E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT
Number of I/O	18
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151f2p6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.15.2	I ² C
		3.15.3	USART
	3.16	Infrared	(IR) interface 23
	3.17	Develop	oment support
4	Pinou	it and p	in description
	4.1	System	configuration options
5	Memo	ory and	register map 32
	5.1	Memory	⁷ mapping
	5.2	Registe	r map
6	Interr	upt vec	tor mapping 48
7	Optio	n bytes	
8	Uniqu	ie ID	
9	Electr	rical par	ameters
	9.1	Parame	ter conditions
		9.1.1	Minimum and maximum values54
		9.1.2	Typical values
		9.1.3	Typical curves
		9.1.4	Loading capacitor
		9.1.5	Pin input voltage
	9.2	Absolute	e maximum ratings 55
	9.3	Operati	ng conditions
		9.3.1	General operating conditions
		9.3.2	Embedded reset and power control block characteristics
		9.3.3	Supply current characteristics
		9.3.3 9.3.4	Supply current characteristics
		9.3.3 9.3.4 9.3.5	Supply current characteristics 59 Clock and timing characteristics 72 Memory characteristics 78 VO 72
		9.3.3 9.3.4 9.3.5 9.3.6	Supply current characteristics 59 Clock and timing characteristics 72 Memory characteristics 78 I/O current injection characteristics 79 VO 72
		9.3.3 9.3.4 9.3.5 9.3.6 9.3.7	Supply current characteristics 59 Clock and timing characteristics 72 Memory characteristics 78 I/O current injection characteristics 79 I/O port pin characteristics 79 Operative interference 72
		9.3.3 9.3.4 9.3.5 9.3.6 9.3.7 9.3.8	Supply current characteristics 59 Clock and timing characteristics 72 Memory characteristics 78 I/O current injection characteristics 79 I/O port pin characteristics 79 Communication interfaces 87 Embedded reference unknow 22
		9.3.3 9.3.4 9.3.5 9.3.6 9.3.7 9.3.8 9.3.9	Supply current characteristics 59 Clock and timing characteristics 72 Memory characteristics 78 I/O current injection characteristics 79 I/O port pin characteristics 79 Communication interfaces 87 Embedded reference voltage 92

DocID018780 Rev 8

3.10 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.

The highly flexible routing interface controls the routing of internal analog signals to ADC1, COMP1, COMP2, and the internal reference voltage V_{REFINT}. It also provides a set of registers for efficiently managing the charge transfer acquisition sequence (*Section 3.11: Touch sensing*).

3.11 Touch sensing

Low-density STM8L151x2/3 devices provide a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (example, glass, plastic). The capacitive variation introduced by a finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. In low-density STM8L15xxx devices, the acquisition sequence is managed either by software or by hardware and it involves analog I/O groups, the routing interface, and timers.Reliable touch sensing solutions can be quickly and easily implemented using the free STM8 Touch Sensing Library.

3.12 Timers

Low-density STM8L151x2/3devices contain two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit basic timer (TIM4).

All the timers can be served by DMA1.

Table 2 compares the features of the advanced control, general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA1 request generation	Capture/compare channels	Complementary outputs
TIM2	16-bit	up/dowp	Any power of 2		2	
TIM3	TO-DIL	up/uown	from 1 to 128	Yes	2	None
TIM4	8-bit	up	Any power of 2 from 1 to 32768		0	

Table 2. Timer feature comparison

	Pin	nun	nber						Inpu	t	0	Jutpu	ıt		
LQFP48	UFQFPN32	UFQFPN28	UFQFPN20	TSSOP20	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	OD	dd	Main function (after reset)	Default alternate function
25	14	13	8	11	PB1/TIM3_CH1/ ADC1_IN17/ COMP1_INP	I/O	-	x	х	х	HS	x	х	Port B1	Timer 3 - channel1/ ADC1_IN17/ Comparator1 positive input
26	15	14	9	12	PB2/ TIM2_CH2/ ADC1_IN16/ COMP1_INP	I/O	-	x	х	х	HS	x	х	Port B2	Timer 2 - channel2 ADC1_IN16/ Comparator1 positive input
27	16	15	10	13	PB3/TIM2_ETR/ ADC1_IN15/RTC_AL ARM ⁽⁴⁾ / COMP1_INP	I/O	-	x	х	х	нs	x	х	Port B3	Timer 2 - external trigger / ADC1_IN15 / RTC_ALARM ⁽⁴⁾ /Comparator1 positive input
28	17	16	11	14	PB4 ⁽³⁾ /SPI1_NSS/ ADC1_IN14/ COMP1_INP	I/O	-	x	х	х	нs	x	х	Port B4	SPI master/slave select / ADC1_IN14/ Comparator1 positive input
29	18	17	12	15	PB5/SPI_SCK/ /ADC1_IN13/ COMP1_INP	I/O	-	x	х	х	HS	х	х	Port B5	[SPI clock] / ADC1_IN13/ Comparator 1 positive input
30	19	18	13	16	PB6/SPI1_MOSI/ ADC1_IN12/ COMP1_INP	I/O	-	x	Х	х	HS	х	х	Port B6	SPI master out/ slave in / ADC1_IN12/ Comparator1 positive input
31	20	19	14	17	PB7/SPI1_MISO/ ADC1_IN11/ COMP1_INP	I/O	-	x	х	Х	HS	х	х	Port B7	SPI1 master in-slave out/ ADC1_IN11/ Comparator1 positive input
37	25	21	15	18	PC0/I2C_SDA	I/O	FT	Х		Х		T ⁽⁵⁾		Port C0	I2C data
38	26	22	16	19	PC1/I2C_SCL	I/O	FT	Х		Х		T ⁽⁵⁾		Port C1	I2C clock
41	27	23	-	-	PC2/USART_RX/ADC 1_IN6/ COMP1_INP	I/O	-	х	Х	Х	HS	х	х	Port C2	USART receive / ADC1_IN6/ Comparator1 positive input
42	28	24	-	-	PC3/USART_TX/ ADC1_IN5/ COMP1_INP/ COMP2_INM	I/O	-	x	х	х	HS	х	х	Port C3	USART transmit / ADC1_IN5/ Comparator1 positive input/Comparator 2 negative input

Table 4. Low-density	STM8L151x2/3 pi	n description	(continued)
----------------------	-----------------	---------------	-------------

Address	Block	Register label	Register name	Reset status
0x00 5280		TIM3_CR1	TIM3 control register 1	0x00
0x00 5281		TIM3_CR2	TIM3 control register 2	0x00
0x00 5282		TIM3_SMCR	TIM3 Slave mode control register	0x00
0x00 5283		TIM3_ETR	TIM3 external trigger register	0x00
0x00 5284		TIM3_DER	TIM3 DMA1 request enable register	0x00
0x00 5285		TIM3_IER	TIM3 interrupt enable register	0x00
0x00 5286		TIM3_SR1	TIM3 status register 1	0x00
0x00 5287		TIM3_SR2	TIM3 status register 2	0x00
0x00 5288		TIM3_EGR	TIM3 event generation register	0x00
0x00 5289		TIM3_CCMR1	TIM3 Capture/Compare mode register 1	0x00
0x00 528A		TIM3_CCMR2	TIM3 Capture/Compare mode register 2	0x00
0x00 528B	TIM3	TIM3_CCER1	TIM3 Capture/Compare enable register 1	0x00
0x00 528C		TIM3_CNTRH	TIM3 counter high	0x00
0x00 528D		TIM3_CNTRL	TIM3 counter low	0x00
0x00 528E		TIM3_PSCR	TIM3 prescaler register	0x00
0x00 528F		TIM3_ARRH	TIM3 Auto-reload register high	0xFF
0x00 5290		TIM3_ARRL	TIM3 Auto-reload register low	0xFF
0x00 5291		TIM3_CCR1H	TIM3 Capture/Compare register 1 high	0x00
0x00 5292		TIM3_CCR1L	TIM3 Capture/Compare register 1 low	0x00
0x00 5293		TIM3_CCR2H	TIM3 Capture/Compare register 2 high	0x00
0x00 5294		TIM3_CCR2L	TIM3 Capture/Compare register 2 low	0x00
0x00 5295		TIM3_BKR	TIM3 break register	0x00
0x00 5296		TIM3_OISR	TIM3 output idle state register	0x00
0x00 5297 to 0x00 52DF		<u>.</u>	Reserved area (72 byte)	<u>.</u>

Table 8. General hardware register map (continued)

7 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated memory block.

All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM address. See *Table 11* for details on option byte addresses.

The option bytes can also be modified 'on the fly' by the application in IAP mode, except for the ROP and UBC values which can only be taken into account when they are modified in ICP mode (with the SWIM).

Refer to the STM8L15x Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0470) for information on SWIM programming procedures.

Addr	Ontion nome	Option		Option bits						Factory	
Addi.	Option name	No.	7	7 6 5 4			3	2	1	0	setting
0x00 4800	Read-out protection (ROP)	OPT0	ROP[7:0]								0xAA
0x00 4802	UBC (User Boot code size)	OPT1		UBC[7:0]							
0x00 4807				Reserved							0x00
0x00 4808	Independent watchdog option	OPT3 [3:0]		Reserved WWDG WWDG IWDG IWDG IWDG IWDG IWDG IWDG					IWDG _HW	0x00	
0x00 4809	Number of stabilization clock cycles for HSE and LSE oscillators	OPT4	Reserved LSECNT[1:0] HSECNT[1:0]						0x00		
0x00 480A	Brownout reset (BOR)	OPT5 [3:0]	Reserved BOR_TH BOR_ ON					0x01			
0x00 480B	Bootloader	OPTBL							0x00		
0x00 480C	OPTBL)	[15:0]		OPTBL[15:0]					0x00		

 Table 11. Option byte addresses

Option byte No.	Option description
OPT0	ROP[7:0] Memory readout protection (ROP) 0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in the STM8L15x and STM8L16x reference manual (RM0031).
OPT1	 UBC[7:0] Size of the user boot code area 0x00: UBC is not protected. 0x01: Page 0 is write protected. 0x02: Page 0 and 1 reserved for the UBC and write protected. It covers only the interrupt vectors. 0x03: Page 0 to 2 reserved for UBC and write protected. 0x7F to 0xFF - All 128 pages reserved for UBC and write protected. The protection of the memory area not protected by the UBC is enabled through the MASS keys. Refer to User boot code section in the STM8L15x and STM8L16x reference manual (RM0031).
OPT2	Reserved
OPT3	IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware IWDG_HALT: Independent window watchdog off on Halt/Active-halt 0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode 0: WWDG_HW: Window watchdog 0: Window watchdog activated by software 1: Window watchdog activated by hardware WWDG_HALT: Window watchdog reset on Halt/Active-halt 0: Window watchdog activated by hardware WWDG_HALT: Window watchdog reset on Halt/Active-halt 0: Window watchdog stopped in Halt mode
	1: Window watchdog generates a reset when MCU enters Halt mode HSECNT : Number of HSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles
OPT4	LSECNT: Number of LSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles Refer to Table 31: LSE oscillator characteristics on page 74.

Table 12. Option byte description

51/122

Option byte No.	Option description
OPT5	BOR_ON: 0: Brownout reset off 1: Brownout reset on
	BOR_TH[3:1] : Brownout reset thresholds. Refer to <i>Table 22</i> for details on the thresholds according to the value of BOR_TH bits.
OPTBL	OPTBL[15:0] : This option is checked by the boot ROM code after reset. Depending on content of addresses 00 480B, 00 480C and 0x8000 (reset vector) the CPU jumps to the bootloader or to the reset vector. Refer to the UM0560 bootloader user manual for more details.

Table 12. Option byte description (continued)

8 Unique ID

STM8 devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

Address	Content				Uniqu	ue ID bits	6					
Address	description	7	6	5	4	3	2	1	0			
0x4926	X co-ordinate on	U_ID[7:0]										
0x4927	the wafer		U_ID[15:8]									
0x4928	Y co-ordinate on				U_I	D[23:16]						
0x4929	the wafer	U_ID[31:24]										
0x492A	Wafer number	U_ID[39:32]										
0x492B					U_I	D[47:40]						
0x492C					U_II	D[55:48]						
0x492D					U_I	D[63:56]						
0x492E	Lot number	U_ID[71:64]										
0x492F		U_ID[79:72]										
0x4930		U_ID[87:80]										
0x4931					U_II	U_ID[95:88]						

Table 13. Unique ID registers (96 bits)

9.3 Operating conditions

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

9.3.1 General operating conditions

Symbol	Parameter	С	Min.	Max.	Unit	
fsysclk ⁽¹⁾	System clock frequency	1.65 V	\leq V _{DD} < 3.6 V	0	16	MHz
V _{DD}	Standard operating voltage		1.65 ⁽²⁾	3.6	V	
V _{DDA}	Analog operating	ADC1 not used	Must be at the same	1.65 ⁽²⁾	3.6	V
	voltage	ADC1 used	potential as V _{DD}	1.8	3.6	V
			LQFP48	-	288	
	Power dissipation at	U	FQFPN32	-	288	
	T_A = 85 °C for suffix 3 and suffix 6 devices	U	FQFPN28	-	250	
		U	FQFPN20	-	196	
р (3)		Т	SSOP20	-	181	~\\/
PD''			LQFP48	-	77	TIVV
	Power dissipation at T_A = 125 °C for suffix 3	U	FQFPN32	-	185	
		U	FQFPN28	-	62	
	devices	U	FQFPN20	-	49	
		Т	SSOP20	-	45	
- -	T	$1.65 \text{ V} \le \text{V}_{\text{DD}} <$	3.6 V (6 suffix version)	-40	85	
۱A	Temperature range	$1.65 \text{ V} \le \text{V}_{\text{DD}} <$	3.6 V (3 suffix version)	-40	125	
т	Junction temperature	-40 °C (6 si	C ≤ T _A < 85 °C uffix version)	-40	105 ⁽⁴⁾	°C
IJ	range	-40 °C (3 si	≤ T _A < 125 °C uffix version)	-40	130 ⁽⁴⁾	

Гable 17. Ge	neral opera	ating conditions
--------------	-------------	------------------

1. $f_{SYSCLK} = f_{CPU}$

2. 1.8 V at power-up, 1.65 V at power-down if BOR is disabled

3. To calculate $P_{Dmax}(T_A)$, use the formula $P_{Dmax}=(T_{Jmax} - T_A)/\Theta_{JA}$ with T_{Jmax} in this table and Θ_{JA} in "Thermal characteristics" table.

4. T_J max is given by the test limit. Above this value, the product behavior is not guaranteed.

Figure 11. POR/BOR thresholds

9.3.3 Supply current characteristics

Total current consumption

The MCU is placed under the following conditions:

- I All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if explicitly mentioned.

In the following table, data is based on characterization results, unless otherwise specified. Subject to general operating conditions for V_{DD} and T_{A} .

In the following table, data is based on characterization results, unless otherwise specified.

Symbol	Parameter		Conditions ⁽¹⁾⁽²⁾		Тур	Max	Unit
				T _A = -40 °C to 25 °C	5.1	5.4	
				T _A = 55 °C	5.7	6	1
			all peripherals OFF	T _A = 85 °C	6.8	7.5	
				T _A = 105 °C	9.2	10.4	
		LSI RC osc.		T _A = 125 °C	13.4	16.6	
		(at 38 kHz)		T _A = -40 °C to 25 °C	5.4	5.7	
	Supply current in Low power run mode		(2)	T _A = 55 °C	6.0	6.3	
			with TIM2 active ⁽³⁾	T _A = 85 °C	7.2	7.8	
				T _A = 105 °C	9.4	10.7	
				T _A = 125 °C	13.8	17	
'DD(LPR)				T _A = -40 °C to 25 °C	5.25	5.6	μΛ
				T _A = 55 °C	5.67	6.1	-
			all peripherals OFF	T _A = 85 °C	5.85	6.3	
				T _A = 105 °C	7.11	7.6	
		LSE ⁽⁴⁾ external		T _A = 125 °C	9.84	12	
		(32.768 kHz)		T _A = -40 °C to 25 °C	5.59	6	
				T _A = 55 °C	6.10	6.4	
			with TIM2 active ⁽³⁾	T _A = 85 °C	6.30	7	
				T _A = 105 °C	7.55	8.4	
				T _A = 125 °C	10.1	15	

Table 21.	Total	current	consum	ption	and tim	ning in	Low	power	run	mode
			at V _{DD}	= 1.6	5 V to 3.	.6 V				

1. No floating I/Os

2. $T_A > 85$ °C is valid only for devices with suffix 3 temperature range.

3. Timer 2 clock enabled and counter running

 Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to Table 31

In the following table, data is based on characterization results, unless otherwise specified.

Symbol	Parameter		Conditions ⁽¹⁾⁽²)	Тур	Мах	Unit
				$T_A = -40 \text{ °C to } 25 \text{ °C}$	3	3.3	
				T _A = 55 °C	3.3	3.6	
	Supply current in Low power wait mode		all peripherals OFF	T _A = 85 °C	4.4	5	
				T _A = 105 °C	6.7	8	
		LSI RC osc.		T _A = 125 °C	11	14	
		(at 38 kHz)	with TIM2 active ⁽³⁾	$T_A = -40 \text{ °C to } 25 \text{ °C}$	3.4	3.7	
				T _A = 55 °C	3.7	4	
		with TIM2 active ⁽³⁾ $T_A = 85 \text{ °C}$ $T_A = 105 \text{ °C}$ $T_A = 125 \text{ °C}$		T _A = 85 °C	4.8	5.4	
			7	8.3			
				T _A = 125 °C	11.3	14.5	μA
				$T_A = -40 \text{ °C to } 25 \text{ °C}$	2.35	2.7	
				T _A = 55 °C	2.42	2.82	
			all peripherals OFF	T _A = 85 °C	3.10	3.71	
				T _A = 105 °C	4.36	5.7	
		clock ⁽⁴⁾		T _A = 125 °C	7.20	11	
		(32.768 kHz)		$T_A = -40 \text{ °C to } 25 \text{ °C}$	2.46	2.75	
				T _A = 55 °C	2.50	2.81	
			with TIM2 active ⁽³⁾	T _A = 85 °C	3.16	3.82	
				T _A = 105 °C	4.51	5.9	
				T _A = 125 °C	7.28	11	

Table 22 Total current of	onsumption in Low p	ower wait mode at	$V_{pp} = 1.65 \text{ V to } 3.6 \text{ V}$
	onsumption in Low p		$v_{\rm DD} = 1.03 \ v \ 10 \ 3.0 \ v$

1. No floating I/Os.

2. $T_A > 85$ °C is valid only for devices with suffix 3 temperature range.

3. Timer 2 clock enabled and counter is running.

 Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to Table 31.

In the following table, data is based on characterization results, unless otherwise specified.

Symbol	Parameter	Conditions ⁽¹⁾⁽²⁾			Max	Unit
			$T_A = -40 \text{ °C to } 25 \text{ °C}$	0.9	2.1	
	Supply current in Active-halt mode		T _A = 55 °C	1.2	3	
		LSI RC (at 38 kHz)	T _A = 85 °C	1.5	3.4	
			T _A = 105 °C	2.6	6.6	
I _{DD(AH)}			T _A = 125 °C	5.1	12	۵
			$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	0.5	1.2	μΛ
		LSE external clock (32.768	T _A = 55 °C	0.62	1.4	
			T _A = 85 °C	0.88	2.1	
			T _A = 105 °C	2.1	4.85	
			T _A = 125 °C	4.8	11	
I _{DD(WUFAH)}	Supply current during wakeup time from Active-halt mode (using HSI)	-	-	2.4	-	mA
t _{WU_HSI(AH)} ⁽⁴⁾⁽⁵⁾	Wakeup time from Active-halt mode to Run mode (using HSI)	-	-	4.7	7	μs
t _{WU_LSI(AH)} ⁽⁴⁾ (5)	Wakeup time from Active-halt mode to Run mode (using LSI)	-	-	150	-	μs

				· ·· · ·		05.X/ 0.0.X/
Table 23.	Iotal current	consumption	and timing in	Active-halt mo	ode at V _{DD} = 1	.65 V to 3.6 V

1. No floating I/O, unless otherwise specified.

2. T_A > 85 °C is valid only for devices with suffix 3 temperature range.

- Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to Table 31
- Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after t_{WU}.

5. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.

Table	24. Typical current consum e	ption in Active-halt m xternal crystal	ode, RTC clo	ocked by L	SE.
mbol	Parameter	Condition ⁽	1)	Тур	Unit

Symbol	Parameter	Condition ⁽¹⁾		Тур	Unit
I _{DD(AH)} ⁽²⁾		\/ _18\/	LSE	1.15	- μΑ
		v _{DD} = 1.6 v	LSE/32 ⁽³⁾	1.05	
	Supply current in Active-halt	V - 2 V	LSE	1.30	
	mode	$v_{DD} = 3 v$	LSE/32 ⁽³⁾	1.20	
		V - 26V	LSE	1.45	
		v _{DD} = 3.6 v	LSE/32 ⁽³⁾	1.35	

1. No floating I/O, unless otherwise specified.

2. Based on measurements on bench with 32.768 kHz external crystal oscillator.

3. RTC clock is LSE divided by 32.

9.3.6 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC1 error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, etc.).

The test results are given in the following table.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on true open-drain pins (PC0 and PC1)	-5	+0	
I _{INJ}	Injected current on all five-volt tolerant pins	-5	+0	mA
	Injected current on all 3.6 V tolerant pins	-5	+0	
	Injected current on any other pin	-5	+5	

Table 36. I/O current injection susceptibility

9.3.7 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.

STM8L151x2, STM8L151x3

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Мах	Unit
V _{IL}	Input low level voltage ⁽²⁾	Input voltage on true open-drain pins (PC0 and PC1)	V _{SS} -0.3	-	0.3 x V _{DD}	V
		Input voltage on any other pin	V _{SS} -0.3	-	0.3 x V _{DD}	
V _{IH} Input I		Input voltage on true open-drain pins (PC0 and PC1) with V _{DD} < 2 V	0.70 x Vaa	-	5.2	V
	Input high level voltage ⁽²⁾	Input voltage on true open-drain pins (PC0 and PC1) with $V_{DD} \ge 2 V$	0.70 × 000	-	5.5	
		Input voltage on any other pin	0.70 x V _{DD}	-	V _{DD} +0.3	
V.	Schmitt trigger voltage	I/Os	-	200	-	m\/
• nys	hysteresis ⁽³⁾	True open drain I/Os	-	200	-	IIIV
		V _{SS} ≤ V _{IN} ≤ V _{DD} High sink I/Os	-	-	50 ⁽⁵⁾	
I _{lkg}	Input leakage current ⁽⁴⁾	V _{SS} ≤ V _{IN} ≤ V _{DD} True open drain I/Os	-	-	200 ⁽⁵⁾	nA
		$V_{SS} \le V_{IN} \le V_{DD}$ PA0 with high sink LED driver capability	-	-	200 ⁽⁵⁾	
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾⁽⁶⁾	V _{IN} =V _{SS}	30	45	60	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 37.	I/O static	characte	ristics
-----------	------------	----------	---------

1. V_{DD} = 3.0 V, T_A = -40 to 125 °C unless otherwise specified.

2. Data based on characterization results, not tested in production.

3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.

4. The max. value may be exceeded if negative current is injected on adjacent pins.

5. Not tested in production.

 R_{PU} pull-up equivalent resistor based on a resistive transistor (corresponding I_{PU} current characteristics described in Figure 23).

NRST pin

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage ⁽¹⁾	-	V _{SS}	-	0.8	
V _{IH(NRST)}	NRST input high level voltage ⁽¹⁾	-	1.4	-	V _{DD}	
	NRST output low level voltage ⁽¹⁾	$I_{OL} = 2 \text{ mA}$ for 2.7 V \leq V _{DD} \leq 3.6 V	-	-	0.4	V
		I_{OL} = 1.5 mA for V _{DD} < 2.7 V	-	-	0.4	
V _{HYST}	NRST input hysteresis ⁽³⁾	-	10%V _{DD} (2)	-	-	mV
R _{PU(NRST)}	NRST pull-up equivalent resistor ⁽¹⁾	-	30	45	60	kΩ
V _{F(NRST)}	NRST input filtered pulse (3)	-	-	-	50	ne
V _{NF(NRST)}	NRST input not filtered pulse ⁽³⁾	-	300	-	-	115

Table 41	NRST	nin	characteristics
		P	

1. Data based on characterization results, not tested in production.

2. 200 mV min.

3. Data guaranteed by design, not tested in production.

Figure 30. Typical NRST pull-up resistance R_{PU} vs V_{DD}

Figure 33. SPI1 timing diagram - slave mode and CPHA=0

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _S San	Sampling time	V _{AIN} on PF0 fast channel V _{DDA} < 2.4 V	0.43 ⁽⁴⁾⁽⁵⁾	-	-	μs
		V_{AIN} on PF0 fast channel 2.4 V $\leq V_{DDA} \leq 3.6$ V	0.22 ⁽⁴⁾⁽⁵⁾	-	-	μs
		V _{AIN} on slow channels V _{DDA} < 2.4 V	0.86 ⁽⁴⁾⁽⁵⁾	-	-	μs
		V_{AIN} on slow channels 2.4 V \leq V _{DDA} \leq 3.6 V	0.41 ⁽⁴⁾⁽⁵⁾	-	-	μs
t _{conv} 12	12-bit conversion time	-	12 + t _S			1/f _{ADC1}
		16 MHz	1 ⁽⁴⁾			μs
t _{WKUP}	Wakeup time from OFF state	-	-	-	3	μs
t _{IDLE} ⁽⁶⁾ Time b conver		T _A = +25 °C	-	-	1 ⁽⁷⁾	s
	Time before a new conversion	T _A = +70 °C	-	-	20 ⁽⁷⁾	ms
		T _A = +125 °C	-	-	2 ⁽⁷⁾	ms
t _{VREFINT}	Internal reference voltage startup time	-	-	-	refer to Table 44	ms

Table 48. ADC1 characteristics (continued)

The current consumption through V_{REF} is composed of two parameters:

 one constant (max 300 μA)
 one variable (max 400 μA), only during sampling time + 2 first conversion pulses.
 So, peak consumption is 300+400 = 700 μA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 μA at 1Msps

2. V_{REF-} or V_{DDA} must be tied to ground.

3. Guaranteed by design, not tested in production.

4. Minimum sampling and conversion time is reached for maximum Rext = $0.5 \text{ k}\Omega$.

5. Value obtained for continuous conversion on fast channel.

6. The time between 2 conversions, or between ADC1 ON and the first conversion must be lower than t_{IDLE.}

7. The t_{IDLE} maximum value is ∞ on the "Z" revision code of the device.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

