

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT
Number of I/O	40
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151c3t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 48.	ADC1 characteristics
Table 49.	ADC1 accuracy with VDDA = 3.3 V to 2.5 V
Table 50.	ADC1 accuracy with VDDA = 2.4 V to 3.6 V
Table 51.	ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V
Table 52.	R_{AIN} max for f_{ADC} = 16 MHz
Table 53.	EMS data
Table 54.	EMI data
Table 55.	ESD absolute maximum ratings 102
Table 56.	Electrical sensitivities
Table 57.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
	mechanical data
Table 58.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
	package mechanical data
Table 59.	UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
	package mechanical data
Table 60.	UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
	package mechanical data
Table 61.	TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
	package mechanical data
Table 62.	Thermal characteristics
Table 63.	Low-density STM8L151x2/3 ordering information scheme
Table 64.	Document revision history

MSB have a fixed value: 0x6.

- 3. The TS_Factory_CONV_V90 byte represents the LSB of the V₉₀ 12-bit ADC1 conversion result. The MSB have a fixed value: 0x3.
- 4. Refer to *Table 8* for an overview of hardware register mapping, to *Table 7* for details on I/O port hardware registers, and to *Table 9* for information on CPU/SWIM/debug module controller registers.

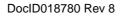
-				
Memory area	Memory area Size Start address		End address	
RAM	1 Kbyte	0x00 0000	0x00 03FF	
	8 Kbyte	0x00 8000	0x00 9FFF	
Flash program memory	4 Kbyte	0x00 8000	0x00 8FFF	

Table 5. Flash and RAM boundary addresses

5.2 Register map

Address Block		Register label	Register name	Reset status	
0x00 4910	-	VREFINT_Factory_ CONV	Value of the internal reference voltage measured during the factory phase	0xXX	
0x00 4911	-	TS_Factory_CONV_ V90	Value of the temperature sensor output voltage measured during the factory phase	0xXX	

Table 6. Factory conversion registers


Table 7. I/O port hardware register ma	ap
--	----

Address	Block	Register label	Register label Register name	
0x00 5000		PA_ODR	Port A data output latch register	0x00
0x00 5001		PA_IDR	Port A input pin value register	0xXX
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003		PA_CR1	Port A control register 1	0x01
0x00 5004		PA_CR2	Port A control register 2	0x00
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006		PB_IDR	Port B input pin value register	0xXX
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008]	PB_CR1	Port B control register 1	0x00
0x00 5009		PB_CR2	Port B control register 2	0x00

Address	Block	Register label	Register map (continued)	Reset status	
0x00 52E0		TIM4_CR1	TIM4 control register 1	0x00	
0x00 52E1		TIM4_CR2	TIM4 control register 2	0x00	
0x00 52E2	-	TIM4_SMCR	TIM4 Slave mode control register	0x00	
0x00 52E3	-	TIM4_DER	TIM4 DMA1 request enable register	0x00	
0x00 52E4	-	TIM4_IER	TIM4 Interrupt enable register	0x00	
0x00 52E5	- TIM4	TIM4_SR1	TIM4 status register 1	0x00	
0x00 52E6	-	TIM4_EGR	TIM4 Event generation register	0x00	
0x00 52E7	-	TIM4_CNTR	TIM4 counter	0x00	
0x00 52E8	-	TIM4_PSCR	TIM4 prescaler register	0x00	
0x00 52E9	-	TIM4_ARR	TIM4 Auto-reload register	0x00	
0x00 52EA to 0x00 52FE		Reserved area (21 byte)			
0x00 52FF	IRTIM	IR_CR	Infrared control register	0x00	
0x00 5317 to 0x00 533F		Reserved area (41 byte)			
0x00 5340		ADC1_CR1	ADC1 configuration register 1	0x00	
0x00 5341		ADC1_CR2	ADC1 configuration register 2	0x00	
0x00 5342		ADC1_CR3	ADC1 configuration register 3	0x1F	
0x00 5343		ADC1_SR	ADC1 status register	0x00	
0x00 5344		ADC1_DRH	ADC1 data register high	0x00	
0x00 5345		ADC1_DRL	ADC1 data register low	0x00	
0x00 5346		ADC1_HTRH	ADC1 high threshold register high	0x0F	
0x00 5347		ADC1_HTRL	ADC1 high threshold register low	0xFF	
0x00 5348		ADC1_LTRH	ADC1 low threshold register high	0x00	
0x00 5349	ADCT	ADC1_LTRL	ADC1 low threshold register low	0x00	
0x00 534A		ADC1_SQR1	ADC1 channel sequence 1 register	0x00	
0x00 534B	1	ADC1_SQR2	ADC1 channel sequence 2 register	0x00	
0x00 534C	1	ADC1_SQR3	ADC1 channel sequence 3 register	0x00	
0x00 534D	1	ADC1_SQR4	ADC1 channel sequence 4 register	0x00	
0x00 534E	1	ADC1_TRIGR1	ADC1 trigger disable 1	0x00	
0x00 534F	1	ADC1_TRIGR2	ADC1 trigger disable 2	0x00	
0x00 5350	1	ADC1_TRIGR3	ADC1 trigger disable 3	0x00	
0x00 5351	1	ADC1_TRIGR4	ADC1 trigger disable 4	0x00	

 Table 8. General hardware register map (continued)

Option byte	Option description
No.	
OPT0	ROP[7:0] Memory readout protection (ROP) 0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in the STM8L15x and STM8L16x reference manual (RM0031).
OPT1	 UBC[7:0] Size of the user boot code area 0x00: UBC is not protected. 0x01: Page 0 is write protected. 0x02: Page 0 and 1 reserved for the UBC and write protected. It covers only the interrupt vectors. 0x03: Page 0 to 2 reserved for UBC and write protected. 0x7F to 0xFF - All 128 pages reserved for UBC and write protected. The protection of the memory area not protected by the UBC is enabled through the MASS keys. Refer to User boot code section in the STM8L15x and STM8L16x reference manual (RM0031).
OPT2	Reserved
	IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware
0070	IWDG_HALT: Independent window watchdog off on Halt/Active-halt 0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode
OPT3	WWDG_HW: Window watchdog 0: Window watchdog activated by software 1: Window watchdog activated by hardware
	WWDG_HALT: Window window watchdog reset on Halt/Active-halt 0: Window watchdog stopped in Halt mode 1: Window watchdog generates a reset when MCU enters Halt mode
	HSECNT: Number of HSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles
OPT4	LSECNT: Number of LSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles Refer to Table 31: LSE oscillator characteristics on page 74.

Table 12. Option byte description

51/122

Option byte No.	Option description
OPT5	BOR_ON: 0: Brownout reset off 1: Brownout reset on BOR_TH[3:1]: Brownout reset thresholds. Refer to Table 22 for details on the thresholds according to the value of BOR_TH bits.
OPTBL	OPTBL[15:0] : This option is checked by the boot ROM code after reset. Depending on content of addresses 00 480B, 00 480C and 0x8000 (reset vector) the CPU jumps to the bootloader or to the reset vector. Refer to the UM0560 bootloader user manual for more details.

Table 12. Option byte description (continued)

	Para		a		-	Max				l Init
Symbol	meter	Conditions ⁽¹⁾		Тур	55 °C	85 °C	105°C ⁽²⁾	125 °C ⁽²⁾	Unit	
				f _{CPU} = 125 kHz	0.39	0.47	0.49	0.52	0.55	
				f _{CPU} = 1 MHz	0.48	0.56	0.58	0.61	0.65	
Supply			HSI RC osc. (16 MHz) ⁽⁴⁾	f _{CPU} = 4 MHz	0.75	0.84	0.86	0.91	0.99	
				f _{CPU} = 8 MHz	1.10	1.20	1.25	1.31	1.40	
		All peripherals		f _{CPU} = 16 MHz	1.85	1.93	2.12 ⁽⁶⁾	2.29 ⁽⁶⁾	2.36 ⁽⁶⁾	
	Supply	OFF,		f _{CPU} = 125 kHz	0.05	0.06	0.09	0.11	0.12	
I _{DD(RUN)}	current	code executed	HSE external	f _{CPU} = 1 MHz	0.18	0.19	0.20	0.22	0.23	mA
DD(RON)	in run mode ⁽³⁾	from RAM,	clock	f _{CPU} = 4 MHz	0.55	0.62	0.64	0.71	0.77	
		V _{DD} from 1.65 V to	(f _{CPU} =f _{HSE}) ⁽⁵⁾	f _{CPU} = 8 MHz	0.99	1.20	1.21	1.22	1.24	
		3.6 V		f _{CPU} = 16 MHz	1.90	2.22	2.23 ⁽⁶⁾	2.24 ⁽⁶⁾	2.28 ⁽⁶⁾	
			LSI RC osc. (typ. 38 kHz)	$f_{CPU} = f_{LSI}$	0.040	0.045	0.046	0.048	0.050	
			LSE external clock (32.768 kHz)	f _{CPU} = f _{LSE}	0.035	0.040	0.048 ⁽⁶⁾	0.050	0.062	
			HSI RC osc. ⁽⁷⁾	f _{CPU} = 125 kHz	0.43	0.55	0.56	0.58	0.62	
				f _{CPU} = 1 MHz	0.60	0.77	0.80	0.82	0.87	
				f _{CPU} = 4 MHz	1.11	1.34	1.37	1.39	1.43	
				f _{CPU} = 8 MHz	1.90	2.20	2.23	2.31	2.40	
		All		f _{CPU} = 16 MHz	3.8	4.60	4.75	4.87	4.88	
	Supply	peripherals OFF, code		f _{CPU} = 125 kHz	0.30	0.36	0.39	0.44	0.47	
I _{DD(RUN)}	current	executed	HSE external	f _{CPU} = 1 MHz	0.40	0.50	0.52	0.55	0.56	mA
·DD(RON)	in Run mode	from Flash, V _{DD} from	clock (f _{CPU} =f _{HSE})	f _{CPU} = 4 MHz	1.15	1.31	1.40	1.45	1.48	110 (
		1.65 V to 3.6 V	(5)	f _{CPU} = 8 MHz	2.17	2.33	2.44	2.56	2.77	
		3.0 V		f _{CPU} = 16 MHz	4.0	4.46	4.52	4.59	4.77	
			LSI RC osc.	$f_{CPU} = f_{LSI}$	0.110	0.123	0.130	0.140	0.150	
			LSE ext. clock (32.768 kHz) ⁽⁸⁾	f _{CPU} = f _{LSE}	0.100	0.101	0.104	0.119	0.122	

1. All peripherals OFF, V_{DD} from 1.65 V to 3.6 V, HSI internal RC osc., $f_{CPU}{=}f_{SYSCLK}$

2. For devices with suffix 3

3. CPU executing typical data processing

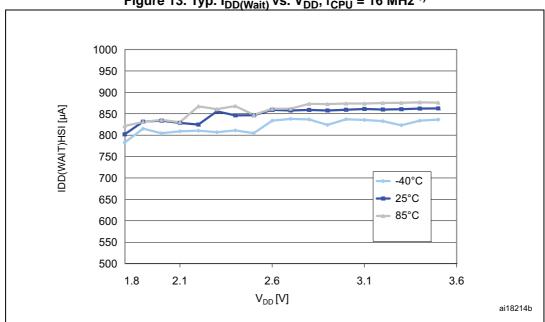


Figure 13. Typ. $I_{DD(Wait)}$ vs. V_{DD} , f_{CPU} = 16 MHz ¹⁾

1. Typical current consumption measured with code executed from Flash memory.

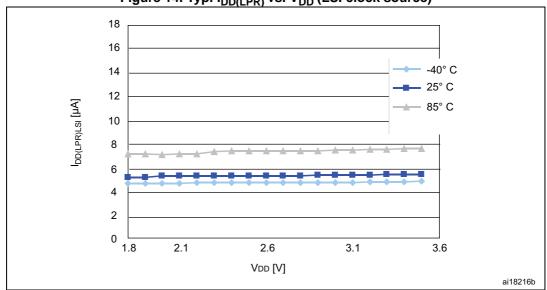


Figure 14. Typ. I_{DD(LPR)} vs. V_{DD} (LSI clock source)

In the following table, data is based on characterization results, unless otherwise specified.

Symbol	Parameter	Condition ⁽¹⁾⁽²⁾	Тур	Мах	Unit
		$T_A = -40 \text{ °C to } 25 \text{ °C}$	350	1400 ⁽³⁾	
	Supply current in Halt mode	T _A = 55 °C	580	2000	
I _{DD(Halt)}	(Ultra-low-power ULP bit =1 in	T _A = 85 °C	1160	2800 ⁽³⁾	nA
		T _A = 105 °C	2560	6700 ⁽³⁾	
		T _A = 125 °C	4.4	13 ⁽³⁾	μA
IDD(WUHait)	Supply current during wakeup time from Halt mode (using HSI)	-	2.4	-	mA
t _{WU_HSI(Halt)} ⁽⁴⁾⁽⁵⁾	t _{WU_HSI(Halt)} ⁽⁴⁾⁽⁵⁾ Wakeup time from Halt to Run mode (using HSI)		4.7	7	μs
t _{WU_LSI(Halt)} ⁽⁴⁾⁽⁵⁾	Wakeup time from Halt mode to Run mode (using LSI)	-	150	-	μs

Table 25. Total current consumption and timing in Halt mode at V_{DD} = 1.65 to 3.6 V

1. $T_A = -40$ to 125 °C, no floating I/O, unless otherwise specified.

2. T_A > 85 °C is valid only for devices with suffix 3 temperature range.

3. Tested in production.

4. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.

5. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after t_{WU} .

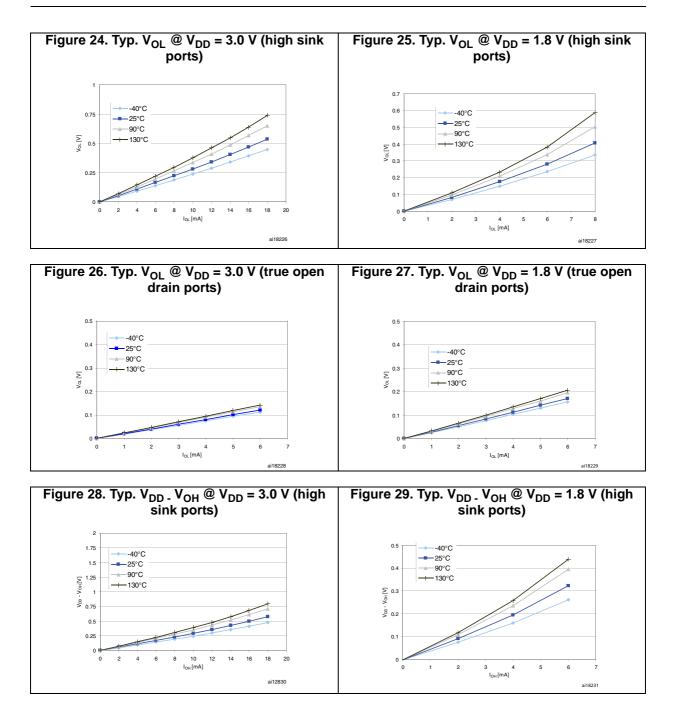
Current consumption of on-chip peripherals

Symbol	Parameter		Typ. V _{DD} = 3.0 V	Unit
I _{DD(TIM2)}	TIM2 supply current ⁽¹⁾		8	
I _{DD(TIM3)}	TIM3 supply current ⁽¹⁾		8	
I _{DD(TIM4)}	TIM4 timer supply current ⁽¹⁾		3	
I _{DD(USART1)}	USART1 supply current ⁽²⁾		6	
I _{DD(SPI1)}	SPI1 supply current ⁽²⁾		3	μΑ/MHz
I _{DD(I2C1)}	I ² C1 supply current ⁽²⁾		5	
I _{DD(DMA1)}	DMA1 supply current ⁽²⁾		3	
I _{DD(WWDG)}	WWDG supply current ⁽²⁾		2	
I _{DD(ALL)}	Peripherals ON ⁽³⁾		38	µA/MHz
I _{DD(ADC1)}	ADC1 supply current ⁽⁴⁾		1500	μA
I _{DD(COMP1)}	Comparator 1 supply current ⁽⁵⁾		0.160	
	Comparator 2 supply current ⁽⁵⁾	Slow mode	2	
IDD(COMP2)	Comparator 2 supply current	Fast mode	5	
I _{DD(PVD/BOR)}	Power voltage detector and brownout Reset unit supply current ⁽⁶⁾		2.6	μA
I _{DD(BOR)}	Brownout Reset unit supply current ⁽⁶⁾		2.4	
	Independent watchdog supply current	including LSI supply current	0.45	
I _{DD} (IDWDG)		excluding LSI supply current	0.05	

Table 26. Peripheral current consumption

1. Data based on a differential I_{DD} measurement between all peripherals OFF and a timer counter running at 16 MHz. The CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.

 Data based on a differential I_{DD} measurement between the on-chip peripheral in reset configuration and not clocked and the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling. Not tested in production.


3. Peripherals listed above the I_{DD(ALL)} parameter ON: TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG.

4. Data based on a differential I_{DD} measurement between ADC1 in reset configuration and continuous ADC1 conversion.

 Data based on a differential I_{DD} measurement between COMP1 or COMP2 in reset configuration and COMP1 or COMP2 enabled with static inputs. Supply current of internal reference voltage excluded.

6. Including supply current of internal reference voltage.

DocID018780 Rev 8

In the following table, data is guaranteed by design, not tested in production.

Table 47. Comparator 2 characteristics						
Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V_{DDA}	Analog supply voltage	-	1.65	-	3.6	V
Τ _Α	Temperature range	-	-40	-	125	°C
V _{IN}	Comparator 2 input voltage range	-	0	-	V _{DDA}	V
+	Comporator startus time	Fast mode	-	15	20	
t _{START}	Comparator startup time	Slow mode	-	20	25	
t _{d slow}	Propagation delay in slow mode ⁽²⁾	$\begin{array}{c} 1.65 \text{ V} \leq \text{V}_{\text{DDA}} \\ \leq 2.7 \text{ V} \end{array}$	-	1.8	3.5	
		$\begin{array}{c} 2.7 \text{ V} \leq \text{V}_{\text{DDA}} \leq \\ 3.6 \text{ V} \end{array}$	-	2.5	6	μs
t _{d fast}	Propagation delay in fast mode ⁽²⁾	$\begin{array}{c} 1.65 \text{ V} \leq \text{V}_{\text{DDA}} \\ \leq 2.7 \text{ V} \end{array}$	-	0.8	2	
		$\begin{array}{c} 2.7 \text{ V} \leq \text{V}_{\text{DDA}} \leq \\ 3.6 \text{ V} \end{array}$	-	1.2	4	
Voffset	Comparator offset error	-	-	±4	±20	mV
	Current concurrention ⁽³⁾	Fast mode	-	3.5	5	
I _{COMP2}	Current consumption ⁽³⁾	Slow mode	-	0.5	2	μA

Table 47. Comparator 2 characteristics

1. Based on characterization, not tested in production.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

9.3.12 12-bit ADC1 characteristics

In the following table, data is guaranteed by design, not tested in production.

		Table 48. ADC	r characte	ristics		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Analog supply voltage	-	1.8	-	3.6	V
V	Reference supply	$2.4~\text{V} \leq \text{V}_{\text{DDA}} \leq~3.6~\text{V}$	2.4	-	V _{DDA}	V
V _{REF+}	voltage	$1.8 \text{ V} \leq \text{V}_{\text{DDA}} \leq \text{ 2.4 V}$		V _{DDA}		V
V _{REF-}	Lower reference voltage	-		V _{SSA}		V
I _{VDDA}	Current on the VDDA input pin	-	-	1000	1450	μA
	Current on the VREF+	-	-	400	700 (peak) ⁽¹⁾	μA
I _{VREF+}	input pin	-	-	400	450 (average) ⁽¹⁾	μA
V _{AIN}	Conversion voltage range	-	0 ⁽²⁾	-	V _{REF+}	V
T _A	Temperature range	-	-40	-	125	°C
R _{AIN}	External resistance on	on PF0 fast channel	-	-	- 50 ⁽³⁾	kΩ
• AIN	V _{AIN}	on all other channels	-	-	50	R22
C _{ADC1}	Internal sample and hold	on PF0 fast channel	-	- 16	-	pF
CADC1	capacitor	on all other channels	-		-	рі
f	ADC1 sampling clock	2.4 V \leq V _{DDA} \leq 3.6 V without zooming	0.320	-	16	MHz
f _{ADC1}	frequency	1.8 V \leq V _{DDA} \leq 2.4 V with zooming	0.320	-	8	MHz
f _{CONV}	12-bit conversion rate	V _{AIN} on PF0 fast channel	-	-	1 ⁽⁴⁾⁽⁵⁾	MHz
	12-DIT CONVERSION RATE	V _{AIN} on all other channels	-	-	760 ⁽⁴⁾⁽⁵⁾	kHz
f _{TRIG}	External trigger frequency	-	-	-	t _{conv}	1/f _{ADC1}
t _{LAT}	External trigger latency	-	-	-	3.5	1/f _{SYSCL}

Table 48. ADC1 characteristics

In the following three tables, data is guaranteed by characterization result, not tested in production.

Symbol	Parameter	Conditions	Тур	Max	Unit
		f _{ADC1} = 16 MHz	1	1.6	
DNL	Differential non linearity	f _{ADC1} = 8 MHz	1	1.6	1
		f _{ADC1} = 4 MHz	1	1.5	1
		f _{ADC1} = 16 MHz	1.2	2]
INL	Integral non linearity	f _{ADC1} = 8 MHz	1.2	1.8	LSB
		f _{ADC1} = 4 MHz	1.2	1.7]
		f _{ADC1} = 16 MHz	2.2	3.0]
TUE	Total unadjusted error	f _{ADC1} = 8 MHz	1.8	2.5	
		f _{ADC1} = 4 MHz	1.8	2.3]
		f _{ADC1} = 16 MHz	1.5	2	
Offset	Offset error	f _{ADC1} = 8 MHz	1	1.5]
		f _{ADC1} = 4 MHz	0.7	1.2	- LSB
		f _{ADC1} = 16 MHz			
Gain	Gain error	f _{ADC1} = 8 MHz	1	1.5	
		f _{ADC1} = 4 MHz			

Table 49. ADC1 accuracy with $V_{DDA} = 3.3$ V to 2.5 V

Symbol	Parameter	Тур	Max	Unit
DNL	Differential non linearity	1	2	LSB
INL	Integral non linearity	1.7	3	LSB
TUE	Total unadjusted error	2	4	LSB
Offset	Offset error	1	2	LSB
Gain	Gain error	1.5	3	LSB

Table 51. ADC1 accuracy with V _{DDA} = V _{REF} ⁺ = 1.8 V to 2.4	V
--	---

Symbol	Parameter	Тур	Max	Unit
DNL	Differential non linearity	1	2	LSB
INL	Integral non linearity	2	3	LSB
TUE	Total unadjusted error	3	5	LSB
Offset	Offset error	2	3	LSB
Gain	Gain Gain error		3	LSB

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	neter Conditions		Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C},$ $f_{CPU}= 16 \text{ MHz},$ conforms to IEC 61000		2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on	V _{DD} = 3.3 V, T _A = +25 °C, f _{CPU} = 16 MHz,	Using HSI	4A
VDD and VSS pins to induce a		conforms to IEC 61000	Using HSE	2B

Table 53. EMS data

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin.

		Table	e 54. Elvii data 🗥		
Symbol	Parameter	Conditions	Monitored	Max vs.	Unit
Symbol Parameter	frequency band	16 MHz	Unit		
		V _{DD} = 3.6 V,	0.1 MHz to 30 MHz	-3	
S	S_{EMI} Peak level $V_{DD} = 3.6 V,$ $T_A = +25 °C,$ LQFP48 conforming to		30 MHz to 130 MHz	9	dBμV
SEMI FEAK IEVEI			130 MHz to 1 GHz	4	
		IEC61967-2	SAE EMI Level	2	-

Table 54. EMI data ⁽¹⁾

1. Not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

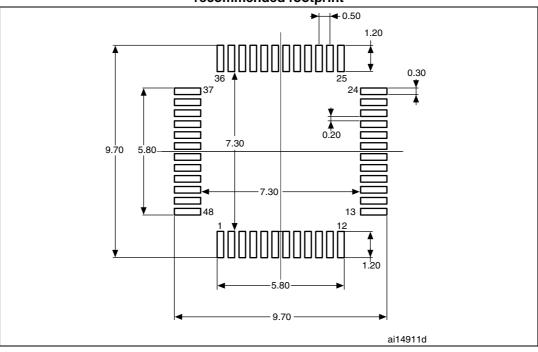
Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and charge device model. This test conforms to the JESD22-A114A/A115A standard.

Symbol	Ratings	Conditions	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T – +25 °C	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C	500	v

Table 55	. ESD	absolute	maximum	ratings
----------	-------	----------	---------	---------

1. Data based on characterization results, not tested in production.


Static latch-up

• LU: 3 complementary static tests are required on 6 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Table 56	. Electrical	sensitivities
----------	--------------	---------------

Symbol	Parameter	Class	
LU	Static latch-up class	II	

Figure 43. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

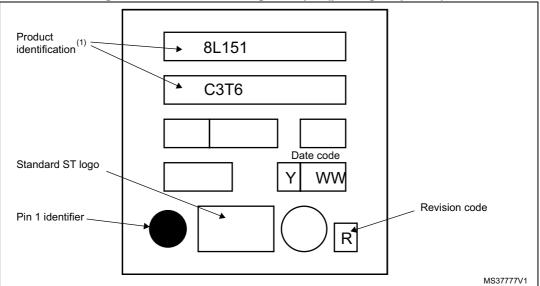


Figure 44. LQFP48 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

10.4 UFQFPN28 package information

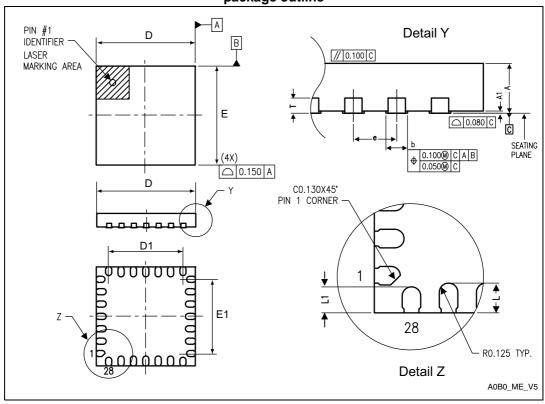


Figure 48. UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline

1. Drawing is not to scale.

Table 59. UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data ⁽¹⁾

Symbol	millimeters			inches		
	Min	Тур	Max	Min	Тур	Мах
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	-	0.000	0.050	-	0.0000	0.0020
D	3.900	4.000	4.100	0.1535	0.1575	0.1614
D1	2.900	3.000	3.100	0.1142	0.1181	0.1220
E	3.900	4.000	4.100	0.1535	0.1575	0.1614
E1	2.900	3.000	3.100	0.1142	0.1181	0.1220
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
L1	0.250	0.350	0.450	0.0098	0.0138	0.0177
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-

DocID018780 Rev 8

Date	Revision	Changes
18-Dec-2014	6	Updated Section: UFQFPN20 package information. Replaced "ultralow power" occurrences with "ultra-low- power", and "Low density" with "low-density" where applicable.
		Added:
08-Apr-2015	7	 Figure 44: LQFP48 marking example (package top view),
		 Figure 47: UFQFPN32 marking example (package top view),
		 Figure 50: UFQFPN28 marking example (package top view),
		 Figure 53: UFQFPN20 marking example (package top view),
		 Figure 56: TSSOP20 marking example (package top view).
		Updated:
		 Table 63: Low-density STM8L151x2/3 ordering information scheme.
		Moved Section 10.7: Thermal characteristics to Section 10: Package information.
01-Oct-2016	8	In <i>Table 4: Low-density</i> STM8L151x2/3 pin description row corresponding to pin names PD6/ADC1_IN8 / RTC_CALIB/COMP1_INP, inserted pin number 35 in LQFP48 column.

Table 64. Document revision history (continued)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID018780 Rev 8