

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT
Number of I/O	26
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 18x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN
Supplier Device Package	28-UFQFPN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151g3u6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		9.3.11	Comparator characteristics93
		9.3.12	12-bit ADC1 characteristics95
		9.3.13	EMC characteristics
10	Packa	age info	rmation
	10.1	ECOPA	СК 103
	10.2	LQFP48	3 package information
	10.3	UFQFP	N32 package information 106
	10.4	UFQFP	N28 package information 109
	10.5	UFQFP	N20 package information112
	10.6	TSSOP	20 package information115
	10.7	Therma	I characteristics
11	Part r	numberi	ng 119
12	Revis	ion hist	ory

3.1 Low-power modes

The low-density STM8L151x2/3 devices support five low power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

- Wait mode: The CPU clock is stopped, but selected peripherals keep running. An internal or external interrupt or a Reset can be used to exit the microcontroller from Wait mode (WFE or WFI mode). Wait consumption: refer to *Table 20*.
- Low power run mode: The CPU and the selected peripherals are running. Execution is done from RAM with a low speed oscillator (LSI or LSE). Flash and data EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode. The microcontroller enters Low power run mode by software and can exit from this mode by software or by a reset.

All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low power run mode consumption: refer to *Table 21*.

- Low power wait mode: This mode is entered when executing a Wait for event in Low power run mode. It is similar to Low power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an event, the system goes back to Low power run mode. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low power wait mode consumption: refer to Table 22.
- Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup can be triggered by RTC interrupts, external interrupts or reset. Active-halt consumption: refer to *Table 23* and *Table 24*.
- Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. The RAM content is preserved. The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 µs. Halt consumption: refer to *Table 25*.

3.2 Central processing unit STM8

3.2.1 Advanced STM8 Core

The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline.

It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions.

Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus single cycle fetching most instructions
- X and Y 16-bit index registers enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter 16 Mbyte linear memory space
- 16-bit stack pointer access to a 64 Kbyte level stack
- 8-bit condition code register 7 condition flags for the result of the last instruction

Addressing

- 20 addressing modes
- Indexed indirect addressing mode for lookup tables located anywhere in the address space
- Stack pointer relative addressing mode for local variables and parameter passing

Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

3.2.2 Interrupt controller

The low-density STM8L151x2/3 feature a nested vectored interrupt controller:

- Nested interrupts with 3 software priority levels
- 32 interrupt vectors with hardware priority
- Up to 40 external interrupt sources on 11 vectors
- Trap and reset interrupts

3.15 Communication interfaces

3.15.1 SPI

The serial peripheral interface (SPI1) provides half/ full duplex synchronous serial communication with external devices.

- Maximum speed: 8 Mbit/s (f_{SYSCLK}/2) both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on 2 lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- Hardware CRC calculation
- Slave/master selection input pin

Note: SPI1 can be served by the DMA1 Controller.

3.15.2 I²C

The I²C bus interface (I²C1) provides multi-master capability, and controls all I²C busspecific sequencing, protocol, arbitration and timing.

- Master, slave and multi-master capability
- Standard mode up to 100 kHz and fast speed modes up to 400 kHz.
- 7-bit and 10-bit addressing modes.
- SMBus 2.0 and PMBus support
- Hardware CRC calculation

Note: l^2C1 can be served by the DMA1 Controller.

3.15.3 USART

The USART interface (USART1) allows full duplex, asynchronous communications with external devices requiring an industry standard NRZ asynchronous serial data format. It offers a very wide range of baud rates.

- 1 Mbit/s full duplex SCI
- SPI1 emulation
- High precision baud rate generator
- SmartCard emulation
- IrDA SIR encoder decoder
- Single wire half duplex mode

Note: USART1 can be served by the DMA1 Controller.

3.16 Infrared (IR) interface

The low-density STM8L151x2/3 devices contain an infrared interface which can be used with an IR LED for remote control functions. Two timer output compare channels are used to generate the infrared remote control signals.

0x00 5140 RTC_TR1 RTC time register 1 0x00 0x00 5141 RTC_TR2 RTC time register 2 0x00 0x00 5143 RTC_TR3 RTC time register 3 0x00 0x00 5144 RTC_DR1 RTC date register 1 0x01 0x00 5145 RTC_DR2 RTC date register 3 0x00 0x00 5146 RTC_DR3 RTC date register 3 0x00 0x00 5147 RTC_CR1 RTC control register 3 0x00 ⁽²⁾ 0x00 5148 RTC_CR2 RTC control register 1 0x01 ⁽²⁾ 0x00 5140 RTC_CR3 RTC control register 1 0x00 ⁽²⁾ 0x00 5141 RTC_ISR1 RTC control register 3 0x00 ⁽²⁾ 0x00 5142 RTC_ISR1 RTC control register 1 0x01 ⁽²⁾ 0x00 5141 RTC_ISR1 RTC control register 1 0x00 ⁽²⁾ 0x00 5141 RTC_ISR1 RTC control register 1 0x00 ⁽²⁾ 0x00 5150 RTC_SPRERL RTC synchronous prescaler register 1 0x00 ⁽²⁾ 0x00 5151 RTC_SPRERL RTC synchronous prescaler register 1 0x7F ⁽²⁾	Address	Block	Register label	Register name	Reset status		
0x00 5142 RTC_TR3 RTC time register 3 0x00 0x00 5143 RtC_DR1 Reserved area (1 byte) 0x01 0x00 5145 RTC_DR1 RTC date register 1 0x01 0x00 5145 RTC_DR2 RTC date register 3 0x00 0x00 5146 RTC_DR3 RTC date register 1 0x00 ⁽²⁾ 0x00 5147 RTC_CR1 RTC control register 1 0x00 ⁽²⁾ 0x00 5148 RTC_CR2 RTC control register 3 0x00 ⁽²⁾ 0x00 5140 RTC_CR3 RTC control register 3 0x00 ⁽²⁾ 0x00 5140 RTC_ISR1 RTC initialization and status register 1 0x01 0x00 5140 RTC_ISR1 RTC initialization and status register 1 0x01 0x00 5141 RTC_ISR2 RTC initialization and status register 1 0x01 0x00 5151 RTC_SPRERH RTC synchronous prescaler register low 0xF ⁽²⁾ 0x00 5152 RTC_WUTRH RTC subsecond register low 0xF ⁽²⁾ 0x00 5153 RTC_SRE RTC subsecond register low 0xF ⁽²⁾ 0x00 5156 RTC_SRL RTC	0x00 5140		RTC_TR1	RTC time register 1	0x00		
0x00 5143 Reserved area (1 byte) 0x00 5144 RTC_DR1 RTC date register 1 0x01 0x00 5145 RTC_DR2 RTC date register 2 0x21 0x00 5146 RTC_DR3 RTC date register 3 0x00 0x00 5147 RTC_CR1 RTC control register 1 0x00 ⁽²⁾ 0x00 5148 RTC_CR2 RTC control register 2 0x00 ⁽²⁾ 0x00 5140 RTC_CR3 RTC control register 3 0x00 ⁽²⁾ 0x00 5141 RTC_ISR1 RTC control register 1 0x00 ⁽²⁾ 0x00 5142 RTC_ISR1 RTC initialization and status register 1 0x01 0x00 5145 RTC_SPRERH RTC synchronous prescaler register 1 0x00 0x00 5151 RTC_SPRERL RTC synchronous prescaler register 1 0x71 ⁽²⁾ 0x00 5153 RTC_WUTRH RTC subsecond register 1 0x00 0x00 5156 RTC_SRE RTC subsecond register 1 0x00 0x00 5158 RTC_WUTRH RTC subsecond register 1 0x00 0x00 5158 RTC_SRE RTC write protection register 0x00	0x00 5141		RTC_TR2	RTC time register 2	0x00		
0x00 5144 RTC_DR1 RTC date register 1 0x01 0x00 5145 RTC_DR2 RTC date register 2 0x21 0x00 5146 RTC_DR3 RTC date register 3 0x00 0x00 5147 RTC_CR1 RTC control register 1 0x00 ⁽²⁾ 0x00 5148 RTC_CR2 RTC control register 2 0x00 ⁽²⁾ 0x00 5144 RTC_CR3 RTC control register 3 0x00 ⁽²⁾ 0x00 5148 RTC_ISR1 RTC control register 3 0x00 ⁽²⁾ 0x00 5140 RTC_ISR1 RTC control register 3 0x00 ⁽²⁾ 0x00 5141 RTC_ISR2 RTC initialization and status register 1 0x01 0x00 5140 RTC_SPRERH RTC synchronous prescaler register 1 0x00 0x00 5151 RTC_SPRERL RTC synchronous prescaler register 10w 0xF ⁽²⁾ 0x00 5153 RTC_WUTRH RTC wakeup timer register 10w 0xF ⁽²⁾ 0x00 5154 RTC_WUTRH RTC subsecond register low 0xF ⁽²⁾ 0x00 5155 RTC_SRH RTC subsecond register low 0x00 0x00 5155 RTC_SRH RTC s	0x00 5142		RTC_TR3	RTC time register 3	0x00		
0x00 5145 RTC_DR2 RTC date register 2 0x21 0x00 5146 RTC_DR3 RTC date register 3 0x00 0x00 5147 RTC_CR1 RTC control register 1 0x00 ⁽²⁾ 0x00 5148 RTC_CR2 RTC control register 2 0x00 ⁽²⁾ 0x00 5149 RTC_CR3 RTC control register 3 0x00 ⁽²⁾ 0x00 5140 RTC_CR3 RTC control register 3 0x00 ⁽²⁾ 0x00 5141 RTC_ISR1 RTC initialization and status register 1 0x01 0x00 5142 RTC_ISR2 RTC initialization and status register 2 0x00 0x00 5141 RTC_ISR2 RTC initialization and status register 1 0x01 0x00 5145 RTC_SPRERH RTC synchronous prescaler register 1 0x00 ⁽²⁾ 0x00 5150 RTC_APRER RTC asynchronous prescaler register 10w 0xFf ⁽²⁾ 0x00 5151 RTC_WUTRH RTC wakeup timer register 10w 0xFf ⁽²⁾ 0x00 5155 RTC_WUTRL RTC subsecond register high 0x00 0x00 5156 RTC_SRH RTC subsecond register high 0x00 0x00 5157	0x00 5143	_		Reserved area (1 byte)			
Ox00 5146 RTC_DR3 RTC date register 3 0x00 0x00 5147 0x00 5147 Reserved area (1 byte) 0x00 5148 0x00 5148 RTC_CR1 RTC control register 1 0x00 ⁽²⁾ 0x00 5144 RTC_CR2 RTC control register 2 0x00 ⁽²⁾ 0x00 5144 RTC_CR3 RTC control register 3 0x00 ⁽²⁾ 0x00 5145 RTC_ISR1 RTC initialization and status register 1 0x01 0x00 5146 RTC_SPRERH RTC synchronous prescaler register 1 0x00 ⁽²⁾ 0x00 5150 RTC_SPRERL RTC synchronous prescaler register 0x 0xFF ⁽²⁾ 0x00 5152 RTC_MUTRH RTC wakeup timer register low 0xFF ⁽²⁾ 0x00 5155 RTC_WUTRL RTC wakeup timer register low 0xFF ⁽²⁾ 0x00 5156 RTC_SSRL RTC subsecond register low 0x00 0x00 5157 RTC_SSRH RTC subsecond register low 0x00 0x00 5158 RTC_SSRH RTC subsecond register low 0x00 0x00 5159 RTC_SSRH RTC write protection register 0x00 0x00 5156	0x00 5144		RTC_DR1 RTC date register 1		0x01		
Ox00 5147 Reserved area (1 byte) 0x00 5148 RTC_CR1 RTC control register 1 0x00 ⁽²⁾ 0x00 5149 RTC_CR2 RTC control register 2 0x00 ⁽²⁾ 0x00 5144 RTC_CR3 RTC control register 3 0x00 ⁽²⁾ 0x00 5144 RTC_ISR1 RTC control register 3 0x00 ⁽²⁾ 0x00 5144 RTC_ISR1 RTC initialization and status register 1 0x01 0x00 5144 RTC_ISR2 RTC initialization and status register 1 0x01 0x00 5146 RTC_SPRERH RTC synchronous prescaler register 1 0x00 ⁽²⁾ 0x00 5151 RTC_SPRERL RTC synchronous prescaler register 1 0x01 ⁽²⁾ 0x00 5153 RTC_MUTRH RTC wakeup timer register low 0xFF ⁽²⁾ 0x00 5154 RTC_WUTRL RTC wakeup timer register low 0x0F ⁽²⁾ 0x00 5155 RTC_SSRL RTC subsecond register low 0x00 0x00 5156 RTC_SSRH RTC subsecond register low 0x00 0x00 5157 RTC_SSRH RTC subsecond register low 0x00 0x00 5158 RTC_SSRH RTC write	0x00 5145		RTC_DR2	0x21			
0x00 5148RTC_CR1RTC control register 10x00 ⁽²⁾ 0x00 5149RTC_CR2RTC control register 20x00 ⁽²⁾ 0x00 5144RTC_CR3RTC control register 30x00 ⁽²⁾ 0x00 5146RTC_ISR1RTC initialization and status register 10x010x00 5140RTC_ISR2RTC initialization and Status register 20x000x00 5147RTC_SPRERHRTC synchronous prescaler register high0x00 ⁽²⁾ 0x00 5151RTC_SPRERLRTC synchronous prescaler register 10x01 ⁽²⁾ 0x00 5153RTC_APRERRTC synchronous prescaler register 10x7F ⁽²⁾ 0x00 5154RTC_WUTRHRTC synchronous prescaler register 10x7F ⁽²⁾ 0x00 5155RTC_WUTRHRTC wakeup timer register high0xFF ⁽²⁾ 0x00 5156RTC_SRLRTC synchronous prescaler register 10x000x00 5157RTC_SRLRTC subsecond register high0x000x00 5158RTC_SRHRTC subsecond register low0x000x00 5159RTC_SRHRTC subsecond register high0x000x00 5159RTC_SRHRTC subsecond register high0x000x00 5158RTC_SHIFTRHRTC shift register low0x000x00 5158RTC_ALRMAR1RTC shift register 10x00 ⁽²⁾ 0x00 5150RTC_ALRMAR3RTC alarm A register 30x00 ⁽²⁾	0x00 5146		RTC_DR3	RTC date register 3	0x00		
0x00 5149RTC_CR2RTC control register 20x00 ⁽²⁾ 0x00 514ARTC_CR3RTC control register 30x00 ⁽²⁾ 0x00 514BRTC_ISR1RTC initialization and status register 10x010x00 514CRTC_ISR2RTC initialization and status register 10x010x00 514DRTC_ISR2RTC initialization and status register 20x000x00 514ERTC_SPRERHRTC synchronous prescaler register high0x00 ⁽²⁾ 0x00 5150RTC_SPRERHRTC synchronous prescaler register low0xFF ⁽²⁾ 0x00 5152RTC_APRERRTC asynchronous prescaler register low0xFF ⁽²⁾ 0x00 5153RTC_WUTRHRTC wakeup timer register high0xFF ⁽²⁾ 0x00 5156RTC_WUTRHRTC subsecond register low0xFF ⁽²⁾ 0x00 5157RTC_SSRHRTC subsecond register low0x000x00 5158RTC_WPRRTC write protection register0x000x00 5158RTC_WPRRTC write protection register0x000x00 5158RTC_SHIFTRHRTC subsecond register high0x000x00 5158RTC_SHIFTRHRTC shift register high0x000x00 5155RTC_ALRMAR1RTC shift register 10x00 ⁽²⁾ 0x00 5150RTC_ALRMAR3RTC alarm A register 20x00 ⁽²⁾	0x00 5147			Reserved area (1 byte)	1		
Ox00 514ARTC_CR3RTC control register 3Ox00 ⁽²⁾ 0x00 514BRTC_ISR1RTC initialization and status register 10x010x00 514CRTC_ISR2RTC initialization and status register 10x010x00 514DRTC_ISR2RTC initialization and Status register 20x000x00 514ERTC_SPRERHRTC synchronous prescaler register high0x00 ⁽²⁾ 0x00 5150RTC_SPRERLRTC synchronous prescaler register low0xFF ⁽²⁾ 0x00 5152RTC_APRERRTC asynchronous prescaler register low0xFF ⁽²⁾ 0x00 5153RTC_WUTRHRTC wakeup timer register low0xFF ⁽²⁾ 0x00 5156RTC_WUTRHRTC wakeup timer register low0xFF ⁽²⁾ 0x00 5156RTC_SRLRTC subsecond register low0xFF ⁽²⁾ 0x00 5158RTC_SRHRTC subsecond register low0x000x00 5158RTC_SRHRTC subsecond register low0x000x00 5158RTC_SRHRTC subsecond register high0x000x00 5158RTC_SRHRTC subsecond register high0x000x00 5158RTC_SRHRTC subsecond register high0x000x00 5158RTC_SRHRTC subsecond register high0x000x00 5156RTC_SHIFTRHRTC subsecond register high0x000x00 5158RTC_SHIFTRHRTC subsecond register high0x000x00 5156RTC_SHIFTRHRTC subsecond register high0x000x00 5156RTC_SHIFTRHRTC subsecond register high0x000x00 5156RTC_ALRMAR1RTC alarm A regi	0x00 5148	_	RTC_CR1	RTC control register 1	0x00 ⁽²⁾		
Ox00 514B Reserved area (1 byte) 0x00 514C RTC_ISR1 RTC initialization and status register 1 0x01 0x00 514D RTC_ISR2 RTC initialization and Status register 2 0x00 0x00 514E RTC_ISR2 RTC initialization and Status register 2 0x00 0x00 514E RTC_SPRERH RTC synchronous prescaler register high 0x00 ⁽²⁾ 0x00 5150 RTC_SPRERL RTC synchronous prescaler register low 0xFF ⁽²⁾ 0x00 5152 RTC_APRER RTC asynchronous prescaler register high 0xFF ⁽²⁾ 0x00 5153 RTC_WUTRH RTC wakeup timer register low 0xFF ⁽²⁾ 0x00 5156 RTC_SSRL RTC subsecond register low 0xFF ⁽²⁾ 0x00 5158 RTC_SSRH RTC subsecond register low 0x00 0x00 5158 RTC_SSRH RTC subsecond register high 0x00 0x00 5159 RTC_SRH RTC subsecond register high 0x00 0x00 5158 RTC_SHIFTRH RTC subsecond register high 0x00 0x00 5158 RTC_SHIFTRH RTC subsecond register high 0x00 0x00 5155	0x00 5149	_	RTC_CR2	RTC control register 2	0x00 ⁽²⁾		
Ox00 514CRTC_ISR1RTC initialization and status register 1Ox010x00 514DRTC_ISR2RTC initialization and Status register 20x000x00 514ERTC_ISR2RTC initialization and Status register 20x000x00 5150RTC_SPRERHRTC synchronous prescaler register high0x00 ⁽²⁾ 0x00 5151RTC_SPRERLRTC synchronous prescaler register low0xFF ⁽²⁾ 0x00 5152RTC_APRERRTC asynchronous prescaler register low0xFF ⁽²⁾ 0x00 5153RTC_WUTRHRTC wakeup timer register low0xFF ⁽²⁾ 0x00 5156RTC_WUTRLRTC wakeup timer register low0xFF ⁽²⁾ 0x00 5157RTC_SSRLRTC subsecond register low0x000x00 5158RTC_WPRRTC subsecond register low0x000x00 5158RTC_WPRRTC write protection register0x000x00 5156RTC_SSRHRTC subsecond register high0x000x00 5158RTC_SSRHRTC subsecond register low0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5156RTC_SSRHRTC subsecond register low0x000x00 5156RTC_SSRHRTC subsecond register low0x000x00 5156RTC_SSRHRTC subsecond register low0x000x00 5156RTC_SIFTRHRTC write protection register0x000x00 5156RTC_SIFTRHRTC shift register low0x000x00 5155RTC_ALRMAR1RTC alarm A register 10x00 ⁽²⁾ 0x00 5155RTC_ALRMAR3RTC alarm A register 3 </td <td>0x00 514A</td> <td></td> <td>RTC_CR3</td> <td>RTC control register 3</td> <td>0x00⁽²⁾</td>	0x00 514A		RTC_CR3	RTC control register 3	0x00 ⁽²⁾		
Ox00 514D RTC_ISR2 RTC initialization and Status register 2 Ox00 0x00 514E RTC_ISR2 RTC initialization and Status register 2 0x00 0x00 514F RTC_SPRERH RTC synchronous prescaler register high 0x00 ⁽²⁾ 0x00 5150 RTC_SPRERL RTC synchronous prescaler register low 0xFF ⁽²⁾ 0x00 5152 RTC_APRER RTC asynchronous prescaler register 0x7F ⁽²⁾ 0x00 5153 RTC_WUTRH RTC wakeup timer register high 0xFF ⁽²⁾ 0x00 5156 RTC_WUTRL RTC wakeup timer register low 0xFF ⁽²⁾ 0x00 5156 RTC_SSRL RTC subsecond register low 0x0F ⁽²⁾ 0x00 5156 RTC_SSRH RTC subsecond register low 0x00 0x00 5158 RTC_WPR RTC write protection register 0x00 0x00 5158 RTC_SHIFTRH RTC write protection register 0x00 0x00 5156 RTC_SHIFTRH RTC shift register high 0x00 0x00 5158 RTC_SHIFTRH RTC write protection register 0x00 0x00 5156 RTC_SHIFTRH RTC shift register low 0x00	0x00 514B	_		Reserved area (1 byte)			
Ox00 514E 0x00 514F Reserved area (2 byte) 0x00 5150 RTC_SPRERH RTC synchronous prescaler register high 0x00 ⁽²⁾ 0x00 5151 RTC_SPRERL RTC synchronous prescaler register low 0xFF ⁽²⁾ 0x00 5152 RTC_APRER RTC asynchronous prescaler register 0x7F ⁽²⁾ 0x00 5153 RTC_WUTRH RTC wakeup timer register high 0xFF ⁽²⁾ 0x00 5155 RTC_WUTRL RTC wakeup timer register low 0xFF ⁽²⁾ 0x00 5156 RTC_WUTRL RTC subsecond register low 0x00 0x00 5157 RTC_SRH RTC subsecond register low 0x00 0x00 5158 RTC_SRH RTC subsecond register high 0x00 0x00 5159 RTC_WURR RTC subsecond register high 0x00 0x00 5159 RTC_WPR RTC subsecond register high 0x00 0x00 5156 RTC_WPR RTC subsecond register high 0x00 0x00 5157 RTC_SHIFTRH RTC subsecond register high 0x00 0x00 5156 RTC_SHIFTRH RTC shift register low 0x00 0x00 5155 RTC_ALRMAR1	0x00 514C	_	RTC_ISR1	RTC initialization and status register 1	0x01		
Ox00 514F RTC RTC_SPRERH RTC synchronous prescaler register high 0x00 ⁽²⁾ 0x00 5150 RTC_SPRERL RTC synchronous prescaler register low 0xFF ⁽²⁾ 0x00 5152 RTC_APRER RTC asynchronous prescaler register 0x7F ⁽²⁾ 0x00 5153 RTC_WUTRH RTC wakeup timer register high 0xFF ⁽²⁾ 0x00 5155 RTC_WUTRL RTC wakeup timer register low 0xFF ⁽²⁾ 0x00 5156 RTC_SSRL RTC subsecond register low 0xFF ⁽²⁾ 0x00 5158 RTC_SSRH RTC subsecond register low 0x00 0x00 5158 RTC_WPR RTC write protection register 0x00 0x00 5158 RTC_SSRH RTC subsecond register high 0x00 0x00 5159 RTC_SSRH RTC subsecond register high 0x00 0x00 5158 RTC_SSRH RTC subsecond register high 0x00 0x00 5159 RTC_SSRH RTC subsecond register high 0x00 0x00 5150 RTC_SHIFTRH RTC subsecond register high 0x00 0x00 5150 RTC_SHIFTRL RTC shift register low 0x00	0x00 514D	-	RTC_ISR2	2 RTC initialization and Status register 2			
NUMBER OX00 5151RTCRTC_SPRERLRTC synchronous prescaler register low0xFF(2)0x00 5152RTC_APRERRTC asynchronous prescaler register0x7F(2)0x00 5153RTC_WUTRHRTC wakeup timer register high0xFF(2)0x00 5154RTC_WUTRHRTC wakeup timer register high0xFF(2)0x00 5155RTC_WUTRLRTC wakeup timer register low0xFF(2)0x00 5156RTC_WUTRLRTC wakeup timer register low0x000x00 5157RTC_SSRLRTC subsecond register low0x000x00 5158RTC_WPRRTC subsecond register high0x000x00 5159RTC_SSRHRTC subsecond register high0x000x00 5159RTC_SSRHRTC subsecond register high0x000x00 5158RTC_SIFTRHRTC subsecond register high0x000x00 5158RTC_SIFTRHRTC subsecond register high0x000x00 5155RTC_SIFTRHRTC subsecond register high0x000x00 5156RTC_SIFTRHRTC subsecond register high0x000x00 5150RTC_ALRMAR1RTC shift register high0x000x00 515DRTC_ALRMAR2RTC alarm A register 10x00(2)0x00 515ERTC_ALRMAR3RTC alarm A register 30x00(2)				Reserved area (2 byte)	L		
DX00 5151RTC_SPRERLRTC synchronous prescaler register 10wDXFF(2)0x00 5152RTC_APRERRTC asynchronous prescaler register0x7F(2)0x00 5153RTC_WUTRHRTC wakeup timer register high0xFF(2)0x00 5155RTC_WUTRLRTC wakeup timer register low0xFF(2)0x00 5156RTC_SSRLRTC subsecond register low0x000x00 5157RTC_SSRHRTC subsecond register low0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5159RTC_SSRHRTC subsecond register high0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5158RTC_SHIFTRHRTC subsecond register high0x000x00 515ARTC_SHIFTRHRTC shift register high0x000x00 515BRTC_ALRMAR1RTC alarm A register 10x00(2)0x00 515DRTC_ALRMAR3RTC alarm A register 30x00(2)	0x00 5150		RTC_SPRERH	RTC synchronous prescaler register high	0x00 ⁽²⁾		
Ox00 51530x00 5153RTC_WUTRHRTC wakeup timer register high0xFF ⁽²⁾ 0x00 5155RTC_WUTRLRTC wakeup timer register low0xFF ⁽²⁾ 0x00 5156RTC_SSRLRTC subsecond register low0x000x00 5157RTC_SSRLRTC subsecond register low0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5159RTC_SSRHRTC subsecond register high0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5158RTC_SHIFTRHRTC subsecond register high0x000x00 5158RTC_SHIFTRHRTC shift register high0x000x00 5150RTC_ALRMAR1RTC alarm A register 10x00 ⁽²⁾ 0x00 515DRTC_ALRMAR3RTC alarm A register 30x00 ⁽²⁾	0x00 5151	RTC	RTC_SPRERL	0xFF ⁽²⁾			
0x00 5154RTC_WUTRHRTC wakeup timer register high0xFF^{(2)}0x00 5155RTC_WUTRLRTC wakeup timer register low0xFF^{(2)}0x00 5156RTC_SSRLRTC wakeup timer register low0x000x00 5157RTC_SSRLRTC subsecond register low0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5159RTC_WPRRTC write protection register0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5158RTC_SIFHRTC subsecond register high0x000x00 5158RTC_SHIFTRHRTC subsecond register high0x000x00 515ARTC_SHIFTRHRTC shift register high0x000x00 515BRTC_ALRMAR1RTC alarm A register 10x00^{(2)}0x00 515DRTC_ALRMAR3RTC alarm A register 30x00^{(2)}	0x00 5152		RTC_APRER	RTC asynchronous prescaler register	0x7F ⁽²⁾		
0x00 5155RTC_WUTRLRTC wakeup timer register low0xFF ⁽²⁾ 0x00 5156RTC_SSRLRTC subsecond register low0x000x00 5157RTC_SSRLRTC subsecond register low0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5159RTC_WPRRTC write protection register0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5159RTC_SRHRTC subsecond register high0x000x00 5159RTC_SHIFTRHRTC write protection register0x000x00 515ARTC_SHIFTRHRTC shift register high0x000x00 515BRTC_ALRMAR1RTC alarm A register 10x00 ⁽²⁾ 0x00 515DRTC_ALRMAR2RTC alarm A register 30x00 ⁽²⁾	0x00 5153			Reserved area (1 byte)	1		
0x00 5156Reserved area (1 byte)0x00 5157RTC_SSRLRTC subsecond register low0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5159RTC_WPRRTC write protection register0x000x00 5159RTC_WPRRTC subsecond register high0x000x00 5159RTC_WPRRTC subsecond register high0x000x00 5159RTC_SSRHRTC subsecond register high0x000x00 515ARTC_SHIFTRHRTC write protection register0x000x00 515BRTC_SHIFTRLRTC shift register high0x000x00 515CRTC_ALRMAR1RTC alarm A register 10x00 ⁽²⁾ 0x00 515DRTC_ALRMAR2RTC alarm A register 30x00 ⁽²⁾	0x00 5154		RTC_WUTRH	RTC wakeup timer register high	0xFF ⁽²⁾		
0x00 5157RTC_SSRLRTC subsecond register low0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5159RTC_WPRRTC write protection register0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5159RTC_WPRRTC write protection register0x000x00 5159RTC_SHIFTRHRTC write protection register0x000x00 515ARTC_SHIFTRHRTC shift register high0x000x00 515BRTC_ALRMAR1RTC alarm A register 10x00 ⁽²⁾ 0x00 515DRTC_ALRMAR3RTC alarm A register 30x00 ⁽²⁾	0x00 5155		RTC_WUTRL	RTC_WUTRL RTC wakeup timer register low			
0x00 5158RTC_SSRHRTC subsecond register high0x000x00 5159RTC_WPRRTC write protection register0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5159RTC_WPRRTC write protection register0x000x00 515ARTC_SHIFTRHRTC shift register high0x000x00 515BRTC_SHIFTRLRTC shift register low0x000x00 515CRTC_ALRMAR1RTC alarm A register 10x00 ⁽²⁾ 0x00 515ERTC_ALRMAR3RTC alarm A register 30x00 ⁽²⁾	0x00 5156			Reserved area (1 byte)	1		
0x00 5159RTC_WPRRTC write protection register0x000x00 5158RTC_SSRHRTC subsecond register high0x000x00 5159RTC_WPRRTC write protection register0x000x00 515ARTC_SHIFTRHRTC shift register high0x000x00 515BRTC_SHIFTRLRTC shift register low0x000x00 515CRTC_ALRMAR1RTC alarm A register 10x00 ⁽²⁾ 0x00 515ERTC_ALRMAR3RTC alarm A register 30x00 ⁽²⁾	0x00 5157		RTC_SSRL	RTC subsecond register low	0x00		
0x00 5158RTC_SSRHRTC subsecond register high0x000x00 5159RTC_WPRRTC write protection register0x000x00 515ARTC_SHIFTRHRTC shift register high0x000x00 515BRTC_ALRMAR1RTC shift register low0x000x00 515CRTC_ALRMAR2RTC alarm A register 10x00 ⁽²⁾ 0x00 515ERTC_ALRMAR3RTC alarm A register 30x00 ⁽²⁾	0x00 5158		RTC_SSRH	RTC subsecond register high	0x00		
0x00 5159RTC_WPRRTC write protection register0x000x00 515ARTC_SHIFTRHRTC shift register high0x000x00 515BRTC_SHIFTRLRTC shift register low0x000x00 515CRTC_ALRMAR1RTC alarm A register 10x00 ⁽²⁾ 0x00 515DRTC_ALRMAR2RTC alarm A register 20x00 ⁽²⁾ 0x00 515ERTC_ALRMAR3RTC alarm A register 30x00 ⁽²⁾	0x00 5159		RTC_WPR	RTC write protection register	0x00		
0x00 515A RTC_SHIFTRH RTC shift register high 0x00 0x00 515B RTC_SHIFTRL RTC shift register low 0x00 0x00 515C RTC_ALRMAR1 RTC alarm A register 1 0x00 ⁽²⁾ 0x00 515D RTC_ALRMAR2 RTC alarm A register 2 0x00 ⁽²⁾ 0x00 515E RTC_ALRMAR3 RTC alarm A register 3 0x00 ⁽²⁾	0x00 5158		RTC_SSRH	RTC subsecond register high	0x00		
0x00 515B RTC_SHIFTRL RTC shift register low 0x00 0x00 515C RTC_ALRMAR1 RTC alarm A register 1 0x00 ⁽²⁾ 0x00 515D RTC_ALRMAR2 RTC alarm A register 2 0x00 ⁽²⁾ 0x00 515E RTC_ALRMAR3 RTC alarm A register 3 0x00 ⁽²⁾	0x00 5159		RTC_WPR	RTC write protection register	0x00		
0x00 515C RTC_ALRMAR1 RTC alarm A register 1 0x00 ⁽²⁾ 0x00 515D RTC_ALRMAR2 RTC alarm A register 2 0x00 ⁽²⁾ 0x00 515E RTC_ALRMAR3 RTC alarm A register 3 0x00 ⁽²⁾	0x00 515A		RTC_SHIFTRH	RTC shift register high	0x00		
0x00 515D RTC_ALRMAR2 RTC alarm A register 2 0x00 ⁽²⁾ 0x00 515E RTC_ALRMAR3 RTC alarm A register 3 0x00 ⁽²⁾	0x00 515B		RTC_SHIFTRL	RTC shift register low	0x00		
0x00 515E RTC_ALRMAR3 RTC alarm A register 3 0x00 ⁽²⁾	0x00 515C		RTC_ALRMAR1	RTC alarm A register 1	0x00 ⁽²⁾		
	0x00 515D		RTC_ALRMAR2	RTC alarm A register 2	0x00 ⁽²⁾		
0x00 515F RTC_ALRMAR4 RTC alarm A register 4 0x00 ⁽²⁾	0x00 515E		RTC_ALRMAR3	RTC alarm A register 3	0x00 ⁽²⁾		
	0x00 515F		RTC_ALRMAR4	RTC alarm A register 4	0x00 ⁽²⁾		

Table 8. General hardware register map (continued)

			aalo/intoirapt controllor registere (continuea/			
Address	Block	Register Label	Register Name	Reset Status		
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF		
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF		
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF		
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF		
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF		
0x00 7F95	DM	DM_BK2RL	DM_BK2RL DM breakpoint 2 register low byte			
0x00 7F96		DM_CR1	DM Debug module control register 1	0x00		
0x00 7F97		DM_CR2	DM_CR2 DM Debug module control register 2			
0x00 7F98		DM_CSR1	DM Debug module control/status register 1	0x10		
0x00 7F99		DM_CSR2	DM Debug module control/status register 2	0x00		
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF		
0x00 7F9B to 0x00 7F9F			Reserved area (5 byte)			

Table 9. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

7 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated memory block.

All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM address. See *Table 11* for details on option byte addresses.

The option bytes can also be modified 'on the fly' by the application in IAP mode, except for the ROP and UBC values which can only be taken into account when they are modified in ICP mode (with the SWIM).

Refer to the STM8L15x Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0470) for information on SWIM programming procedures.

Addr.	Ontion nome	Option		Option bits							Factory default
Addr.	Option name	byte No.	7	6	5	4	3	2	1	0	setting
0x00 4800	Read-out protection (ROP)	OPT0		ROP[7:0]						0xAA	
0x00 4802	UBC (User Boot code size)	OPT1		UBC[7:0]						0x00	
0x00 4807					Reserv	ed					0x00
0x00 4808	Independent watchdog option	OPT3 [3:0]		Rese	erved		WWDG _HALT	WWDG _HW	IWDG _HALT	IWDG _HW	0x00
0x00 4809	Number of stabilization clock cycles for HSE and LSE oscillators	OPT4	Reserved		LSECNT[1:0] HSECNT[1:0]				0x00		
0x00 480A	Brownout reset (BOR)	OPT5 [3:0]	Reserved BOR_TH BOR_ ON					0x01			
0x00 480B	Bootloader	OPTBL									0x00
0x00 480C	option bytes (OPTBL)	[15:0]				OF	PTBL[15:0	ני			0x00

 Table 11. Option byte addresses

8 Unique ID

STM8 devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

Address	Content				ue ID bits	S				
Address	description	7	6	5	4	3	2	1	0	
0x4926	X co-ordinate on				U_	ID[7:0]				
0x4927	the wafer				U_I	D[15:8]				
0x4928	Y co-ordinate on				U_II	D[23:16]				
0x4929	the wafer				U_II	D[31:24]				
0x492A	Wafer number		U_ID[39:32]							
0x492B			U_ID[47:40]							
0x492C					U_II	D[55:48]				
0x492D	-				U_II	D[63:56]				
0x492E	Lot number		U_ID[71:64]							
0x492F			U_ID[79:72]							
0x4930					U_II	D[87:80]				
0x4931					U_II	D[95:88]				

Table 13. Unique ID registers (96 bits)

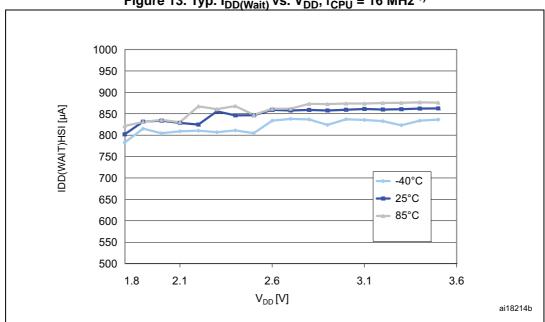


Figure 13. Typ. $I_{DD(Wait)}$ vs. V_{DD} , f_{CPU} = 16 MHz ¹⁾

1. Typical current consumption measured with code executed from Flash memory.

In the following table, data is based on characterization results, unless otherwise specified.

Symbol	Parameter		Conditions ⁽¹⁾⁽²)	Тур	Max	Unit
				$T_A = -40 \text{ °C to } 25 \text{ °C}$	3	3.3	
				T _A = 55 °C	3.3	3.6	
			all peripherals OFF	T _A = 85 °C	4.4	5	
				T _A = 105 °C	6.7	8	
		LSI RC osc.		T _A = 125 °C	11	14	
		(at 38 kHz)		$T_A = -40 \text{ °C to } 25 \text{ °C}$	3.4	3.7	
				T _A = 55 °C	3.7	4	
		with TIM2 active ⁽³⁾	T _A = 85 °C	4.8	5.4	-	
			T _A = 105 °C	7	8.3		
I _{DD(LPW)}	Supply current in Low power wait			T _A = 125 °C	11.3	14.5	μA
'DD(LPVV)	mode			$T_A = -40 \text{ °C to } 25 \text{ °C}$	2.35	2.7	μΛ
			all peripherals OFF	T _A = 55 °C	2.42	2.82	-
				T _A = 85 °C	3.10	3.71	
				T _A = 105 °C	4.36	5.7	
		LSE external clock ⁽⁴⁾		T _A = 125 °C	7.20	11	
		(32.768 kHz)		$T_A = -40 \text{ °C to } 25 \text{ °C}$	2.46	2.75	
		· · · · · · · · · · · · · · · · · · ·		T _A = 55 °C	2.50	2.81	
			with TIM2 active ⁽³⁾	T _A = 85 °C	3.16	3.82	
				T _A = 105 °C	4.51	5.9	
				T _A = 125 °C	7.28	11	

Table 22. Total current consumption in Low	nower wait mode at V_{-} = -1.65 V to 3.6 V
Table 22. Total current consumption in Low	power wait mode at $v_{DD} = 1.05 v$ to 5.0 v

1. No floating I/Os.

2. $T_A > 85$ °C is valid only for devices with suffix 3 temperature range.

3. Timer 2 clock enabled and counter is running.

 Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to Table 31.

In the following table, data is based on characterization results, unless otherwise specified.

Symbol	Parameter	Condition ⁽¹⁾⁽²⁾	Тур	Мах	Unit
		$T_A = -40 \text{ °C to } 25 \text{ °C}$	350	1400 ⁽³⁾	
	Supply current in Halt mode	T _A = 55 °C	580	2000	
I _{DD(Halt)}	(Ultra-low-power ULP bit =1 in	T _A = 85 °C	1160	2800 ⁽³⁾	nA
	the PWR_CSR2 register)	T _A = 105 °C	2560	6700 ⁽³⁾	
		T _A = 125 °C	4.4	13 ⁽³⁾	μA
IDD(WUHait)	Supply current during wakeup time from Halt mode (using HSI)	-	2.4	-	mA
t _{WU_HSI(Halt)} ⁽⁴⁾⁽⁵⁾	Wakeup time from Halt to Run mode (using HSI)	-	4.7	7	μs
t _{WU_LSI(Halt)} ⁽⁴⁾⁽⁵⁾	Wakeup time from Halt mode to Run mode (using LSI)	-	150	-	μs

Table 25. Total current consumption and timing in Halt mode at V_{DD} = 1.65 to 3.6 V

1. $T_A = -40$ to 125 °C, no floating I/O, unless otherwise specified.

2. T_A > 85 °C is valid only for devices with suffix 3 temperature range.

3. Tested in production.

4. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.

5. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after t_{WU} .

9.3.8 Communication interfaces

SPI1 - Serial peripheral interface

Unless otherwise specified, the parameters given in *Table 42* are derived from tests performed under ambient temperature, f_{SYSCLK} frequency and V_{DD} supply voltage conditions summarized in *Section 9.3.1*. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions ⁽¹⁾	Min	Max	Unit	
f _{SCK}	SDI1 alook fraguanay	Master mode	0	8		
1/t _{c(SCK)}	SPI1 clock frequency	Slave mode	0	8	MHz	
t _{r(SCK)} t _{f(SCK)}	SPI1 clock rise and fall time	Capacitive load: C = 30 pF	-	30		
t _{su(NSS)} ⁽²⁾	NSS setup time	Slave mode	4 x 1/f _{SYSCLK}	-		
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	80	-		
t _{w(SCKH)} (2) t _{w(SCKL)} (2)	SCK high and low time	Master mode, f _{MASTER} = 8 MHz, f _{SCK} = 4 MHz	105	145	-	
t _{su(MI)} (2)	Data input setup time	Master mode	30	-		
t _{su(MI)} (2) t _{su(SI)} (2)		Slave mode	3	-		
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	15	-		
t _{h(MI)} ⁽²⁾ t _{h(SI)} ⁽²⁾	Data input hold time	Slave mode	0	-	ns	
t _{a(SO)} ⁽²⁾⁽³⁾	Data output access time	Slave mode	-	3x 1/f _{SYSCLK}		
t _{dis(SO)} ⁽²⁾⁽⁴⁾	Data output disable time	Slave mode	30	-		
t _{v(SO)} ⁽²⁾	Data output valid time	Slave mode (after enable edge)	-	60		
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode (after enable edge)	-	20	-	
t _{h(SO)} ⁽²⁾		Slave mode (after enable edge)	15	-	1	
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode (after enable edge)	1	-		

	Table 42.	SPI1	characteristics
--	-----------	------	-----------------

1. Parameters are given by selecting 10 MHz I/O output frequency.

2. Values based on design simulation and/or characterization results, and not tested in production.

3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.

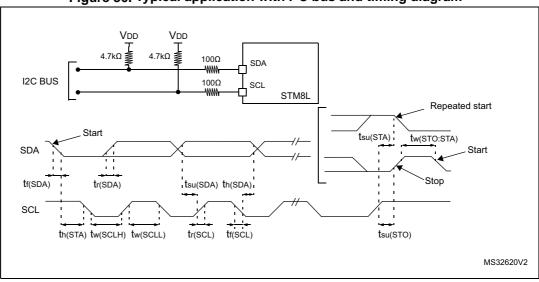


Figure 36. Typical application with I²C bus and timing diagram¹⁾

1. Measurement points are done at CMOS levels: 0.3 x $\rm V_{DD}$ and 0.7 x $\rm V_{DD}$

9.3.9 Embedded reference voltage

In the following table, data is based on characterization results, not tested in production, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max.	Unit
I _{REFINT}	Internal reference voltage consumption	-	-	1.4	-	μA
T _{S_VREFINT} ⁽¹⁾⁽²⁾	ADC1 sampling time when reading the internal reference voltage	-	-	5	10	μs
I _{BUF} ⁽²⁾	Internal reference voltage buffer consumption (used for ADC1)	-	-	13.5	25	μA
V _{REFINT out}	Reference voltage output	-	1.202 ⁽³⁾	1.224	1.242 ⁽³⁾	V
I _{LPBUF} ⁽²⁾	Internal reference voltage low power buffer consumption (used for comparators or output)	-	-	730	1200	nA
I _{REFOUT} ⁽²⁾	Buffer output current ⁽⁴⁾	-	-	-	1	μA
C _{REFOUT}	Reference voltage output load	-	-	-	50	pF
t _{VREFINT}	Internal reference voltage startup time	-	-	2	3	ms
t _{BUFEN} ⁽²⁾	Internal reference voltage buffer startup time once enabled ⁽¹⁾	-	-	-	10	μs
ACC _{VREFINT}	Accuracy of V _{REFINT} stored in the VREFINT_Factory_CONV byte ⁽⁵⁾	-	-	-	± 5	mV
STAR	Stability of V _{REFINT} over temperature	-40 °C ≤ T _A ≤ 125 °C	-	20	50	ppm/°C
STAB _{VREFINT}	Stability of V _{REFINT} over temperature	$0 \ ^{\circ}C \leq T_A \leq 50 \ ^{\circ}C$	-	-	20	ppm/°C
STAB _{VREFINT}	Stability of V _{REFINT} after 1000 hours	-	-	-	TBD	ppm

1. Defined when ADC1 output reaches its final value $\pm 1/2LSB$

2. Data guaranteed by Design. Not tested in production.

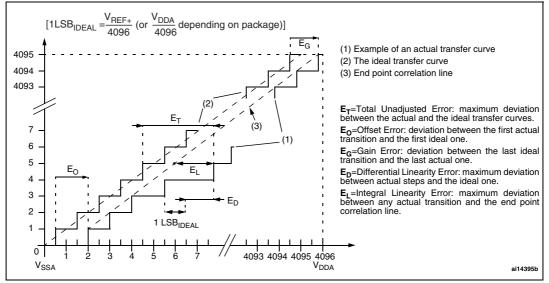
3. Tested in production at $V_{DD} = 3 \text{ V} \pm 10 \text{ mV}$.

4. To guaranty less than 1% $V_{\mbox{\scriptsize REFOUT}}$ deviation.

5. Measured at V_{DD} = 3 V ±10 mV. This value takes into account V_{DD} accuracy and ADC1 conversion accuracy.

In the following table, data is guaranteed by design, not tested in production.

Table 47. Comparator 2 characteristics									
Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit			
V_{DDA}	Analog supply voltage	-	1.65	-	3.6	V			
Τ _Α	Temperature range	-	-40	-	125	°C			
V _{IN}	Comparator 2 input voltage range	-	0	-	V _{DDA}	V			
t _{START}	Comporator startus time	Fast mode	-	15	20				
	Comparator startup time	Slow mode	-	20	25				
t _{d slow}	Propagation delay in alow mode ⁽²⁾	$\begin{array}{c} 1.65 \text{ V} \leq \text{V}_{\text{DDA}} \\ \leq 2.7 \text{ V} \end{array}$	-	1.8	3.5				
	Propagation delay in slow mode ⁽²⁾	$\begin{array}{c} 2.7 \text{ V} \leq \text{V}_{\text{DDA}} \leq \\ 3.6 \text{ V} \end{array}$	-	2.5	6	μs			
t _{d fast}	t _{d fast} Propagation delay in fast mode ⁽²⁾	$\begin{array}{c} 1.65 \text{ V} \leq \text{V}_{\text{DDA}} \\ \leq 2.7 \text{ V} \end{array}$	-	0.8	2				
		$\begin{array}{c} 2.7 \text{ V} \leq \text{V}_{\text{DDA}} \leq \\ 3.6 \text{ V} \end{array}$	-	1.2	4				
Voffset	Comparator offset error	-	-	±4	±20	mV			
I _{COMP2}	Current consumption ⁽³⁾	Fast mode	-	3.5	5				
		Slow mode	-	0.5	2	μA			


Table 47. Comparator 2 characteristics

1. Based on characterization, not tested in production.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

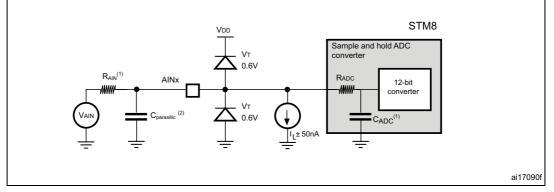

3. Comparator consumption only. Internal reference voltage not included.

Figure 37. ADC1 accuracy characteristics

Figure 38. Typical connection diagram using the ADC1

- 1. Refer to *Table 48* for the values of R_{AIN} and C_{ADC1} .
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC1} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 39* or *Figure 40*, depending on whether V_{REF+} is connected to V_{DDA} or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip.

10.4 UFQFPN28 package information

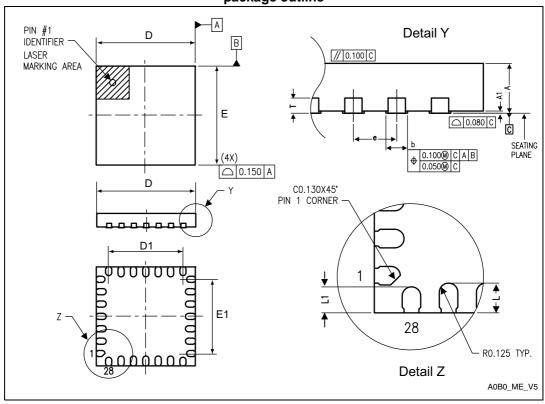
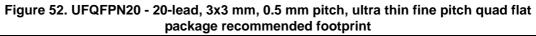


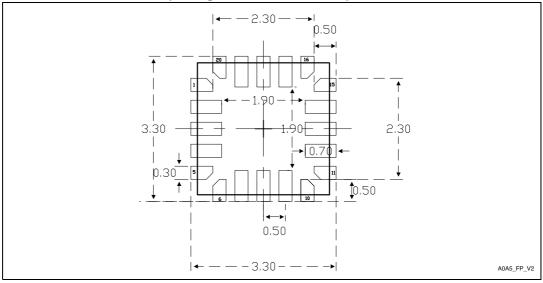
Figure 48. UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline

1. Drawing is not to scale.

Table 59. UFQFPN28 - 28-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat						
package mechanical data ⁽¹⁾						

Symbol	millimeters			inches				
	Min	Тур	Max	Min	Тур	Мах		
А	0.500	0.550	0.600	0.0197	0.0217	0.0236		
A1	-	0.000	0.050	-	0.0000	0.0020		
D	3.900	4.000	4.100	0.1535	0.1575	0.1614		
D1	2.900	3.000	3.100	0.1142	0.1181	0.1220		
E	3.900	4.000	4.100	0.1535	0.1575	0.1614		
E1	2.900	3.000	3.100	0.1142	0.1181	0.1220		
L	0.300	0.400	0.500	0.0118	0.0157	0.0197		
L1	0.250	0.350	0.450	0.0098	0.0138	0.0177		
Т	-	0.152	-	-	0.0060	-		
b	0.200	0.250	0.300	0.0079	0.0098	0.0118		
е	-	0.500	-	-	0.0197	-		

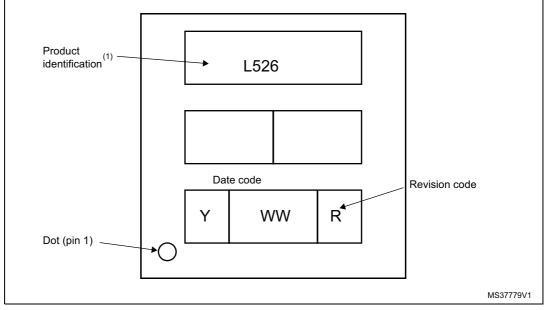



DocID018780 Rev 8

package mechanical data								
Symbol	millimeters			inches ⁽¹⁾				
	Min	Тур	Max	Min	Тур	Max		
А	0.500	0.550	0.600	0.0197	0.0217	0.0236		
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020		
A3	-	0.152	-	-	0.060	-		
D	-	3.000	-	-	0.1181	-		
E	-	3.000	-	-	0.1181	-		
L1	0.500	0.550	0.600	0.0197	0.0217	0.0236		
L2	0.300	0.350	0.400	0.0118	0.0138	0.0157		
L3	-	0.375	-		0.0148			
L4	-	0.200	-		0.0079			
L5	-	0.150	-		0.0059			
b	0.180	0.250	0.300	0.0071	0.0098	0.0118		
е	-	0.500	-	-	0.0197	-		
ddd	-	-	0.050	-	-	0.0020		

Table 60. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.



1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

11 Part numbering

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Table 63. Low-density STM8L151x2/3 ordering information scheme

Example:	STM8	L	151	K	3	U	3 TR
Device family							
STM8 = 8-bit microcontroller							
Product type							
L = Low power							
Sub-family							
151 = ultra-low power							
Pin count							
C = 48 pins							
K = 32 pins							
G = 28 pins							
F = 20 pins							
Program memory size							
3 = 8 Kbyte of Flash memory							
2 = 4 Kbyte of Flash memory							
Paokago							
Package U = UFQFPN							
T = LQFP							
P = TSSOP							
Temperature range							
3 = -40 to 125 °C							
6 = -40 to 85 °C							
Packing							

No character = tray or tube TR = tape and reel

