

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT
Number of I/O	40
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151c2t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	duction
2	Desc	ription
	2.1	Device overview
	2.2	Ultra-low-power continuum
3	Func	tional overview
	3.1	Low-power modes
	3.2	Central processing unit STM8 15
		3.2.1 Advanced STM8 Core
		3.2.2 Interrupt controller
	3.3	Reset and supply management 17
		3.3.1 Power supply scheme
		3.3.2 Power supply supervisor
		3.3.3 Voltage regulator
	3.4	Clock management
	3.5	Low power real-time clock 19
	3.6	Memories
	3.7	DMA 20
	3.8	Analog-to-digital converter 20
	3.9	Ultra-low-power comparators 20
	3.10	System configuration controller and routing interface
	3.11	Touch sensing
	3.12	Timers
		3.12.1 16-bit general purpose timers
		3.12.2 8-bit basic timer
	3.13	Watchdog timers
		3.13.1 Window watchdog timer
		3.13.2 Independent watchdog timer
	3.14	Beeper
	3.15	Communication interfaces 23
		3.15.1 SPI

List of figures

Figure 1.	Low-density STM8L151x2/3 device block diagram	14
Figure 2.	Low-density STM8L151x2/3 clock tree diagram	19
Figure 3.	STM8L151Cx LQFP48 package pinout	25
Figure 4.	STM8L151Kx UFQFPN32 package pinout	25
Figure 5.	STM8L151Gx UFQFPN28 package pinout	26
Figure 6.	STM8L151Fx UFQFPN20 package pinout	26
Figure 7.	STM8L151Fx TSSOP20 package pinout	26
Figure 8.	Memory map	32
Figure 9.	Pin loading conditions	54
Figure 10.	Pin input voltage	55
Figure 11.	POR/BOR thresholds	59
Figure 12.	Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz	61
Figure 13.	Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1)	64
Figure 14.	Typ. IDD(LPR) vs. VDD (LSI clock source)	66
Figure 15.	Typ. IDD(LPW) vs. VDD (LSI clock source)	68
Figure 16.	HSE oscillator circuit diagram	73
Figure 17.	LSE oscillator circuit diagram	75
Figure 18.	Typical HSI frequency vs V _{DD}	76
Figure 19.	Typical LSI frequency vs. VDD	77
Figure 20.	Typical VIL and VIH vs VDD (high sink I/Os)	81
Figure 21.	Typical VIL and VIH vs VDD (true open drain I/Os)	81
Figure 22.	Typical pull-up resistance Rpu vs Vpp with VIN=VSS	82
Figure 23.	Typical pull-up current Inv vs Vpp with VIN=VSS	82
Figure 24.	Typ. VOL @ VDD = 3.0 V (high sink ports)	84
Figure 25.	Typ. VOL @ VDD = 1.8 V (high sink ports)	84
Figure 26.	Typ. VOL @ VDD = 3.0 V (true open drain ports)	84
Figure 27.	Typ. VOL @ VDD = 1.8 V (true open drain ports)	84
Figure 28.	Typ. VDD - VOH @ VDD = 3.0 V (high sink ports).	84
Figure 29.	Typ. VDD - VOH @ VDD = 1.8 V (high sink ports).	84
Figure 30	Typical NRST pull-up resistance R_{PU} vs V_{PD}	85
Figure 31	Typical NRST pull-up current $I_{\rm ev}$ vs V _{pp}	86
Figure 32	Recommended NRST pin configuration	86
Figure 33	SPI1 timing diagram - slave mode and CPHA=0	88
Figure 34	SPI1 timing diagram - slave mode and CPHA= $1^{(1)}$	88
Figure 35	SPI1 timing diagram - master mode ^{(1)}	89
Figure 36	Typical application with I2C bus and timing diagram 1)	91
Figure 37	ADC1 accuracy characteristics	98
Figure 38	Typical connection diagram using the ADC1	98
Figure 39	Power supply and reference decoupling (V_{PEE} , not connected to V_{PEA})	99
Figure 40	Power supply and reference decoupling (VREF+ connected to VDDA)	qq
Figure 41	Max dynamic current consumption on V_{PPP} supply pin during ADC	00
riguie 41.	conversion	100
Figure 42	I QEP48 - 48-pin 7 x 7 mm low-profile guad flat package outline	103
Figure 43	I QEP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline	100
ga.o .o.	recommended footprint	105
Figure 44	I QEP48 marking example (package top view)	105
Figure 45	UFQFPN32 - 32-pin 5x5 mm 0.5 mm pitch ultra thin fine pitch quad flat	
i iguio io.	package outline	106

Figure 46.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
-	package recommended footprint
Figure 47.	UFQFPN32 marking example (package top view) 108
Figure 48.	UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
	package outline
Figure 49.	UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
	package recommended footprint
Figure 50.	UFQFPN28 marking example (package top view) 111
Figure 51.	UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
	package outline
Figure 52.	UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
	package recommended footprint 113
Figure 53.	UFQFPN20 marking example (package top view) 114
Figure 54.	TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
	package outline
Figure 55.	TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
	package footprint
Figure 56.	TSSOP20 marking example (package top view) 117

3.6 Memories

The low-density STM8L151x2/3 devices have the following main features:

- Up to 1 Kbyte of RAM
- The non-volatile memory is divided into three arrays:
 - Up to 8 Kbyte of low-density embedded Flash program memory
 - 256 byte of data EEPROM
 - Option bytes.

The EEPROM embeds the error correction code (ECC) feature.

The option byte protects part of the Flash program memory from write and readout piracy.

3.7 DMA

A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and peripherals-from/to-memory transfer capability. The 4 channels are shared between the following IPs with DMA capability: ADC1, I2C1, SPI1, USART1, the three Timers.

3.8 Analog-to-digital converter

- 12-bit analog-to-digital converter (ADC1) with 25 channels (including 1 fast channel), temperature sensor and internal reference voltage
- Conversion time down to 1 μ s with f_{SYSCLK}= 16 MHz
- Programmable resolution
- Programmable sampling time
- Single and continuous mode of conversion
- Scan capability: automatic conversion performed on a selected group of analog inputs
- Analog watchdog
- Triggered by timer
- Note: ADC1 can be served by DMA1.

3.9 Ultra-low-power comparators

The low-density STM8L151x2/3 embed two comparators (COMP1 and COMP2) sharing the same current bias and voltage reference. The voltage reference can be internal or external (coming from an I/O).

- One comparator with fixed threshold (COMP1).
- One comparator rail to rail with fast or slow mode (COMP2). The threshold can be one of the following:
 - External I/O
 - Internal reference voltage or internal reference voltage sub multiple (1/4, 1/2, 3/4)

The two comparators can be used together to offer a window function. They can wake up from Halt mode.

3.12.1 16-bit general purpose timers

- 16-bit autoreload (AR) up/down-counter
- 7-bit prescaler adjustable to fixed power of 2 ratios (1...128)
- 2 individually configurable capture/compare channels
- PWM mode
- Interrupt capability on various events (capture, compare, overflow, break, trigger)
- Synchronization with other timers or external signals (external clock, reset, trigger and enable)

3.12.2 8-bit basic timer

The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. It can be used for timebase generation with interrupt generation on timer overflow.

3.13 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.

3.13.1 Window watchdog timer

The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

3.13.2 Independent watchdog timer

The independent watchdog peripheral (IWDG) can be used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the internal LSI RC clock source, and thus stays active even in case of a CPU clock failure.

3.14 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

Figure 5. STM8L151Gx UFQFPN28 package pinout

Figure 7. STM8L151Fx TSSOP20 package pinout

Address	Block	Register label	Register name	Reset status
0x00 5055 to 0x00 506F			Reserved area (27 byte)	
0x00 5070		DMA1_GCSR	DMA1 global configuration & status register	0xFC
0x00 5071		DMA1_GIR1	DMA1 global interrupt register 1	0x00
0x00 5072 to 0x00 5074			Reserved area (3 byte)	
0x00 5075		DMA1_C0CR	DMA1 channel 0 configuration register	0x00
0x00 5076		DMA1_C0SPR DMA1 channel 0 status & priority register		0x00
0x00 5077		DMA1_C0NDTR	DMA1 number of data to transfer register (channel 0)	0x00
0x00 5078		DMA1_C0PARH DMA1 peripheral address high register (channel 0)		0x52
0x00 5079	-	DMA1_C0PARL DMA1 peripheral address low register (channel 0)		0x00
0x00 507A			Reserved area (1 byte)	I
0x00 507B	DMA1	DMA1_C0M0ARH	DMA1 memory 0 address high register (channel 0)	0x00
0x00 507C		DMA1_C0M0ARL	DMA1 memory 0 address low register (channel 0)	0x00
0x00 507D to 0x00 507E			Reserved area (2 byte)	
0x00 507F		DMA1_C1CR	DMA1 channel 1 configuration register	0x00
0x00 5080	-	DMA1_C1SPR	DMA1 channel 1 status & priority register	0x00
0x00 5081		DMA1_C1NDTR	DMA1 number of data to transfer register (channel 1)	0x00
0x00 5082		DMA1_C1PARH	DMA1 peripheral address high register (channel 1)	0x52
0x00 5083		DMA1_C1PARL	DMA1 peripheral address low register (channel 1)	0x00

Table 8.	General	hardware	reaister	map	(continued))
	001101 01	naianaio	i ogiotoi	map	(oominaoa)	,

Option byte No.	Option description
OPT0	ROP[7:0] Memory readout protection (ROP) 0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in the STM8L15x and STM8L16x reference manual (RM0031).
OPT1	 UBC[7:0] Size of the user boot code area 0x00: UBC is not protected. 0x01: Page 0 is write protected. 0x02: Page 0 and 1 reserved for the UBC and write protected. It covers only the interrupt vectors. 0x03: Page 0 to 2 reserved for UBC and write protected. 0x7F to 0xFF - All 128 pages reserved for UBC and write protected. The protection of the memory area not protected by the UBC is enabled through the MASS keys. Refer to User boot code section in the STM8L15x and STM8L16x reference manual (RM0031).
OPT2	Reserved
OPT3	IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware IWDG_HALT: Independent window watchdog off on Halt/Active-halt 0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode 0: WWDG_HW: Window watchdog 0: Window watchdog activated by software 1: Window watchdog activated by hardware WWDG_HALT: Window watchdog reset on Halt/Active-halt 0: Window watchdog activated by hardware WWDG_HALT: Window window watchdog reset on Halt/Active-halt 0: Window watchdog stopped in Halt mode
	1: Window watchdog generates a reset when MCU enters Halt mode HSECNT : Number of HSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles
OPT4	LSECNT: Number of LSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles Refer to Table 31: LSE oscillator characteristics on page 74.

Table 12. Option byte description

51/122

9 Electrical parameters

9.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

9.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A$ max (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics is indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3 Σ).

9.1.2 Typical values

Unless otherwise specified, typical data is based on $T_A = 25$ °C, $V_{DD} = 3$ V. It is given only as design guidelines and is not tested.

Typical ADC1 accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

9.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

9.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 9*.

Cumhal	Para	Conditions ⁽¹⁾		Tur	Max				Unit	
Symbol	meter		Conditions	')	тур	55 °C	85 °C	105°C ⁽²⁾	125 °C ⁽²⁾	Unit
				f _{CPU} = 125 kHz	0.39	0.47	0.49	0.52	0.55	
				f _{CPU} = 1 MHz	0.48	0.56	0.58	0.61	0.65	
			HSI RC osc. (16 MHz) ⁽⁴⁾	f _{CPU} = 4 MHz	0.75	0.84	0.86	0.91	0.99	
				f _{CPU} = 8 MHz	1.10	1.20	1.25	1.31	1.40	
		All		f _{CPU} = 16 MHz	1.85	1.93	2.12 ⁽⁶⁾	2.29 ⁽⁶⁾	2.36 ⁽⁶⁾	
	Supply	OFF,		f _{CPU} = 125 kHz	0.05	0.06	0.09	0.11	0.12	
	current	code executed	HSE external	f _{CPU} = 1 MHz	0.18	0.19	0.20	0.22	0.23	mA
DB(RON)	mode ⁽³⁾	from RAM,	clock	f _{CPU} = 4 MHz	0.55	0.62	0.64	0.71	0.77	
		1.65 V to	(f _{CPU} =f _{HSE}) ⁽³⁾	f _{CPU} = 8 MHz	0.99	1.20	1.21	1.22	1.24	
		3.6 V		f _{CPU} = 16 MHz	1.90	2.22	2.23 ⁽⁶⁾	2.24 ⁽⁶⁾	2.28 ⁽⁶⁾	
			LSI RC osc. (typ. 38 kHz)	$f_{CPU} = f_{LSI}$	0.040	0.045	0.046	0.048	0.050	
			LSE external clock (32.768 kHz)	$f_{CPU} = f_{LSE}$	0.035	0.040	0.048 ⁽⁶⁾	0.050	0.062	
			HSI RC	f _{CPU} = 125 kHz	0.43	0.55	0.56	0.58	0.62	
				f _{CPU} = 1 MHz	0.60	0.77	0.80	0.82	0.87	
				f _{CPU} = 4 MHz	1.11	1.34	1.37	1.39	1.43	
				f _{CPU} = 8 MHz	1.90	2.20	2.23	2.31	2.40	
		All		f _{CPU} = 16 MHz	3.8	4.60	4.75	4.87	4.88	
	Supply	peripherals		f _{CPU} = 125 kHz	0.30	0.36	0.39	0.44	0.47	
	current	executed	HSE external	f _{CPU} = 1 MHz	0.40	0.50	0.52	0.55	0.56	mΑ
.DD(KON)	in Run mode	from Flash, V _{DD} from	clock (f _{CPU} =f _{HSE})	f _{CPU} = 4 MHz	1.15	1.31	1.40	1.45	1.48	110 (
		1.65 V to	(5)	f _{CPU} = 8 MHz	2.17	2.33	2.44	2.56	2.77	
		3.6 V		f _{CPU} = 16 MHz	4.0	4.46	4.52	4.59	4.77	
			LSI RC osc.	$f_{CPU} = f_{LSI}$	0.110	0.123	0.130	0.140	0.150	
		LSE ext. clock (32.768 kHz) ⁽⁸⁾	LSE ext. clock (32.768 kHz) ⁽⁸⁾	$f_{CPU} = f_{LSE}$	0.100	0.101	0.104	0.119	0.122	

Table 19.	Total current	consumption	in	Run	mode
		•••••••			

1. All peripherals OFF, V_{DD} from 1.65 V to 3.6 V, HSI internal RC osc., $f_{CPU}{=}f_{SYSCLK}$

2. For devices with suffix 3

3. CPU executing typical data processing

In the following table, data is based on characterization results, unless otherwise specified.

Symbol	Parameter	Condition ⁽¹⁾⁽²⁾	Тур	Max	Unit	
		$T_A = -40 \text{ °C to } 25 \text{ °C}$	350	1400 ⁽³⁾		
	Supply current in Halt mode	T _A = 55 °C	580	2000	~^	
I _{DD(Halt)}	(Ultra-low-power ULP bit =1 in	T _A = 85 °C	1160	2800 ⁽³⁾	ΠA	
	the PWR_CSR2 register)	T _A = 105 °C	2560	6700 ⁽³⁾		
		T _A = 125 °C	4.4	13 ⁽³⁾	μA	
IDD(WUHait)	Supply current during wakeup time from Halt mode (using HSI)	-	2.4	-	mA	
t _{WU_HSI(Halt)} ⁽⁴⁾⁽⁵⁾	Wakeup time from Halt to Run mode (using HSI)	-	4.7	7	μs	
t _{WU_LSI(Halt)} ⁽⁴⁾⁽⁵⁾	Wakeup time from Halt mode to Run mode (using LSI)	-	150	-	μs	

Table 25. Total current consumption and timing in Halt mode at V_{DD} = 1.65 to 3.6 V

1. $T_A = -40$ to 125 °C, no floating I/O, unless otherwise specified.

2. T_A > 85 °C is valid only for devices with suffix 3 temperature range.

3. Tested in production.

4. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.

5. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after t_{WU} .

Figure 19. Typical LSI frequency vs. V_{DD}

9.3.5 Memory characteristics

 T_A = -40 to 125 °C unless otherwise specified.

			le legie			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{RM}	Data retention mode ⁽¹⁾	Halt mode (or Reset)	1.65	-	-	V

Table 34. RAM and hardware registers

1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Guaranteed by characterization, not tested in production.

Flash memory

Symbol	Parameter	Conditions	Min	Тур	Max (1)	Unit	
V _{DD}	Operating voltage (all modes, read/write/erase)	f _{SYSCLK} = 16 MHz	1.65	-	3.6	V	
+	Programming time for 1 or 64 bytes (block) erase/write cycles (on programmed byte)	-	-	6	-	ms	
Lprog	Programming time for 1 to 64 bytes (block) write cycles (on erased byte)	-	-	3	-	ms	
	Brogromming/oroning consumption	T _A =+25 °C, V _{DD} = 3.0 V	-	0.7	-	m۸	
Iprog		T _A =+25 °C, V _{DD} = 1.8 V	-	0.7	-	MA	
(2)	Data retention (program memory) after 10000 erase/write cycles at T_A = -40 to +85 °C (3 and 6 suffix)	T _{RET} = +85 °C	30 ⁽¹⁾	-	-	years	
	Data retention (program memory) after 10000 erase/write cycles at T_A = -40 to +125 °C (3 suffix)	T _{RET} = +125 °C	5 ⁽¹⁾	-	-		
'RET` ´	Data retention (data memory) after 300000 erase/write cycles at T_A = -40 to +85 °C (3 and 6 suffix)	T _{RET} = +85 °C	30 ⁽¹⁾	-	-		
	Data retention (data memory) after 300000 erase/write cycles at T_A = -40 to +125 °C (3 suffix)	T _{RET} = +125 °C	5 ⁽¹⁾	-	-		
	Erase/write cycles (program memory)	$T_{A} = -40$ to +85 °C	10 ⁽¹⁾	-	-		
Symbol V _{DD} t _{prog} t _{RET} ⁽²⁾ N _{RW} ⁽³⁾	Erase/write cycles (data memory)	(3 and 6 suffix), $T_A = -40$ to +105 °C (3 suffix) or $T_A = -40$ to +125 °C (3 suffix)	300 ⁽¹⁾ (4)	-	-	kcycles	

Table 35. Flash program and data EEPROM memory

1. Data based on characterization results, not tested in production.

2. Conforming to JEDEC JESD22a117

3. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte.

4. Data based on characterization performed on the whole data memory.

Figure 35. SPI1 timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}.$

In the following table, data is guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
V_{DDA}	Analog supply voltage	-	1.65	-	3.6	V	
Τ _Α	Temperature range	-	-40	-	125	°C	
V _{IN}	Comparator 2 input voltage range	-	0	-	V_{DDA}	V	
t _{START}	Comparator startup time	Fast mode	-	15	20		
		Slow mode	-	20	25		
t _{d slow}	Propagation dology in clow mode ⁽²⁾	$\begin{array}{c} 1.65 \text{ V} \leq \text{V}_{\text{DDA}} \\ \leq 2.7 \text{ V} \end{array}$	-	1.8	3.5		
	Propagation delay in slow mode	$\begin{array}{c} \textbf{2.7 V} \leq \textbf{V}_{\text{DDA}} \leq \\ \textbf{3.6 V} \end{array}$	-	2.5	6	μs	
t _{d fast}	Propagation dolou in fact mode ⁽²⁾	$\begin{array}{c} 1.65 \text{ V} \leq \text{V}_{\text{DDA}} \\ \leq 2.7 \text{ V} \end{array}$	-	0.8	2		
	Propagation delay in fast mode ?	$\begin{array}{c} 2.7V{\leq}V_{\text{DDA}}{\leq}\\ 3.6V \end{array}$	-	1.2	4		
V _{offset}	Comparator offset error	-	-	±4	±20	mV	
I _{COMP2}	Current consumption ^{(3)}	Fast mode	-	3.5	5	μA	
		Slow mode	-	0.5	2		

Table 47. Comparator 2 characteristics

1. Based on characterization, not tested in production.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

Figure 39. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

Figure 40. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions					
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C},$ $f_{CPU} = 16 \text{ MHz},$ conforms to IEC 61000		2B			
V _{eftb}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C},$ $f_{CPU} = 16 \text{ MHz},$ conforms to IEC 61000	Using HSI	4A			
			Using HSE	2B			

Table 53. EMS data

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin.

Symbol	Parameter	Conditions	Monitored	Max vs.	L Ins it	
			frequency band	16 MHz		
S _{EMI}	Peak level	$V_{DD} = 3.6 V,$ $T_A = +25 °C,$ LQFP48 conforming to IEC61967-2	0.1 MHz to 30 MHz	-3		
			30 MHz to 130 MHz	9	dBµV	
			130 MHz to 1 GHz	4		
			SAE EMI Level	2	-	

Table 54. EMI data ⁽¹⁾

1. Not tested in production.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Table 61. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,					
package mechanical data (continued)					

Symbol	millimeters			inches ⁽¹⁾			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
k	0°	-	8°	0°	-	8°	
aaa	-	-	0.100	-	-	0.0039	

1. Values in inches are converted from mm and rounded to four decimal digits.

Figure 55. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

