

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT
Number of I/O	26
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 18x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN
Supplier Device Package	28-UFQFPN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151g3u6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Reset and supply management

3.3.1 Power supply scheme

The device requires a 1.65 V to 3.6 V operating supply voltage (V_{DD}). The external power supply pins must be connected as follows:

- V_{SS1}; V_{DD1} = 1.8 to 3.6 V, down to 1.65 V at power down: external power supply for I/Os and for the internal regulator. Provided externally through V_{DD1} pins, the corresponding ground pin is V_{SS1}.
- $V_{SSA;} V_{DDA} = 1.8$ to 3.6 V, down to 1.65 V at power down: external power supplies for analog peripherals (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC1 is used). V_{DDA} and V_{SSA} must be connected to V_{DD1} and V_{SS1} , respectively.
- V_{SS2} ; $V_{DD2} = 1.8$ to 3.6 V, down to 1.65 V at power down: external power supplies for I/Os. V_{DD2} and V_{SS2} must be connected to V_{DD1} and V_{SS1} , respectively.
- V_{REF+}; V_{REF-} (for ADC1): external reference voltage for ADC1. Must be provided externally through V_{REF+} and V_{REF-} pin.

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently (in which case, the V_{DD} min value at power down is 1.65 V).

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains under reset when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The low-density STM8L151x2/3 embeds an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals.

This regulator has two different modes:

- Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event (WFE) modes.
- Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and Low power wait modes.

When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption.

MSB have a fixed value: 0x6.

- 3. The TS_Factory_CONV_V90 byte represents the LSB of the V₉₀ 12-bit ADC1 conversion result. The MSB have a fixed value: 0x3.
- 4. Refer to *Table 8* for an overview of hardware register mapping, to *Table 7* for details on I/O port hardware registers, and to *Table 9* for information on CPU/SWIM/debug module controller registers.

Memory area	Size	Start address	End address					
RAM	1 Kbyte	0x00 0000	0x00 03FF					
	8 Kbyte	0x00 8000	0x00 9FFF					
Flash program memory	4 Kbyte	0x00 8000	0x00 8FFF					

Table 5. Flash and RAM boundary addresses

5.2 Register map

······································								
Address	dress Block Register labe		Register name	Reset status				
0x00 4910	-	VREFINT_Factory_ CONV	Value of the internal reference voltage measured during the factory phase	0xXX				
0x00 4911	-	TS_Factory_CONV_ V90	Value of the temperature sensor output voltage measured during the factory phase	0xXX				

Table 6. Factory conversion registers

Table 7. I/O port hardware register ma	ap
--	----

Address	Block	Register label	Register name	Reset status
0x00 5000		PA_ODR Port A data output latch register		0x00
0x00 5001		PA_IDR	Port A input pin value register	0xXX
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003		PA_CR1	Port A control register 1	0x01
0x00 5004		PA_CR2	Port A control register 2	0x00
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006		PB_IDR	Port B input pin value register	0xXX
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008]	PB_CR1	Port B control register 1	0x00
0x00 5009		PB_CR2	Port B control register 2	0x00

Address	Block	lock Register label Register name		Reset status
0x00 5084			Reserved area (1 byte)	
0x00 5085		DMA1_C1M0ARH	DMA1 memory 0 address high register (channel 1)	0x00
0x00 5086		DMA1_C1M0ARL	DMA1 memory 0 address low register (channel 1)	0x00
0x00 5087 0x00 5088			Reserved area (2 byte)	
0x00 5089		DMA1_C2CR	DMA1 channel 2 configuration register	0x00
0x00 508A		DMA1_C2SPR	DMA1 channel 2 status & priority register	0x00
0x00 508B		DMA1_C2NDTR	DMA1 number of data to transfer register (channel 2)	0x00
0x00 508C		DMA1_C2PARH	DMA1 peripheral address high register (channel 2)	0x52
0x00 508D		DMA1_C2PARL	DMA1 peripheral address low register (channel 2)	0x00
0x00 508E			Reserved area (1 byte)	
0x00 508F		DMA1_C2M0ARH	DMA1 memory 0 address high register (channel 2)	0x00
0x00 5090	DMA1	DMA1_C2M0ARL	DMA1 memory 0 address low register (channel 2)	0x00
0x00 5091 0x00 5092			Reserved area (2 byte)	
0x00 5093		DMA1_C3CR	DMA1 channel 3 configuration register	0x00
0x00 5094		DMA1_C3SPR	DMA1 channel 3 status & priority register	0x00
0x00 5095		DMA1_C3NDTR	DMA1 number of data to transfer register (channel 3)	0x00
0x00 5096		DMA1_C3PARH_ C3M1ARH	DMA1 peripheral address high register (channel 3)	0x40
0x00 5097		DMA1_C3PARL_ C3M1ARL	DMA1 peripheral address low register (channel 3)	0x00
0x00 5098		DMA_C3M0EAR	DMA channel 3 memory 0 extended address register	0x00
0x00 5099		DMA1_C3M0ARH	DMA1 memory 0 address high register (channel 3)	0x00
0x00 509A		DMA1_C3M0ARL	DMA1 memory 0 address low register (channel 3)	0x00
0x00 509B to 0x00 509C			Reserved area (3 byte)	

Table 8. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 5250		TIM2_CR1	TIM2 control register 1	0x00
0x00 5251		TIM2_CR2	TIM2 control register 2	0x00
0x00 5252		TIM2_SMCR	TIM2 Slave mode control register	0x00
0x00 5253		TIM2_ETR	TIM2 external trigger register	0x00
0x00 5254		TIM2_DER	TIM2 DMA1 request enable register	0x00
0x00 5255		TIM2_IER	TIM2 interrupt enable register	0x00
0x00 5256		TIM2_SR1	TIM2 status register 1	0x00
0x00 5257		TIM2_SR2	TIM2 status register 2	0x00
0x00 5258		TIM2_EGR	TIM2 event generation register	0x00
0x00 5259		TIM2_CCMR1	TIM2 capture/compare mode register 1	0x00
0x00 525A		TIM2_CCMR2	TIM2 capture/compare mode register 2	0x00
0x00 525B	TIM2	TIM2_CCER1	TIM2 capture/compare enable register 1	0x00
0x00 525C		TIM2_CNTRH	TIM2 counter high	0x00
0x00 525D		TIM2_CNTRL	TIM2 counter low	0x00
0x00 525E		TIM2_PSCR	TIM2 prescaler register	0x00
0x00 525F]	TIM2_ARRH	TIM2 auto-reload register high	0xFF
0x00 5260]	TIM2_ARRL	TIM2 auto-reload register low	0xFF
0x00 5261]	TIM2_CCR1H	TIM2 capture/compare register 1 high	0x00
0x00 5262		TIM2_CCR1L	TIM2 capture/compare register 1 low	0x00
0x00 5263]	TIM2_CCR2H	TIM2 capture/compare register 2 high	0x00
0x00 5264]	TIM2_CCR2L	TIM2 capture/compare register 2 low	0x00
0x00 5265]	TIM2_BKR	TIM2 break register	0x00
0x00 5266]	TIM2_OISR	TIM2 output idle state register	0x00
0x00 5267 to 0x00 527F			Reserved area (25 byte)	

Table 8. General hardware register map (continued)

6 Interrupt vector mapping

	Table 10. Interrupt mapping								
IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode) ⁽¹⁾	Vector address		
-	RESET	Reset	Yes	Yes	Yes	Yes	0x00 8000		
-	TRAP	Software interrupt	-	-	-	-	0x00 8004		
0	TLI ⁽²⁾	External top level interrupt	-	-	-	-	0x00 8008		
1	FLASH	FLASH end of programing/ write attempted to protected page interrupt	-	-	Yes	Yes	0x00 800C		
2	DMA1 0/1	DMA1 channels 0/1 half transaction/transaction complete interrupt	-	-	Yes	Yes	0x00 8010		
3	DMA1 2/3	DMA1 channels 2/3 half transaction/transaction complete interrupt	-	-	Yes	Yes	0x00 8014		
4	RTC	RTC alarm A/ wakeup/tamper 1/ tamper 2/tamper 3	Yes	Yes	Yes	Yes	0x00 8018		
5	EXTIE/ PVD	External interrupt port E PVD interrupt	Yes	Yes	Yes	Yes	0x00 801C		
6	EXTIB	External interrupt port B	Yes	Yes	Yes	Yes	0x00 8020		
7	EXTID	External interrupt port D	Yes	Yes	Yes	Yes	0x00 8024		
8	EXTI0	External interrupt 0	Yes	Yes	Yes	Yes	0x00 8028		
9	EXTI1	External interrupt 1	Yes	Yes	Yes	Yes	0x00 802C		
10	EXTI2	External interrupt 2	Yes	Yes	Yes	Yes	0x00 8030		
11	EXTI3	External interrupt 3	Yes	Yes	Yes	Yes	0x00 8034		
12	EXTI4	External interrupt 4	Yes	Yes	Yes	Yes	0x00 8038		
13	EXTI5	External interrupt 5	Yes	Yes	Yes	Yes	0x00 803C		
14	EXTI6	External interrupt 6	Yes	Yes	Yes	Yes	0x00 8040		
15	EXTI7	External interrupt 7	Yes	Yes	Yes	Yes	0x00 8044		
16			Reserved				0x00 8048		
17	CLK	CLK system clock switch/ CSS interrupt	-	-	Yes	Yes	0x00 804C		
18	COMP1/ COMP2/ ADC1	COMP1 interrupt COMP2 interrupt ACD1 end of conversion/ analog watchdog/ overrun interrupt	Yes	Yes	Yes	Yes	0x00 8050		

Table 10. Interrupt mapping

IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode) ⁽¹⁾	Vector address		
19	TIM2	TIM2 update/overflow/ trigger/break interrupt	-	-	Yes	Yes	0x00 8054		
20	TIM2	TIM2 capture/ compare interrupt	-	-	Yes	Yes	0x00 8058		
21	TIM3	TIM3 update/overflow/ trigger/break interrupt	-	-	Yes	Yes	0x00 805C		
22	ТІМЗ	TIM3 capture/ compare interrupt	-	-	Yes	Yes	0x00 8060		
23	RI	RI trigger interrupt	-	-	Yes	-	0x00 8064		
24			Reserved		0x00 8068				
25	TIM4	TIM4 update/overflow/ trigger interrupt	-	-	Yes	Yes	0x00 806C		
26	SPI1	SPI1 TX buffer empty/ RX buffer not empty/ error/wakeup interrupt	Yes	Yes	Yes	Yes	0x00 8070		
27	USART1	USART1 transmit data register empty/ transmission complete interrupt	-	-	Yes	Yes	0x00 8074		
28	USART1	USART1 received data ready/overrun error/ idle line detected/parity error/global error interrupt	-	-	Yes	Yes	0x00 8078		
29	I ² C1	I ² C1 interrupt ⁽³⁾	Yes	Yes	Yes	Yes	0x00 807C		

Table 10. Interrupt mapping (continued)

The Low power wait mode is entered when executing a WFE instruction in Low power run mode. In WFE mode, the
interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode.
When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.

2. The TLI interrupt is the logic OR between TIM2 overflow interrupt, and TIM4 overflow interrupts.

3. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.

8 Unique ID

STM8 devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

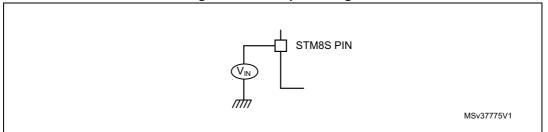

Address	Content		Unique ID bits							
Address	description	7	6	5	4	3	2	1	0	
0x4926	X co-ordinate on	U_ID[7:0]								
0x4927	the wafer	U_ID[15:8]								
0x4928	Y co-ordinate on		U_ID[23:16]							
0x4929	the wafer	U_ID[31:24]								
0x492A	Wafer number	U_ID[39:32]								
0x492B		U_ID[47:40] U_ID[55:48]								
0x492C										
0x492D	-	U_ID[63:56] U_ID[71:64]								
0x492E	Lot number									
0x492F		U_ID[79:72] U_ID[87:80]								
0x4930										
0x4931					U_II	D[95:88]				

Table 13. Unique ID registers (96 bits)

9.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 10.

9.2 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit		
V _{DD} - V _{SS}	External supply voltage (including $V_{DD}, V_{DDA},$ and $V_{DDIO})^{(1)}$	- 0.3	4.0	V		
V _{IN} ⁽²⁾	Input voltage on true open-drain pins (PC0 and PC1)	V _{ss} - 0.3	V _{DD} + 4.0	V		
	Input voltage on any other pin	V _{ss} - 0.3	4.0			
V _{ESD}	Electrostatic discharge voltage	see Absolute maximum ratings (electrical sensitivity) on page 102				

1. All power (V_{DD}, V_{DDA}, V_{DDIO}) and ground (V_{SS}, V_{SSA}, V_{SSIO}) pins must always be connected to the external power supply.

2. V_{IN} maximum must always be respected. Refer to *Table 15.* for maximum allowed injected current values.

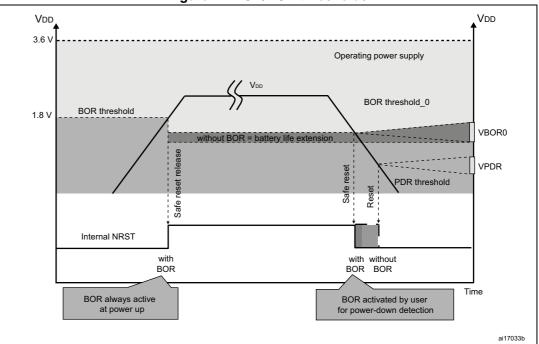


Figure 11. POR/BOR thresholds

9.3.3 Supply current characteristics

Total current consumption

The MCU is placed under the following conditions:

- I All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if explicitly mentioned.

In the following table, data is based on characterization results, unless otherwise specified. Subject to general operating conditions for V_{DD} and T_{A} .

In the following table, data is based on characterization results, unless otherwise specified.

		Conditions ⁽¹⁾			Мах					
Symbol	Parameter			Тур	55°C	85 °C	105 °C (2)	125 °C (2)	Unit	
				f _{CPU} = 125 kHz	0.33	0.39	0.41	0.43	0.45	
				f _{CPU} = 1 MHz	0.35	0.41	0.44	0.45	0.48	mA
			HSI	f _{CPU} = 4 MHz		0.51	0.52	0.54	0.58	
				f _{CPU} = 8 MHz		0.57	0.58	0.59	0.62	
		CPU not clocked, all peripherals OFF, code executed from RAM with Flash in I _{DDQ} mode ⁽³⁾ ,		f _{CPU} = 16 MHz	0.68	0.76	0.76 0.79	0.82 (5)	0.85 (5)	
	Supply current in Wait mode		f _{CPU} = 128	f _{CPU} = 125 kHz	0.032	0.056	0.068	0.072	0.093	
			HSE external	f _{CPU} = 1 MHz	0.078	0.121	0.144	0.163	0.197	
I _{DD(Wait)}			clock	f _{CPU} = 4 MHz	0.218	0.26	0.30	0.36	0.40	
			(f _{CPU} =f _{HSE}) (4)	f _{CPU} = 8 MHz C	0.40	0.52	0.57	0.62	0.66	
		V _{DD} from 1.65 V to 3.6 V		f _{CPU} = 16 MHz	0.760	60 1.01 1.05	1.05	1.09 (5)	1.16 (5)	
			LSI $f_{CPU} = f_{LSI}$ 0.035 0.	0.044	0.046	0.049	0.054			
			LSE ⁽⁶⁾ external clock (32.768 kHz)	f _{CPU} = f _{LSE}	0.032	0.036	0.038	0.044	0.051	

 Table 20. Total current consumption in Wait mode

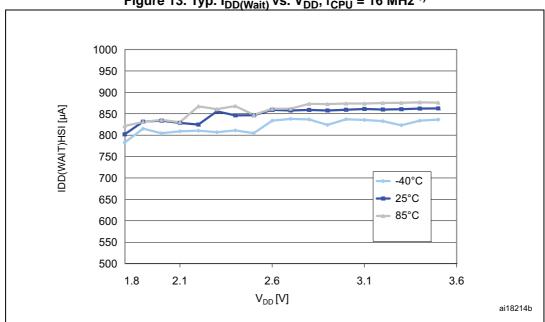


Figure 13. Typ. $I_{DD(Wait)}$ vs. V_{DD} , f_{CPU} = 16 MHz ¹⁾

1. Typical current consumption measured with code executed from Flash memory.

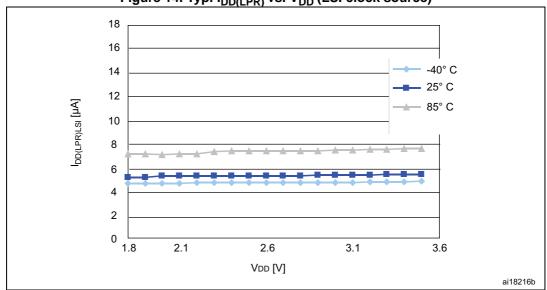


Figure 14. Typ. I_{DD(LPR)} vs. V_{DD} (LSI clock source)

NRST pin

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

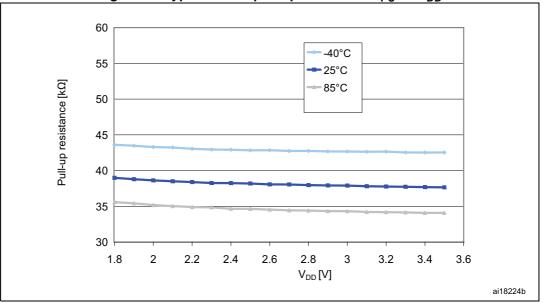

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST input low level voltage ⁽¹⁾	-	V _{SS}	-	0.8	
V _{IH(NRST)}	NRST input high level voltage (1)	-	1.4	-	V _{DD}	
V _{OL(NRST)}	NRST output low level voltage ⁽¹⁾	$I_{OL} = 2 \text{ mA}$ for 2.7 V $\leq V_{DD} \leq 3.6$		0.4	V	
	·····e································	I_{OL} = 1.5 mA for V _{DD} < 2.7 V	-	-		
V _{HYST}	NRST input hysteresis ⁽³⁾	-	10%V _{DD} (2)	-	-	mV
R _{PU(NRST)}	NRST pull-up equivalent resistor	-	30	45	60	kΩ
V _{F(NRST)}	NRST input filtered pulse (3)	-	-	-	50	ns
V _{NF(NRST)}	NRST input not filtered pulse ⁽³⁾	-	300	-	-	115

Table 41	NRST	nin	characteristics
		P	

1. Data based on characterization results, not tested in production.

2. 200 mV min.

3. Data guaranteed by design, not tested in production.

Figure 30. Typical NRST pull-up resistance R_{PU} vs V_{DD}

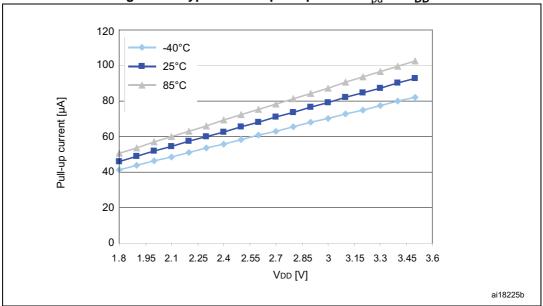


Figure 31. Typical NRST pull-up current I_{pu} vs V_{DD}

The reset network shown in *Figure 32* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the $V_{IL(NRST)}$ max. level specified in *Table 41*. Otherwise the reset is not taken into account internally.

For power consumption sensitive applications, the external reset capacitor value can be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, attention must be paid to the charge/discharge time of the external capacitor to fulfill the external devices reset timing conditions. The minimum recommended capacity is 10 nF.

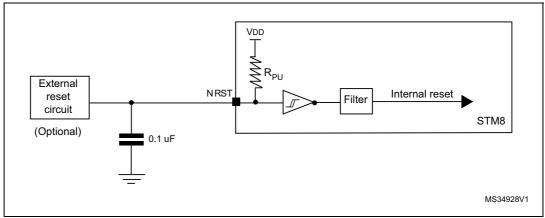


Figure 32. Recommended NRST pin configuration

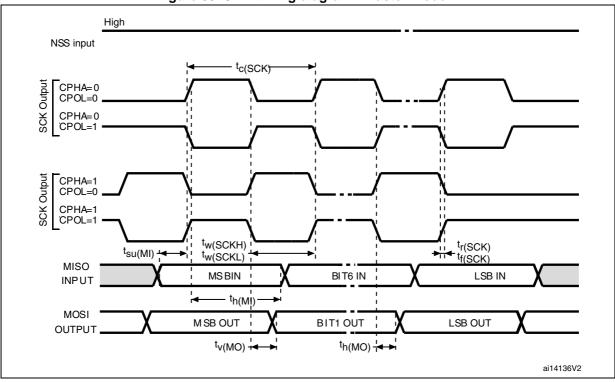


Figure 35. SPI1 timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}.$

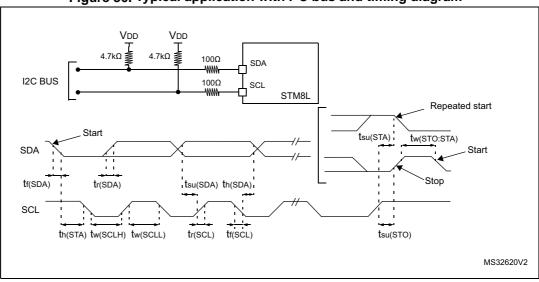


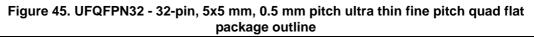
Figure 36. Typical application with I²C bus and timing diagram¹⁾

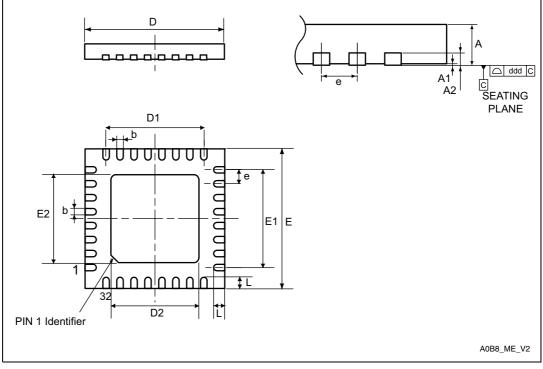
1. Measurement points are done at CMOS levels: 0.3 x $\rm V_{DD}$ and 0.7 x $\rm V_{DD}$

In the following three tables, data is guaranteed by characterization result, not tested in production.

Symbol	Parameter	Conditions	Тур	Max	Unit
		f _{ADC1} = 16 MHz	1	1.6	
DNL	Differential non linearity	f _{ADC1} = 8 MHz	1	1.6	1
		f _{ADC1} = 4 MHz	1	1.5	1
		f _{ADC1} = 16 MHz	1.2	2]
INL	Integral non linearity	f _{ADC1} = 8 MHz	1.2	1.8	LSB
		f _{ADC1} = 4 MHz	1.2	1.7]
	Total unadjusted error	f _{ADC1} = 16 MHz	2.2	3.0]
TUE		f _{ADC1} = 8 MHz	1.8	2.5	
		f _{ADC1} = 4 MHz	1.8	2.3]
		f _{ADC1} = 16 MHz	1.5	2	
Offset	Offset error	f _{ADC1} = 8 MHz	1	1.5]
		f _{ADC1} = 4 MHz	0.7	1.2	- LSB
		f _{ADC1} = 16 MHz			
Gain	Gain error	f _{ADC1} = 8 MHz	1	1.5	
		f _{ADC1} = 4 MHz			

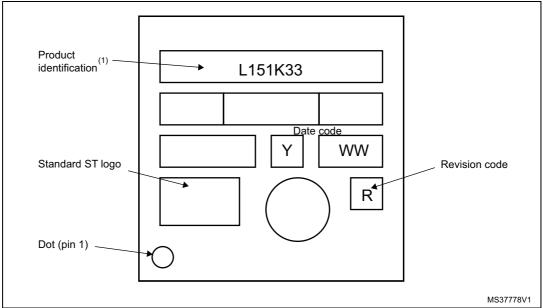
Table 49. ADC1 accuracy with $V_{DDA} = 3.3$ V to 2.5 V

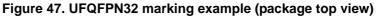

Symbol	Parameter	Тур	Max	Unit
DNL	Differential non linearity	1	2	LSB
INL	Integral non linearity	1.7	3	LSB
TUE	TUE Total unadjusted error		4	LSB
Offset	Offset error	1	2	LSB
Gain	Gain error	1.5	3	LSB


Table 51. ADC1 accuracy with V _{DDA} = V _{REF} ⁺ = 1.8 V to 2.4	V
--	---

Symbol	Parameter		Max	Unit
DNL	Differential non linearity	1	2	LSB
INL Integral non linearity		2	3	LSB
TUE	Total unadjusted error	3	5	LSB
Offset	Offset error	2	3	LSB
Gain Gain error		2	3	LSB

10.3 UFQFPN32 package information




^{1.} Drawing is not to scale.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

10.4 UFQFPN28 package information

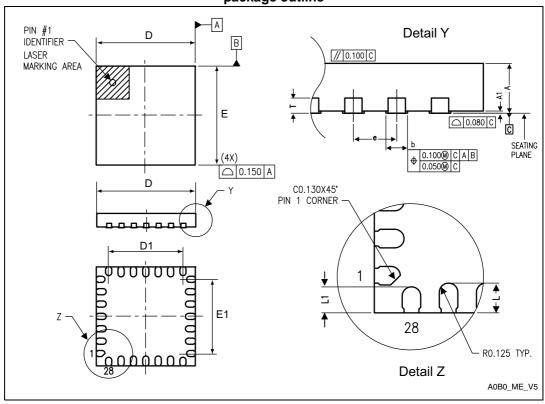


Figure 48. UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline

1. Drawing is not to scale.

Table 59. UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data ⁽¹⁾

Cumhal		millimeters			inches	
Symbol	Min	Тур	Max	Min	Тур	Мах
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	-	0.000	0.050	-	0.0000	0.0020
D	3.900	4.000	4.100	0.1535	0.1575	0.1614
D1	2.900	3.000	3.100	0.1142	0.1181	0.1220
Е	3.900	4.000	4.100	0.1535	0.1575	0.1614
E1	2.900	3.000	3.100	0.1142	0.1181	0.1220
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
L1	0.250	0.350	0.450	0.0098	0.0138	0.0177
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-

DocID018780 Rev 8