i>t</i> 3 SR	10	-	_	ns	-	
SWDIO input hold after SWDCLK rising edge	t ₄ SR	10	-	-	ns	_	
SWDIO output valid time	t ₅ CC	-	-	68	ns	$C_L = 50 \text{ pF}$	
after SWDCLK rising edge		-	-	62	ns	$C_L = 30 \text{ pF}$	
SWDIO output hold time from SWDCLK rising edge	t ₆ CC	4	-	-	ns		

Figure 21 SWD Timing

Package and Reliability

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

Package and Reliability

4.2 Package Outlines

XMC1300 AB-Step XMC1000 Family

Package and Reliability

Figure 30 PG-VQFN-40-13

All dimensions in mm.