

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Fixed Point
Interface	Synchronous Serial Port (SSP)
Clock Rate	40MHz
Non-Volatile Memory	External
On-Chip RAM	80kB
Voltage - I/O	3.30V
Voltage - Core	3.30V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	128-TQFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-2183bstz-160

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ADSP-2183* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

- EZ-ICE® Serial Emulator for ADSP-218x Processor Family
- EZ-KIT Lite Evaluation Kit for ADSP-218x Processor

DOCUMENTATION

Application Notes

- AN-1: ADSP-21xx Legacy Application Notes
- AN-227: Digital Control System Design with the ADSP-2100 Family
- AN-227: Digital Control System Design with the ADSP-2100 Family
- AN-334: Digital Signal Processing Techniques
- AN-524: ADV601/ADV611 Bin Width Calculation in ADSP-21xx DSP
- EE-06: ADSP-21xx Serial Port Startup Issues
- EE-100: ADSP-218x External Overlay Memory
- EE-102: Mode D and ADSP-218x Pin Compatibility the FAQs
- + EE-103: Performing Level Conversion Between 5v and 3.3v $\rm IC's$
- EE-104: Setting Up Streams with the VisualDSP Debugger
- EE-11: ADSP-2181 Priority Chain & IDMA Holdoffs
- EE-110: A Quick Primer on ELF and DWARF File Formats
- EE-115: ADSP-2189 IDMA Interface to Motorola MC68300 Family of Microprocessors
- EE-12: Interrupts and Programmable Flags on the ADSP-2185/2186
- EE-121: Porting Code from ADSP-21xx to ADSP-219x
- EE-122: Coding for Performance on the ADSP-219x
- EE-123: An Overview of the ADSP-219x Pipeline
- EE-124: Booting up the ADSP-2192
- EE-125: ADSP-218x Embedded System Software Management and In-System-Programming (ISP)
- EE-128: DSP in C++: Calling Assembly Class Member Functions From C++
- EE-129: ADSP-2192 Interprocessor Communication
- EE-130: Making Fast Transition from ADSP-21xx to ADSP-219x
- EE-131: Booting the ADSP-2191/95/96 DSPs
- EE-133: Converting From Legacy Architecture Files To Linker Description Files for the ADSP-218x
- EE-139: Interfacing the ADSP-2191 to an AD7476 via the SPI Port
- EE-142: Autobuffering, C and FFTs on the ADSP-218x
- EE-144: Creating a Master-Slave SPI Interface Between Two ADSP-2191 DSPs

- EE-145: SPI Booting of the ADSP-2191 using the Atmel AD25020N on an EZ-KIT Lite Evaluation Board
- EE-146: Implementing a Boot Manager for ADSP-218x Family DSPs
- EE-152: Using Software Overlays with the ADSP-219x and VisualDSP 2.0++
- EE-153: ADSP-2191 Programmable PLL
- EE-154: ADSP-2191 Host Port Interface
- EE-156: Support for the H.100 protocol on the ADSP-2191
- EE-158: ADSP-2181 EZ-Kit Lite IDMA to PC Printer Port Interface
- EE-159: Initializing DSP System & Control Registers From C and C++
- EE-164: Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs
- EE-168: Using Third Overtone Crystals with the ADSP-218x DSP
- EE-17: ADSP-2187L Memory Organization
- EE-18: Choosing and Using FFTs for ADSP-21xx
- EE-188: Using C To Implement Interrupt-Driven Systems On ADSP-219x DSPs
- EE-2: Using ADSP-218x I/O Space
- EE-226: ADSP-2191 DSP Host Port Booting
- EE-227: CAN Configuration Procedure for ADSP-21992 DSPs
- EE-249: Implementing Software Overlays on ADSP-218x DSPs with VisualDSP++[®]
- EE-32: Language Extensions: Memory Storage Types, ASM & Inline Constructs
- EE-33: Programming The ADSP-21xx Timer In C
- EE-35: Troubleshooting your ADSP-218x EZ-ICE
- EE-356: Emulator and Evaluation Hardware Troubleshooting Guide for CCES Users
- EE-36: ADSP-21xx Interface to the IOM-2 bus
- EE-38: ADSP-2181 IDMA Port Cycle Steal Timing
- EE-39: Interfacing 5V Flash Memory to an ADSP-218x (Byte Programming Algorithm)
- EE-48: Converting Legacy 21xx Systems To A 218x System
 Design
- EE-5: ADSP-218x Full Memory Mode vs. Host Memory Mode
- EE-60: Simulating an RS-232 UART Using the Synchronous Serial Ports on the ADSP-21xx Family DSPs
- EE-64: Setting Mode Pins on Reset
- EE-68: Analog Devices JTAG Emulation Technical Reference

- EE-71: Minimum Rise Time Specs for Critical Interrupt and Clock Signals on the ADSP-21x1/21x5
- EE-74: Analog Devices Serial Port Development and Troubleshooting Guide
- EE-78: BDMA Usage on 100 pin ADSP-218x DSPs Configured for IDMA Use
- EE-79: EPROM Booting In Host Mode with 100 Pin 218x Processors
- EE-82: Using an ADSP-2181 DSP's IO Space to IDMA Boot Another ADSP-2181
- EE-89: Implementing A Software UART on the ADSP-2181 EZ-Kit-Lite
- EE-90: Using the 21xx C-FFT Library
- EE-96: Interfacing Two AD73311 Codecs to the ADSP-218x

Data Sheet

• ADSP-2183: 16-bit, 52 MIPS, 3.3 v, 2 serial ports, host port, 80 KB RAM Data Sheet

Emulator Manuals

• ADSP-218X Family EZ-ICE Hardware Installation Guide

Integrated Circuit Anomalies

• ADSP-2183 Anomaly List for Revisions 1.2-3.2

Processor Manuals

- ADSP 21xx Processors: Manuals
- ADSP-218x DSP Hardware Reference
- ADSP-218x DSP Instruction Set Reference
- Using the ADSP-2100 Family Volume 2

Software Manuals

- CrossCore Embedded Studio 2.5.0 C/C++ Library Manual for SHARC Processors
- VisualDSP++ 3.5 Assembler and Preprocessor Manual for ADSP-218x and ADSP-219x DSPs
- VisualDSP++ 3.5 C Compiler and Library Manual for ADSP-218x DSPs
- VisualDSP++ 3.5 C/C++ Compiler and Library Manual for ADSP-219x Processors
- VisualDSP++ 3.5 Linker and Utilities Manual for 16-Bit Processors
- VisualDSP++ 3.5 Loader Manual for 16-Bit Processors

SOFTWARE AND SYSTEMS REQUIREMENTS 🖵

Software and Tools Anomalies Search

TOOLS AND SIMULATIONS \square

- Designing with BGA
- ADSP-21xx Processors: Software and Tools

Table I. Interrupt Priority and Interrupt Vector Addresses

Source of Interrupt	Interrupt Vector Address (Hex)		
Reset (or Power-Up with $PUCR = 1$)	0000 (Highest Priority)		
Power-Down (Nonmaskable)	002C		
IRQ2	0004		
IRQL1	0008		
IRQL0	000C		
SPORT0 Transmit	0010		
SPORT0 Receive	0014		
IRQE	0018		
BDMA Interrupt	001C		
SPORT1 Transmit or IRQ1	0020		
SPORT1 Receive or IRQ0	0024		
Timer	0028 (Lowest Priority)		

Interrupt routines can either be nested, with higher priority interrupts taking precedence, or processed sequentially. Interrupts can be masked or unmasked with the IMASK register. Individual interrupt requests are logically ANDed with the bits in IMASK; the highest priority unmasked interrupt is then selected. The power-down interrupt is nonmaskable.

The ADSP-2183 masks all interrupts for one instruction cycle following the execution of an instruction that modifies the IMASK register. This does not affect serial port autobuffering or DMA transfers.

The interrupt control register, ICNTL, controls interrupt nesting and defines the $\overline{IRQ0}$, $\overline{IRQ1}$ and $\overline{IRQ2}$ external interrupts to be either edge- or level-sensitive. The \overline{IRQE} pin is an external edge-sensitive interrupt and can be forced and cleared. The $\overline{IRQL0}$ and $\overline{IRQL1}$ pins are external level-sensitive interrupts.

The IFC register is a write-only register used to force and clear interrupts.

On-chip stacks preserve the processor status and are automatically maintained during interrupt handling. The stacks are twelve levels deep to allow interrupt, loop and subroutine nesting.

The following instructions allow global enable or disable servicing of the interrupts (including power down), regardless of the state of IMASK. Disabling the interrupts does not affect serial port autobuffering or DMA.

ENA INTS; DIS INTS;

When the processor is reset, interrupt servicing is enabled.

LOW POWER OPERATION

The ADSP-2183 has three low power modes that significantly reduce the power dissipation when the device operates under standby conditions. These modes are:

- Power-Down
- Idle
- Slow Idle

The CLKOUT pin may also be disabled to reduce external power dissipation.

Power-Down

The ADSP-2183 processor has a low power feature that lets the processor enter a very low power dormant state through hardware or software control. Here is a brief list of powerdown features. Refer to the *ADSP-2100 Family User's Manual*, Third Edition, "System Interface" chapter for detailed information about the power-down feature.

- Quick recovery from power-down. The processor begins executing instructions in as few as 300 CLKIN cycles.
- Support for an externally generated TTL or CMOS processor clock. The external clock can continue running during power-down without affecting the lowest power rating and 300 CLKIN cycle recovery.
- Support for crystal operation includes disabling the oscillator to save power (the processor automatically waits 4096 CLKIN cycles for the crystal oscillator to start and stabilize), and letting the oscillator run to allow 300 CLKIN cycle start-up.
- Power-down is initiated by either the power-down pin (\overline{PWD}) or the software power-down force bit.
- Interrupt support allows an unlimited number of instructions to be executed before optionally powering down. The power-down interrupt also can be used as a nonmaskable, edge-sensitive interrupt.
- Context clear/save control allows the processor to continue where it left off or start with a clean context when leaving the power-down state.
- The **RESET** pin also can be used to terminate power-down.
- Power-down acknowledge pin indicates when the processor has entered power-down.

Idle

When the ADSP-2183 is in the Idle Mode, the processor waits indefinitely in a low power state until an interrupt occurs. When an unmasked interrupt occurs, it is serviced; execution then continues with the instruction following the *IDLE* instruction.

Slow Idle

The *IDLE* instruction is enhanced on the ADSP-2183 to let the processor's internal clock signal be slowed, further reducing power consumption. The reduced clock frequency, a programmable fraction of the normal clock rate, is specified by a selectable divisor given in the *IDLE* instruction. The format of the instruction is

IDLE (n);

where n = 16, 32, 64 or 128. This instruction keeps the processor fully functional, but operating at the slower clock rate. While it is in this state, the processor's other internal clock signals, such as SCLK, CLKOUT and timer clock, are reduced by the same ratio. The default form of the instruction, when no clock divisor is given, is the standard *IDLE* instruction.

There are 16,352 words of memory accessible internally when the DMOVLAY register is set to 0. When DMOVLAY is set to something other than 0, external accesses occur at addresses 0x0000 through 0x1FFF. The external address is generated as shown in Table III.

DMOVLAY	Memory	A13	A12:0
0	Internal	Not Applicable	Not Applicable
1	External Overlay 1	0	13 LSBs of Address Between 0x0000 and 0x1FFF
2	External Overlay 2	1	13 LSBs of Address Between 0x0000 and 0x1FFF

This organization allows for two external 8K overlays using only the normal 14 address bits.

All internal accesses complete in one cycle. Accesses to external memory are timed using the wait states specified by the DWAIT register.

I/O Space

The ADSP-2183 supports an additional external memory space called I/O space. This space is designed to support simple connections to peripherals or to bus interface ASIC data registers. I/O space supports 2048 locations. The lower eleven bits of the external address bus are used; the upper 3 bits are undefined. Two instructions were added to the core ADSP-2100 Family instruction set to read from and write to I/O memory space. The I/O space also has four dedicated 3-bit wait state registers, IOWAIT0-3, which specify up to seven wait states to be automatically generated for each of four regions. The wait states act on address ranges as shown in Table IV.

Fable	IV.
aute	

Address Range	Wait State Register
0x000-0x1FF	IOWAIT0
0x200-0x3FF	IOWAIT1
0x400-0x5FF	IOWAIT2
0x600-0x7FF	IOWAIT3

Composite Memory Select (CMS)

The ADSP-2183 has a programmable memory select signal that is useful for generating memory select signals for memories mapped to more than one space. The $\overline{\text{CMS}}$ signal is generated to have the same timing as each of the individual memory select signals (PMS, DMS, BMS, IOMS) but can combine their functionality.

When set, each bit in the CMSSEL register causes the $\overline{\text{CMS}}$ signal to be asserted when the selected memory select is asserted. For example, to use a 32K word memory to act as both program and data memory, set the PMS and DMS bits in the CMSSEL register and use the $\overline{\text{CMS}}$ pin to drive the chip select of the memory; use either $\overline{\text{DMS}}$ or $\overline{\text{PMS}}$ as the additional address bit.

The $\overline{\text{CMS}}$ pin functions like the other memory select signals, with the same timing and bus request logic. A 1 in the enable bit causes the assertion of the $\overline{\text{CMS}}$ signal at the same time as the selected memory select signal. All enable bits, except the $\overline{\text{BMS}}$ bit, default to 1 at reset.

Byte Memory

The byte memory space is a bidirectional, 8-bit-wide, external memory space used to store programs and data. Byte memory is accessed using the BDMA feature. The byte memory space consists of 256 pages, each of which is $16K \times 8$.

The byte memory space on the ADSP-2183 supports read and write operations as well as four different data formats. The byte memory uses data bits 15:8 for data. The byte memory uses data bits 23:16 and address bits 13:0 to create a 22-bit address. This allows up to a 4 meg \times 8 (32 megabit) ROM or RAM to be used without glue logic. All byte memory accesses are timed by the BMWAIT register.

Byte Memory DMA (BDMA)

The Byte memory DMA controller allows loading and storing of program instructions and data using the byte memory space. The BDMA circuit is able to access the byte memory space, while the processor is operating normally and steals only one DSP cycle per 8-, 16- or 24-bit word transferred.

The BDMA circuit supports four different data formats which are selected by the BTYPE register field. The appropriate number of 8-bit accesses are done from the byte memory space to build the word size selected. Table V shows the data formats supported by the BDMA circuit.

Table V.

ВТҮРЕ	Internal Memory Space	Word Size	Alignment
00	Program Memory	24	Full Word
01	Data Memory	16	Full Word
10	Data Memory	8	MSBs
11	Data Memory	8	LSBs

Unused bits in the 8-bit data memory formats are filled with 0s. The BIAD register field is used to specify the starting address for the on-chip memory involved with the transfer. The 14-bit BEAD register specifies the starting address for the external byte memory space. The 8-bit BMPAGE register specifies the starting page for the external byte memory space. The BDIR register field selects the direction of the transfer. Finally the 14-bit BWCOUNT register specifies the number of DSP words to transfer and initiates the BDMA circuit transfers.

BDMA accesses can cross page boundaries during sequential addressing. A BDMA interrupt is generated on the completion of the number of transfers specified by the BWCOUNT register. The BWCOUNT register is updated after each transfer so it can be used to check the status of the transfers. When it reaches zero, the transfers have finished and a BDMA interrupt is generated. The BMPAGE and BEAD registers must not be accessed by the DSP during BDMA operations.

The source or destination of a BDMA transfer will always be on-chip program or data memory, regardless of the values of MMAP, PMOVLAY or DMOVLAY.

If Go Mode is enabled, the ADSP-2183 will not halt program execution until it encounters an instruction that requires an external memory access.

If the ADSP-2183 is performing an external memory access when the external device asserts the \overline{BR} signal, then it will not three-state the memory interfaces or assert the \overline{BG} signal until the processor cycle after the access completes. The instruction does not need to be completed when the bus is granted. If a single instruction requires two external memory accesses, the bus will be granted between the two accesses.

When the \overline{BR} signal is released, the processor releases the \overline{BG} signal, reenables the output drivers and continues program execution from the point where it stopped.

The bus request feature operates at all times, including when the processor is booting and when $\overline{\text{RESET}}$ is active.

The $\overline{\text{BGH}}$ pin is asserted when the ADSP-2183 is ready to execute an instruction, but is stopped because the external bus is already granted to another device. The other device can release the bus by deasserting bus request. Once the bus is released, the ADSP-2183 deasserts $\overline{\text{BG}}$ and $\overline{\text{BGH}}$ and executes the external memory access.

Flag I/O Pins

The ADSP-2183 has eight general purpose programmable input/output flag pins. They are controlled by two memory mapped registers. The PFTYPE register determines the direction, 1 = output and 0 = input. The PFDATA register is used to read and write the values on the pins. Data being read from a pin configured as an input is synchronized to the ADSP-2183's clock. Bits that are programmed as outputs will read the value being output. The PF pins default to input during reset.

In addition to the programmable flags, the ADSP-2183 has five fixed-mode flags, FLAG_IN, FLAG_OUT, FL0, FL1 and FL2. FL0-FL2 are dedicated output flags. FLAG_IN and FLAG_OUT are available as an alternate configuration of SPORT1.

INSTRUCTION SET DESCRIPTION

The ADSP-2183 assembly language instruction set has an algebraic syntax that was designed for ease of coding and readability. The assembly language, which takes full advantage of the processor's unique architecture, offers the following benefits:

- The algebraic syntax eliminates the need to remember cryptic assembler mnemonics. For example, a typical arithmetic add instruction, such as AR = AX0 + AY0, resembles a simple equation.
- Every instruction assembles into a single, 24-bit word that can execute in a single instruction cycle.

- The syntax is a superset ADSP-2100 Family assembly language and is completely source and object code compatible with other family members. Programs may need to be relocated to utilize on-chip memory and conform to the ADSP-2183's interrupt vector and reset vector map.
- Sixteen condition codes are available. For conditional jump, call, return or arithmetic instructions, the condition can be checked and the operation executed in the same instruction cycle.
- Multifunction instructions allow parallel execution of an arithmetic instruction with up to two fetches or one write to processor memory space during a single instruction cycle.

DESIGNING AN EZ-ICE-COMPATIBLE SYSTEM

The ADSP-2183 has on-chip emulation support and an ICE-Port, a special set of pins that interface to the EZ-ICE. These features allow in-circuit emulation without replacing the target system processor by using only a 14-pin connection from the target system to the EZ-ICE. Target systems must have a 14-pin connector to accept the EZ-ICE's in-circuit probe, a 14-pin plug.

The ICE-Port interface consists of the following ADSP-2183 pins:

EBR	EBG	ERESET
EMS	EINT	ECLK
ELIN	ELOUT	EE

These ADSP-2183 pins must be connected *only* to the EZ-ICE connector in the target system. These pins have no function except during emulation, and do not require pull-up or pull-down resistors. The traces for these signals between the ADSP-2183 and the connector must be kept as short as possible, no longer than three inches.

The following pins are also used by the EZ-ICE:

BR	BG
RESET	GND

The EZ-ICE uses the EE (emulator enable) signal to take control of the ADSP-2183 in the target system. This causes the processor to use its $\overline{\text{ERESET}}$, $\overline{\text{EBR}}$ and $\overline{\text{EBG}}$ pins instead of the $\overline{\text{RESET}}$, $\overline{\text{BR}}$ and $\overline{\text{BG}}$ pins. The $\overline{\text{BG}}$ output is three-stated. These signals do not need to be jumper-isolated in your system.

The EZ-ICE connects to your target system via a ribbon cable and a 14-pin female plug. The ribbon cable is 10 inches in length with one end fixed to the EZ-ICE. The female plug is plugged onto the 14-pin connector (a pin strip header) on the target board.

Target Board Connector for EZ-ICE Probe

The EZ-ICE connector (a standard pin strip header) is shown in Figure 7. You must add this connector to your target board design if you intend to use the EZ-ICE. Be sure to allow enough room in your system to fit the EZ-ICE probe onto the 14-pin connector.

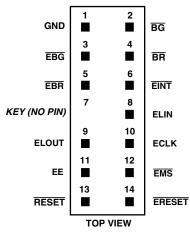


Figure 7. Target Board Connector for EZ-ICE

The 14-pin, 2-row pin strip header is keyed at the Pin 7 location—you must remove Pin 7 from the header. The pins must be 0.025 inch square and at least 0.20 inch in length. Pin spacing should be 0.1×0.1 inches. The pin strip header must have at least 0.15 inch clearance on all sides to accept the EZ-ICE probe plug. Pin strip headers are available from vendors such as 3M, McKenzie, and Samtec.

Target Memory Interface

For your target system to be compatible with the EZ-ICE emulator, it must comply with the memory interface guidelines listed below.

PM, DM, BM, IOM and CM

Design your Program Memory (PM), Data Memory (DM), Byte Memory (BM), I/O Memory (IOM), and Composite Memory (CM) external interfaces to comply with worst case device timing requirements and switching characteristics as specified in the DSP's data sheet. The performance of the EZ-ICE may approach published worst case specification for some memory access timing requirements and switching characteristics.

Note: If your target does not meet the worst case chip specification for memory access parameters, you may not be able to emulate your circuitry at the desired CLKIN frequency. Depending on the severity of the specification violation, you may have trouble manufacturing your system as DSP components statistically vary in switching characteristic and timing requirements within published limits. **Restriction:** All memory strobe signals on the ADSP-2183 (RD, WR, PMS, DMS, BMS, CMS and IOMS) used in your target system must have 10 k Ω pull-up resistors connected when the EZ-ICE is being used. The pull-up resistors are necessary because there are no internal pull-ups to guarantee their state during prolonged three-state conditions resulting from typical EZ-ICE debugging sessions. These resistors may be removed at your option when the EZ-ICE is not being used.

Target System Interface Signals

When the EZ-ICE board is installed, the performance on some system signals changes. Design your system to be compatible with the following system interface signal changes introduced by the EZ-ICE board:

- EZ-ICE emulation introduces an 8 ns propagation delay between your target circuitry and the DSP on the RESET signal.
- EZ-ICE emulation introduces an 8 ns propagation delay between your target circuitry and the DSP on the \overline{BR} signal.
- EZ-ICE emulation ignores **RESET** and **BR** when singlestepping.
- EZ-ICE emulation ignores **RESET** and **BR** when in Emulator Space (DSP halted).
- EZ-ICE emulation ignores the state of target BR in certain modes. As a result, the target system may take control of the DSP's external memory bus *only* if bus grant (BG) is asserted by the EZ-ICE board's DSP.

Target Architecture File

The EZ-ICE software lets you load your program in its linked (executable) form. The EZ-ICE PC program can not load sections of your executable located in boot pages (by the linker). With the exception of boot page 0 (loaded into PM RAM), all sections of your executable mapped into boot pages are not loaded.

Write your target architecture file to indicate that only PM RAM is available for *program storage*, when using the EZ-ICE software's loading feature. Data can be loaded to PM RAM or DM RAM.

ADSP-2183—SPECIFICATIONS **RECOMMENDED OPERATING CONDITIONS**

		KG	rade	B G	rade	
Parameter		Min	Max	Min	Max	Unit
$\overline{V_{DD}}_{T_{AMB}}$	Supply Voltage Ambient Operating Temperature	3.0 0	3.6 +70	3.0 -40	3.6 +85	V °C

ELECTRICAL CHARACTERISTICS

					K/B Grades		
Parameter		Test Conditions	Min	Тур	Max	Unit	
V _{IH}	Hi-Level Input Voltage ^{1, 2}	$(a) V_{DD} = max$	2.0			V	
V _{IL}	Lo-Level Input Voltage ^{1, 3}	$\overset{\smile}{@} V_{DD} = min$			0.4	V	
V _{OH}	Hi-Level Output Voltage ^{1, 4, 5}	(a) V _{DD} = min					
		$I_{OH} = -0.5 \text{ mA}$	2.4			V	
		@ V _{DD} = min					
		$I_{OH} = -100 \ \mu A^6$	V _{DD} - 0.3			V	
V _{OL}	Lo-Level Output Voltage ^{1, 4, 5}	$@V_{DD} = min$					
-		$I_{OL} = 2 \text{ mA}$			0.4	V	
I_{IH}	Hi-Level Input Current ³	$(a) V_{DD} = max$					
T		$V_{IN} = V_{DD} \max$			10	μA	
I_{IL}	Lo-Level Input Current ³	$(a) V_{DD} = max$			10		
т	Three-State Leakage Current ⁷	$V_{IN} = 0 V$			10	μA	
I _{OZH}	Inree-State Leakage Current				10	۸	
т	Three-State Leakage Current ⁷	$V_{IN} = V_{DD} \max^{8}$ $(a) V_{DD} = \max$			10	μA	
I _{OZL}	Timee-State Leakage Current	$U_{\rm IN} = 0 V^8$			8	μA	
I _{DD}	Supply Current (Idle) ^{9, 10}	$v_{\rm IN} = 0.V$ (a) $V_{\rm DD} = 3.3$			0	μΑ	
*DD	Supply Sufferit (fait)	$T_{AMB} = +25^{\circ}C$					
		$t_{CK} = 19 \text{ ns}^{11}$		10		mA	
		$t_{CK} = 25 \text{ ns}^{11}$		9		mA	
		$t_{\rm CK} = 30 \ \rm ns^{11}$		8		mA	
		$t_{\rm CK} = 34.7 \ \rm ns^{11}$		6		mA	
I _{DD}	Supply Current (Dynamic) ^{10, 12}	$@V_{DD} = 3.3$					
		$T_{AMB} = +25^{\circ}C$					
		$t_{CK} = 19 \text{ ns}^{11}$		44		mA	
		$t_{CK} = 25 \text{ ns}^{11}$		35		mA	
		$t_{CK} = 30 \text{ ns}^{11}$		30		mA	
	2 (12	$t_{\rm CK} = 34.7 \ \rm ns^{11}$		26		mA	
C_{I}	Input Pin Capacitance ^{3, 6, 13}	@ V _{IN} = 2.5 V					
		$f_{IN} = 1.0 \text{ MHz}$				_	
0	Q D' Q · 671314	$T_{AMB} = +25^{\circ}C$			8	pF	
Co	Output Pin Capacitance ^{6, 7, 13, 14}	$@V_{IN} = 2.5 V$					
		$f_{IN} = 1.0 \text{ MHz}$			0		
		T_{AMB} = +25°C			8	pF	

NOTES

¹Bidirectional pins: D0–D23, RFS0, RFS1, SCLK0, SCLK1, TFS0, TFS1, IAD0–IAD15, PF0–PF7. ²Input only pins: RESET, IRQ2, BR, MMAP, DR0, DR1, PWD, IRQL0, IRQL1, IRQE, IS, IRD, IWR, IAL. ³Input only pins: CLKIN, RESET, IRQ2, BR, MMAP, DR0, DR1, IS, IAL, IRD, IWR, IRQL0, IRQL1, IRQE, PWD. ⁴Output pins: BG, PMS, DMS, BMS, IOMS, CMS, RD, WR, IACK, PWDACK, A0–A13, DT0, DT1, CLKOUT, FL2-0.

⁵Although specified for TTL outputs, all ADSP-2183 outputs are CMOS-compatible and will drive to V_{DD} and GND, assuming no dc loads.

6Guaranteed but not tested.

⁷Three-statable pins: A0-A13, D0-D23, PMS, DMS, BMS, IOMS, CMS, RD, WR, DT0, DT1, SCLK0, SCLK1, TFS0, TFS1, RFS0, RFS1, IAD0-IAD15, PF0-PF7. $^{8}0$ V on \overline{BR} , CLKIN Active (to force three-state condition).

 9 Idle refers to ADSP-2183 state of operation during execution of IDLE instruction. Deasserted pins are driven to either V $_{
m DD}$ or GND.

¹⁰Current reflects device operating with no output loads.

 $^{11}V_{IN}$ = 0.4 V and 2.4 V. For typical figures for supply currents, refer to Power Dissipation section.

¹²I_{DD} measurement taken with all instructions executing from internal memory. 50% of the instructions are multifunction (types 1, 4, 5, 12, 13, 14), 30% are type 2 and type 6, and 20% are idle instructions.

¹³Applies to LQFP package type and Mini-BGA.

¹⁴Output pin capacitance is the capacitive load for any three-stated output pin.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage0.3 V to +4.6 V
Input Voltage $\dots \dots \dots$
Output Voltage Swing $\dots -0.5$ V to V _{DD} + 0.5 V
Operating Temperature Range (Ambient)40°C to +85°C
Storage Temperature Range65°C to +150°C
Lead Temperature (5 sec) LQFP +280°C

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD SENSITIVITY

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADSP-2183 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TIMING PARAMETERS

GENERAL NOTES

Use the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, you cannot meaningfully add up parameters to derive longer times.

TIMING NOTES

Switching Characteristics specify how the processor changes its signals. You have no control over this timing—circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell you what the processor will do in a given circumstance. You can also use switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.

Timing Requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices.

MEMORY TIMING SPECIFICATIONS

The table below shows common memory device specifications and the corresponding ADSP-2183 timing parameters, for your convenience.

Memory Device Specification	ADSP-2183 Timing Parameter	Timing Parameter Definition
Address Setup to Write Start	t _{ASW}	$A0-A13$, \overline{xMS} Setup before \overline{WR} Low
Address Setup to Write End	t _{AW}	$A0-A13$, \overline{xMS} Setup before \overline{WR} Deasserted
Address Hold Time	t _{WRA}	A0–A13, \overline{xMS} Hold after \overline{WR} Deasserted
Data Setup Time	t _{DW}	Data Setup before \overline{WR} High
Data Hold Time	t _{DH}	Data Hold after WR High
OE to Data Valid	t _{RDD}	RD Low to Data Valid
Address Access Time	t _{AA}	A0–A13, \overline{xMS} to Data Valid

 $\overline{xMS} = \overline{PMS}, \overline{DMS}, \overline{BMS}, \overline{CMS}, \overline{IOMS}.$

FREQUENCY DEPENDENCY FOR TIMING SPECIFICATIONS

 t_{CK} is defined as $0.5 t_{CKI}$. The ADSP-2183 uses an input clock with a frequency equal to half the instruction rate: a 16.67 MHz input clock (which is equivalent to 60 ns) yields a 30 ns processor cycle (equivalent to 33 MHz). t_{CK} values within the range of $0.5 t_{CKI}$ period should be substituted for all relevant timing parameters to obtain the specification value.

Example: $t_{CKH} = 0.5t_{CK} - 7$ ns = 0.5 (34.7 ns) - 7 ns = 10.35 ns

Parameter	r	Min	Max	Unit
Bus Requ	est–Bus Grant			
Timing Req				
t _{BH}	BR Hold after CLKOUT High ¹	$0.25t_{CK} + 2$		ns
t _{BS}	BR Setup before CLKOUT Low ¹	$0.25t_{CK} + 17$		ns
Switching (Characteristics:			
t _{SD}	CLKOUT High to \overline{xMS} ,		0.25t _{CK} + 10	ns
	$\overline{\text{RD}}, \overline{\text{WR}}$ Disable			
t _{SDB}	$\overline{\mathrm{xMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$			
	Disable to \overline{BG} Low	0		ns
t _{SE}	$\overline{\text{BG}}$ High to $\overline{\text{xMS}}$,			
	$\overline{\text{RD}}, \overline{\text{WR}}$ Enable	0		ns
t _{SEC}	$\overline{\mathrm{xMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$			
	Enable to CLKOUT High	$0.25t_{CK} - 4$		ns
t _{SDBH}	$\overline{\mathrm{xMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$			
	Disable to $\overline{\text{BGH}}$ Low ²	0		ns
t _{SEH}	$\overline{\text{BGH}}$ High to $\overline{\text{xMS}}$,			
	$\overline{\text{RD}}, \overline{\text{WR}} \text{ Enable}^2$	0		ns

NOTES

 $\frac{1}{1}$ $\frac{1}$ the following cycle. Refer to the ADSP-2100 Family User's Manual, Third Edition, for BR/BG cycle relationships.

 $^{2}\overline{\text{BGH}}$ is asserted when the bus is granted and the processor requires control of the bus to continue.

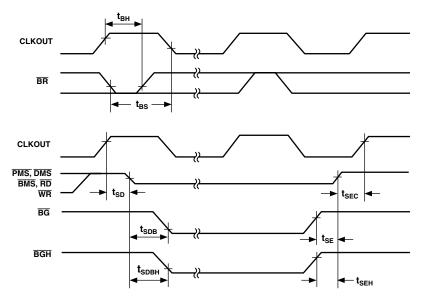


Figure 10. Bus Request-Bus Grant

Parameter	r	Min	Max	Unit
Memory F	Read			
Timing Req	uirements:			
t _{RDD}	RD Low to Data Valid		$0.5t_{CK} - 8 + w$	ns
t _{AA}	A0–A13, \overline{xMS} to Data Valid		$0.75t_{CK} - 10.5 + w$	ns
t _{RDH}	Data Hold from RD High	0		ns
Switching C	Characteristics:			
t _{RP}	RD Pulsewidth	$0.5t_{CK} - 5 + w$		ns
t _{CRD}	CLKOUT High to RD Low	$0.25t_{CK} - 2$	$0.25t_{CK} + 7$	ns
t _{ASR}	A0–A13, $\overline{\text{xMS}}$ Setup before $\overline{\text{RD}}$ Low	$0.25t_{CK} - 4$		ns
t _{RDA}	A0–A13, xMS Hold after RD Deasserted	0.25t _{CK} – 3		ns
t _{RWR}	$\overline{\mathrm{RD}}$ High to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	0.5t _{CK} – 5		ns

 $\frac{w = wait \text{ states} \times t_{CK}}{xMS} = \overline{PMS}, \overline{DMS}, \overline{CMS}, \overline{IOMS}, \overline{BMS}.$

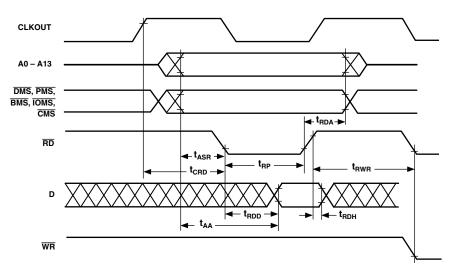


Figure 11. Memory Read

Paramete	r	Min	Max	Unit
Memory	Write			
Switching (Characteristics:			
t _{DW}	Data Setup before WR High	$0.5t_{CK} - 7 + w$		ns
t _{DH}	Data Hold after WR High	$0.25t_{CK} - 2$		ns
t _{WP}	WR Pulsewidth	$0.5t_{CK} - 5 + w$		ns
t _{WDE}	WR Low to Data Enabled	0		ns
t _{ASW}	A0–A13, $\overline{\text{xMS}}$ Setup before $\overline{\text{WR}}$ Low	$0.25t_{CK} - 4$		ns
t _{DDR}	Data Disable before \overline{WR} or \overline{RD} Low	$0.25t_{CK} - 4$		ns
t _{CWR}	CLKOUT High to \overline{WR} Low	0.25t _{CK} – 2	0.25 t _{CK} + 7	ns
t _{AW}	A0–A13, \overline{xMS} , Setup before \overline{WR} Deasserted	$0.75t_{CK} - 9 + w$		ns
t _{WRA}	A0–A13, $\overline{\text{xMS}}$ Hold after $\overline{\text{WR}}$ Deasserted	$0.25t_{CK} - 3$		ns
t _{WWR}	$\overline{\mathrm{WR}}$ High to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	0.5t _{CK} – 5		ns

 $\frac{w = wait \text{ states} \times t_{CK}}{xMS} = \overline{PMS}, \overline{DMS}, \overline{CMS}, \overline{IOMS}, \overline{BMS}.$

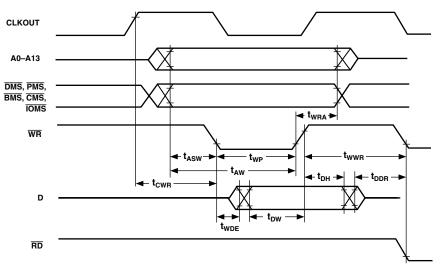
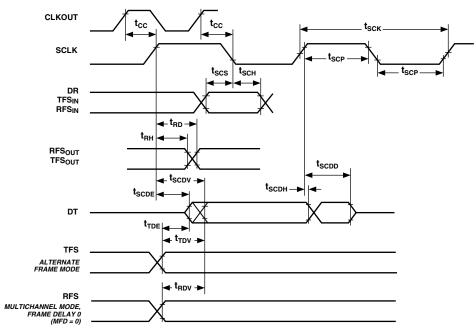
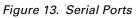
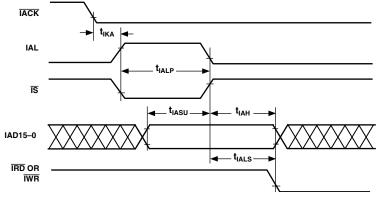
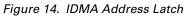




Figure 12. Memory Write

Parameter	°	Min	Max	Unit
Serial Por	ts			
Timing Req	uirements:			
t _{SCK}	SCLK Period	38		ns
t _{SCS}	DR/TFS/RFS Setup before SCLK Low	4		ns
t _{SCH}	DR/TFS/RFS Hold after SCLK Low	7		ns
t _{SCP}	SCLK _{IN} Width	15		ns
Switching C	Characteristics:			
t _{CC}	CLKOUT High to SCLK _{OUT}	0.25t _{CK}	$0.25t_{CK} + 10$	ns
t _{SCDE}	SCLK High to DT Enable	0		ns
t _{SCDV}	SCLK High to DT Valid		15	ns
t _{RH}	TFS/RFS _{OUT} Hold after SCLK High	0		ns
t _{RD}	TFS/RFS _{OUT} Delay from SCLK High		15	ns
t _{SCDH}	DT Hold after SCLK High	0		ns
t _{TDE}	TFS (Alt) to DT Enable	0		ns
t _{TDV}	TFS (Alt) to DT Valid		14	ns
t _{SCDD}	SCLK High to DT Disable		15	ns
t _{RDV}	RFS (Multichannel, Frame Delay Zero) to DT Valid		15	ns





Parameter	r	Min	Max	Unit
IDMA Ad	dress Latch			
Timing Req	uirements:			
t _{IALP}	Duration of Address Latch ^{1, 2}	10		ns
t _{IASU}	IAD15–0 Address Setup before Address Latch End ²	5		ns
t _{IAH}	IAD15-0 Address Hold after Address Latch End ²	2		ns
t _{IKA}	IACK Low before Start of Address Latch ¹	0		ns
t _{IALS}	Start of Write or Read after Address Latch End ^{2, 3}	3		ns

NOTES

¹Start of Address Latch = \overline{IS} Low and IAL High. ²End of Address Latch = \overline{IS} High or IAL Low. ³Start of Write or Read = \overline{IS} Low and \overline{IWR} Low or \overline{IRD} Low.

Parameter	•	Min	Max	Unit
IDMA Wri	ite, Short Write Cycle			
Timing Requ t _{IKW} t _{IWP} t _{IDSU} t _{IDH}	<i>uirements:</i> <u>IACK</u> Low before Start of Write ¹ Duration of Write ^{1, 2} IAD15–0 Data Setup before End of Write ^{2, 3, 4} IAD15–0 Data Hold after End of Write ^{2, 3, 4}	0 15 5 2		ns ns ns ns
Switching C t _{IKHW}	<i>Tharacteristic</i> : Start of Write to IACK High		15	ns

NOTES ¹Start of Write = \overline{IS} Low and \overline{IWR} Low. ²End of Write = \overline{IS} High or \overline{IWR} High. ³If Write Pulse ends before \overline{IACK} Low, use specifications t_{IDSU} , t_{IDH} . ⁴If Write Pulse ends after \overline{IACK} Low, use specifications t_{IKSU} , t_{IKH} .

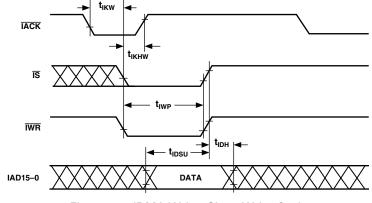


Figure 15. IDMA Write, Short Write Cycle

Parameter	r	Min	Max	Unit
IDMA Wr	ite, Long Write Cycle			
<i>Timing Req</i> t _{IKW} t _{IKSU} t _{IKH}	<i>TACK</i> Low before Start of Write ¹ IAD15–0 Data Setup before IACK Low ^{2, 3} IAD15–0 Data Hold after IACK Low ^{2, 3}	0 0.5t _{CK} + 10 2		ns ns ns
<i>Switching C</i> t _{IKLW} t _{IKHW}	Characteristics: Start of Write to IACK Low ⁴ Start of Write to IACK High	1.5t _{CK}	15	ns ns

NOTES

¹Start of Write = \overline{IS} Low and \overline{IWR} Low.

²If Write Pulse ends before IACK Low, use specifications t_{IDSU}, t_{IDH}.
 ³If Write Pulse ends after IACK Low, use specifications t_{IKSU}, t_{IKH}.
 ⁴This is the earliest time for IACK Low from Start of Write. For IDMA Write Cycle relationships, please refer to the ADSP-21xx Family User's Manual, Third Edition.

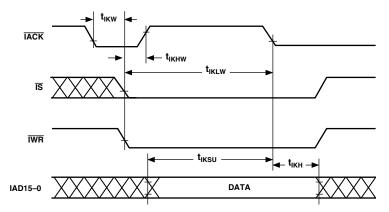


Figure 16. IDMA Write, Long Write Cycle

Paramete	r	Min	Max	Unit
IDMA Re	ad, Short Read Cycle			
Timing Req	quirements:			
t _{IKR}	IACK Low before Start of Read ¹	0		ns
t _{IRP}	Duration of Read	15		ns
Switching (Characteristics:			
t _{IKHR}	IACK High after Start of Read ¹		15	ns
t _{IKDH}	IAD15–0 Data Hold after End of Read ²	0		ns
t _{IKDD}	IAD15–0 Data Disabled after End of Read ²		10	ns
t _{IRDE}	IAD15-0 Previous Data Enabled after Start of Read	0		ns
t _{IRDV}	IAD15-0 Previous Data Valid after Start of Read		15	ns

NOTES ¹Start of Read = \overline{IS} Low and \overline{IRD} Low. ²End of Read = \overline{IS} High or \overline{IRD} High.

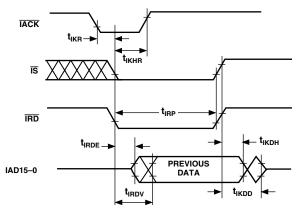


Figure 18. IDMA Read, Short Read Cycle

OUTPUT DRIVE CURRENTS

Figure 19 shows typical I-V characteristics for the output drivers of the ADSP-2183. The curves represent the current drive capability of the output drivers as a function of output voltage.

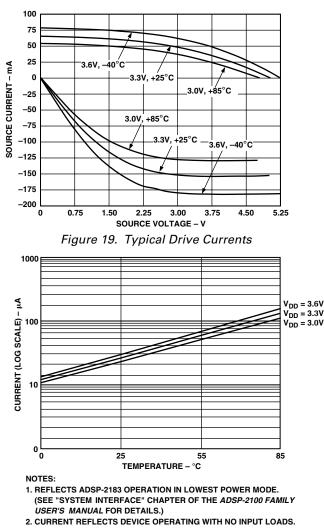


Figure 20. Power-Down Supply Current (Typical)

POWER DISSIPATION

To determine total power dissipation in a specific application, the following equation should be applied for each output:

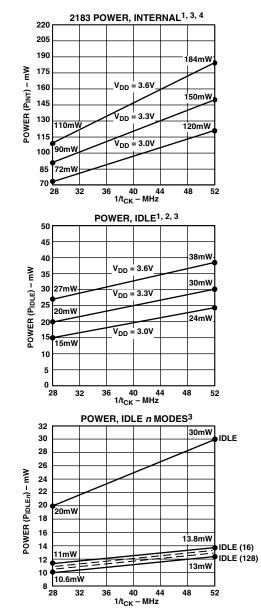
$$C \times V_{DD}^2 \times f$$

C =load capacitance, f =output switching frequency.

Example:

In an application where external data memory is used and no other outputs are active, power dissipation is calculated as follows:

Assumptions:


- External data memory is accessed every cycle with 50% of the address pins switching.
- External data memory writes occur every other cycle with 50% of the data pins switching.
- Each address and data pin has a 10 pF total load at the pin.
- The application operates at $V_{DD} = 3.3$ V and $t_{CK} = 30.0$ ns. Total Power Dissipation = $P_{INT} + (C \times V_{DD}^2 \times f)$

 P_{INT} = internal power dissipation from Power vs. Frequency graph (Figure 20).

$(C \times V_{DD}^2 \times f)$	is calculated for	each output:
--------------------------------	-------------------	--------------

	# of				
	Pins	$\times \mathbf{C}$	$ imes V_{DD}^2$	$\times \mathbf{f}$	
Address, DMS	8	× 10 pF	$\times 3.3^2 \text{ V}$	× 33.3 MHz =	29.0 mW
Data Output, $\overline{\mathrm{WR}}$	9	× 10 pF	$\times 3.3^2$ V	× 16.67 MHz =	16.3 mW
RD	1	× 10 pF	$\times 3.3^2 \text{ V}$	× 16.67 MHz =	1.8 mW
CLKOUT	1	× 10 pF	$\times 3.3^2 \text{ V}$	× 33.3 MHz =	3.6 mW
					50.7 mW

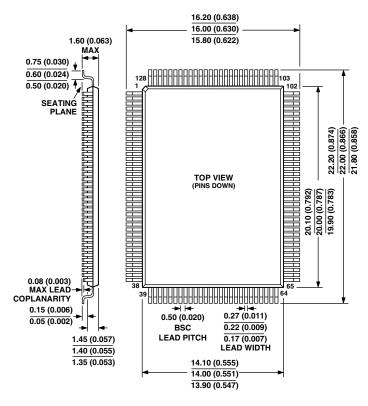
Total power dissipation for this example is P_{INT} + 50.7 mW.

VALID FOR ALL TEMPERATURE GRADES. ¹POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS. ²IDLE REFERS TO ADSP-2183 STATE OF OPERATION DURING EXECUTION OF IDLE INSTRUCTION. DEASSERTED PINS ARE DRIVEN TO EITHER V_{DD} OR GND. ³TYPICAL POWER DISSIPATION AT 3.3V V_{DD} AND 25°C EXCEPT WHERE SPECIFIED. ⁴I_{DD} MEASUREMENT TAKEN WITH ALL INSTRUCTIONS EXECUTING FROM INTERNAL MEMORY. 50% OF THE INSTRUCTIONS ARE MULTIFUNCTION (TYPES 1,4,5,12,13,14), 30% ARE TYPE 2 AND TYPE 6, AND 20% ARE IDLE INSTRUCTIONS.

Figure 21. Power vs. Frequency

	1								
LQFP	Pin	LQFP	Pin	LQFP	Pin	LQFP	Pin		
Number	Name	Number	Name	Number	Name	Number	Name		
1	IAL	33	A12	65	ECLK	97	D19		
2	PF3	34	A13	66	ELOUT	98	D20		
3	PF2	35	IRQE	67	ELIN	99	D21		
4	PF1	36	MMAP	68	EINT	100	D22		
5	PF0	37	PWD	69	EBR	101	D23		
6	WR	38	IRQ2	70	BR	102	GND		
7	RD	39	BMODE	71	EBG	103	ĪWR		
8	IOMS	40	PWDACK	72	BG	104	ĪRD		
9	BMS	41	IACK	73	VDD	105	IAD15		
10	DMS	42	BGH	74	D0	106	IAD14		
11	CMS	43	VDD	75	D1	107	IAD13		
12	GND	44	GND	76	D2	108	IAD12		
13	VDD	45	IRQL 0	77	D3	109	IAD11		
14	PMS	46	IRQL1	78	D4	110	IAD10		
15	A0	47	FL0	79	GND	111	IAD9		
16	A1	48	FL1	80	D5	112	IAD8		
17	A2	49	FL2	81	D6	113	IAD7		
18	A3	50	DT0	82	D7	114	IAD6		
19	A4	51	TFS0	83	D8	115	VDD		
20	A5	52	RFS0	84	D9	116	GND		
21	A6	53	DR0	85	D10	117	IAD5		
22	A7	54	SCLK0	86	D11	118	IAD4		
23	XTAL	55	DT1/F0	87	D12	119	IAD3		
24	CLKIN	56	TFS1/IRQ1	88	D13	120	IAD2		
25	GND	57	RFS1/IRQ0	89	D14	121	IAD1		
26	CLKOUT	58	GND	90	GND	122	IAD0		
27	GND	59	DR1/FI	91	VDD	123	PF7		
28	VDD	60	SCLK1	92	GND	124	PF6		
29	A8	61	ERESET	93	D15	125	PF5		
30	A9	62	RESET	94	D16	126	PF4		
31	A10	63	EMS	95	D17	127	GND		
32	A11	64	EE	96	D18	128	ĪS		

LQFP Pin Configurations


144-Lead Mini-BGA Package Pinout									
(Bottom View)									

12	11	10	9	8	7	6	5	4	3	2	1	
GND	GND	ĪWR	IAD14	IAD10	IAD6	GND	IAD2	PF6	GND	าร	IAL	•
D21	D23	ĪRD	IAD15	IAD11	VDD	GND	IAD1	PF5	GND	PF3	PF1	в
D17	D20	D22	IAD13	IAD8	VDD	IAD0	PF4	PF2	WR	PF0	RD	с
GND	D15	D18	D19	D16	IAD9	IAD5	PF7	IOMS	GND	DMS	GND	D
D14	GND	VDD	GND	GND	IAD7	CMS	IAD3	BMS	AO	VDD	VDD	E
D10	D11	D13	D12	IAD12	D8	IAD4	PMS	A3	A4	A1	A2	F
D6	D5	D9	D4	D7	DT0	Α7	A 8	A6	GND	А5	XTAL	G
GND	D2	GND	D0	D3	DT1	IRQL 0	VDD	GND	GND	GND	CLKIN	н
VDD	VDD	D1	BG	RFS1	SCLK0	IRQL1	VDD	VDD	A10	VDD	CLKOUT	J
EBG	BR	EBR	ERESET	SCLK1	TFS1	TFS0	FL2	PWDACK	A11	A12	Α9	к
EINT	ELOUT	ELIN	RESET	GND	DR0	FL0	GND	IACK	IRQE	ММАР	A13	L
ECLK	EE	EMS	DR1	GND	RFS0	FL1	GND	BGH	BMODE	ĪRQ2	PWD	м

OUTLINE DIMENSIONS

Dimensions given in mm and (inches).

128-Lead Metric Plastic Thin Quad Flatpack (LQFP) (ST-128)

NOTES:

NOTES: THE ACTUAL POSITION OF EACH LEAD IS WITHIN 0.08 (0.0032) FROM ITS IDEAL POSITION WHEN MEASURED IN THE LATERAL DIRECTION. CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED