

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Obsolete
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m66591gp-rb1s

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Registers

					<u>H</u>	ow t	o Rea	id Re	egiste	er Tal	oles					
1	Bit Numbe	ers:	Each	regist	er is co	onnec	cted wit	n an in	ternal	bus of	16-bit	wide, s	so the	bit nu	mbers	of the
			regis	ters lo	cated a	at odc	addres	sses a	re b15	-b8, an	d thos	e at ev	en ad	dress	es are b	о 7- b0.
2	State of R	egister at	Reset	:												
			Repr	esents					•		-					al numbe
							reset by peratio				ignal;	the "S/	W res	et" is '	the rese	et by the
3	At Read:			Read			poratio	- Eria		jiotori						
						-	ead val	ue inva	alid)							
				Read Read	-											
					,											
4	At Write:			Write			ditionall	y (inclu	idae ei	ome co	nditio	ne at w	(rito)			
							on't car					15 at w	nie)			
_				Write	disable	ed										
	xample of re t implemente			nortio	n											
		15/14	13	12	11	10	9	8	7	6	5	4	3	2	1	b0
			1													
		Abit	Bbit	Cbit												
H/W		0 0	0	0												
S/W	reset reset bus reset															
S/W	reset 🔶	0 0 0 0	0	0 0								<	© 1/W rev	set: H	1'0000>	
S/W	reset 🔶	0 0 0 0	0	0 0								<1	H/W re⊧		l'0000> eset: ->	
S/W	reset 🔶	0 0 0 0	0	0 0									H/W re: <s< td=""><td>S/W re</td><td></td><td></td></s<>	S/W re		
S/W	reset 🔶	0 0 0 0	0 0 0	0 0			Functio	n					H/W re: <۶ USB	S/W re	eset: ->	
S/W	b 15	Bit nam	0 0 0	0 0									H/W re: <۶ USB	S/W rebus re	eset: -> eset: -> W -	
S/W	b	0 0 0 0 0 0 Bit nam	0 0 0	0 0			0:			-			H/W re: <۶ USB	S/W re bus re R	eset: -> eset: -> W	
S/W	b 15 14	Bit nam	0 0 0	0 0									H/W re: <۶ USB	S/W rebus re	eset: -> w - 0	
S/W	b 15	Bit nam Reserve A bit	e ed.	0 0 0			0: 1:			-			H/W re: <۶ USB	S/W rebus re	eset: -> eset: -> W -	
S/W	b 15 14	Bit nam Reserve A bit (e ed.	0 0 0			0: 1: 0:						H/W re: <۶ USB	S/W rebus re	eset: -> w - 0	
S/W	b 15 14 13	0 0	e ed.	0 0 0			0: 1: 0: 1:						H/W re: <۶ USB	S/W rebus re	eset: -> eset: -> W - 0 0	

RENESAS

ddress	+1 ad	ddress	+0 addr	ess		Reset state	
	b15	b8	b7	b0	H/W	S/W	USB bus
H'48		NT Pin Configu	ration Register 3		0000h	0000h	-
H'4A							
H'4C	I	NT Pin Configu	ration Register 4		0000h	0000h	-
H'4E							
H'50							
H'52							
H'54							
H'56							
H'58							
H'5A							
H'5C							
H'5E							
H'60		Interrupt Sta	tus Register 0		0000 0000	0000 0000	1
		,	0		?000	?000	-001b
					0000b	0000b	
H'62							
H'64		Interrupt Sta	tus Register 1		0000h	0000h	-
H'66							
H'68		Interrupt Sta	tus Register 2		0000h	0000h	-
H'6A		interrupt Ota			000011	000011	
H'6C		Interrunt Sta	tus Register 3		0000h	0000h	-
H'6E		interrupt ota			000011	000011	
H'70							
H'72							
H'74			Pagistor		0000h	0000h	0000h
H'76			ess Register		000011	000011	000011
H'78			est Register 0		0000h	0000h	0000h
H'7A							
			est Register 1		0000h 0000h	0000h 0000h	0000h 0000h
H'7C			est Register 2				
H'7E		USB Reque	est Register 3		0000h	0000h	0000h
H'80		DOD 0 ('			00001	00001	
H'82		-	ation Register 1		0000h	0000h	-
H'84		DCP Configura	ation Register 2		0000h	0000h	-
H'86							
H'88		DCP Cont	rol Register		0000h	0000h	
							000b
H'8A		DE 0 "			00000	00000	
H'8C	PI	PE Configurati	on Select Registe	r	0000h	0000h	-
H'8E							
H'90	PIPI	E Configuratior	Window Registe	r 0	0000h	0000h	00
							b
H'92							
H'94							
H'96							
H'98							

Figure 2.2 Register Mapping (2)

2.8 Data Pin & FIFO/DMA Control Pin Configuration Register 1

■ Data Pin & FIFO/DMA Control Pin Configuration Register 1 (PinCtrlCfg1)

<Address: H'0A>

b15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	b0
LDRV							big_end						PAdir		DB_Cfg
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
													<h <="" td=""><td>/W reset</td><td>: H'0000></td></h>	/W reset	: H'0000>
															/ reset: ->

		<usb< th=""><th>bus re</th><th>eset: -</th></usb<>	bus re	eset: -
b	Bit name	Function	R	W
15	LDRV	0: When VIF=1.7~2.0V	0	0
	Drive Current Adjust	1: When VIF=2.7~3.6V		
14~9	Reserved. Set it to "0".		"0"	"0"
8	big_end	0: Little endian	0	0
	Big Endian Mode	1: Big endian		
7~3	Reserved. Set it to "0".		"0"	"0"
2	PAdir	0: Input	0	0
	Port A Direction	1: Output		
1	Reserved. Set it to "0".		"0"	"0"
0	DB_Cfg	0: SD7-SD0/PA7-PA0 are set as the general-purpose port	0	0
	Data Bus Configuration	1: SD7- SD0/PA7-PA0 are set as the split bus		

(1) LDRV (Drive Current Adjust) Bit (b15)

This bit is used to adjust the drive current of the output pins. The output pins here refer to SD7-0, D15-0, INT, DREQ, DEND, SUSP_ON and CONF_ON pins.

(2) big_end (Big Endian Mode) Bit (b8)

This bit sets the endian of the C_FIFO port and the D0_FIFO port. When this bit is set to "0", the C_FIFO port and the D0_FIFO port becomes little endian. When this bit is set to "1", the C_FIFO port and the D0_FIFO port becomes big endian.

	b15~b8	b7~b0
Little Endian	Odd number address	Even number address
Big Endian	Even number address	Odd number address

(3) PAdir (Port A Direction) Bit (b2)

This bit sets the port A direction. This bit is valid only when the DB_Cfg bit is set to "0". General purpose port PA7-PA0 is input port when this bit is set to "0". General purpose port PA7-PA0 is output port when this bit is set to "1".

(4) DB_Cfg (Data Bus Configuration) Bit (b0)

This bit sets the operations of SD7-SD0/PA7-PA0. When this bit is set to "0", SD7-SD0/PA7-PA0 becomes the general-purpose port (GPIO). When this bit is set to "1", SD7-SD0/PA7-PA0 becomes the split bus for the D0_FIFO port. In this case, CPU access to the D0_FIFO Port Register is invalid.

2.15 C_FIFO Port Control Register 2

■ C_FIFO Port Control Register 2 (C_FIFOPortCtrl2)

<Address: H'2E>

b15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	b0
TGL	SCLR	SBUSY													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

<H/W reset: H'0000> <S/W reset: H'0000>

		<usb bu<="" th=""></usb>							
b	Bit name	Function	R	W					
15	TGL	<when buffer="" out="" set="" to=""></when>	"0"	0					
	Buffer Toggle	• Write							
		0: Invalid (Ignored when written)							
		1: Toggles access buffer							
		<when buffer="" in="" set="" to=""></when>							
		• Write							
		Set it to "0"							
14	SCLR	<when buffer="" out="" set="" to=""></when>	"0"	0					
	Buffer Clear	• Write							
		0: Invalid (Ignored when written)							
		1: Inhibited							
		<when buffer="" in="" set="" to=""></when>							
		• Write							
		0: Invalid (Ignored when written)							
		1: Clear the SIE side buffer							
13	SBUSY	0: SIE no access state	0	-					
	SIE side Buffer Busy	1: SIE access state							
12~0	Reserved. Set it to "0".		"0"	"0"					

(1) TGL (Buffer Toggle) Bit (b15)

The SIE side buffer is changed over to the CPU side buffer by writing "1" to this bit while the FIFO buffer is not full in continuous transfer mode. At this time, the buffer ready interrupt occurs. This bit is valid only for the PIPE of OUT direction. Further, when the PIPE which has been set to the Current_PIPE [2:0] bits of the C_FIFO Port Control Register 0 is DCP, writing "1" to this bit is invalid.

Writing "0" to this bit is invalid.

Explanation of Terms: Refer to "1.5 Block Diagram" about "SIE side" and "CPU side".

(2) SCLR (Buffer Clear) Bit (b14)

The SIE side buffer is cleared and the SIE side buffer is changed over to the CPU side buffer by writing "1" to this bit. This bit is valid only for the PIPE of IN direction. Further, when the PIPE which has been set to the Current_PIPE [2:0] bits of the C_FIFO Port Control Register 0 is DCP, writing "1" to this bit is invalid.

- Please set according to the following procedures in order to use this bit:
- (1) Set the PID [1:0] bits of the PIPE i Control Register corresponding to the PIPE having been set to the Current_PIPE [2:0] bits of the C_FIFO Port Control Register 0 to the NAK so that it does not respond to the IN transaction.
- (2) Confirm that the SBUSY bit is "0". (Confirm that no buffer access exists.)
- (3) Clear the SIE-side buffer by writing "1" to the SCLR bit.
- Writing "0" to this bit is invalid.

(3) SBUSY (SIE side Buffer Busy) Bit (b13)

This bit indicates that SIE is accessing the buffer of the PIPE having been set to the Current_PIPE [2:0] bits of the C_FIFO Port Control Register 0. Further, when the PIPE which has been set to the Current_PIPE [2:0] bits is DCP, reading of this bit is invalid.

2.23 INT Pin Configuration Register 4

■ INT Pin Configuration Register 4 (INTPinCfg4)

b15 b0 PIPEB_EMPE6 PIPEB_EMPE5 PIPEB_EMPE4 PIPEB_EMPE3 PIPEB_EMPE2 PIPEB_EMPE1 DCP EMPE

<H/W reset: H'0000> <S/W reset: H'0000>

<Address: H'4C>

				<3/Wires		
b	Bit name		Function		R	W
15~7	Reserved. Set it to "0".				"0"	"0"
6	PIPEB_EMPE6	0:	Disable the BEMP bit set		0	0
	PIPE6 Buffer Empty/Size-Error Interrupt Enable	1:	Enable the BEMP bit set			
5	PIPEB_EMPE5	0:	Disable the BEMP bit set		0	0
	PIPE5 Buffer Empty/Size-Error Interrupt Enable	1:	Enable the BEMP bit set			
4	PIPEB_EMPE4	0:	Disable the BEMP bit set		0	0
	PIPE4 Buffer Empty/Size-Error Interrupt Enable	1:	Enable the BEMP bit set			
3	PIPEB_EMPE3	0:	Disable the BEMP bit set		0	0
	PIPE3 Buffer Empty/Size-Error Interrupt Enable	1:	Enable the BEMP bit set			
2	PIPEB_EMPE2	0:	Disable the BEMP bit set		0	0
	PIPE2 Buffer Empty/Size-Error Interrupt Enable	1:	Enable the BEMP bit set			
1	PIPEB_EMPE1	0:	Disable the BEMP bit set		0	0
	PIPE1 Buffer Empty/Size-Error Interrupt Enable	1:	Enable the BEMP bit set			
0	DCP_EMPE	0:	Disable the BEMP bit set		0	0
	DCP_FIFO Buffer Empty/Size-Error Interrupt Enable	1:	Enable the BEMP bit set			

(1) PIPEB_EMPE6 (PIPE6 Buffer Empty/Size Error Interrupt Enable) Bits (b6)

These bits select whether to set the BEMP bit of Interrupt Status Register 0 to "1" or not when the PIPEB_EMP_OVR6 bit of the Interrupt Status Register 3 is set to "1".

(2) PIPEB_EMPE5 (PIPE5 Buffer Empty/Size Error Interrupt Enable) Bits (b5)

These bits select whether to set the BEMP bit of Interrupt Status Register 0 to "1" or not when the PIPEB_EMP_OVR5 bit of the Interrupt Status Register 3 is set to "1".

(3) PIPEB_EMPE4 (PIPE4 Buffer Empty/Size Error Interrupt Enable) Bits (b4)

These bits select whether to set the BEMP bit of Interrupt Status Register 0 to "1" or not when the PIPEB_EMP_OVR4 bit of the Interrupt Status Register 3 is set to "1".

(4) PIPEB_EMPE3 (PIPE3 Buffer Empty/Size Error Interrupt Enable) Bits (b3)

These bits select whether to set the BEMP bit of Interrupt Status Register 0 to "1" or not when the PIPEB_EMP_OVR3 bit of the Interrupt Status Register 3 is set to "1".

(5) PIPEB_EMPE2 (PIPE2 Buffer Empty/Size Error Interrupt Enable) Bits (b2)

These bits select whether to set the BEMP bit of Interrupt Status Register 0 to "1" or not when the PIPEB_EMP_OVR2 bit of the Interrupt Status Register 3 is set to "1".

(6) PIPEB_EMPE1 (PIPE1 Buffer Empty/Size Error Interrupt Enable) Bits (b1)

These bits select whether to set the BEMP bit of Interrupt Status Register 0 to "1" or not when the PIPEB_EMP_OVR1 bit of the Interrupt Status Register 3 is set to "1".

(7) DCP_EMPE (DCP_FIFO Buffer Empty/Size Error Interrupt Enable) Bit (b0)

This bit selects whether to set the BEMP bit of Interrupt Status Register 0 to "1" or not when the DCP_EMP_OVR bit of the Interrupt Status Register 3 is set to "1".

2.26 Interrupt Status Register 2

■ Interrupt Status Register 2 (INTStatus2)

<Address: H'68>

b15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	b0
									PIPEB_NRDY6	PIPEB_NRDY5	PIPEB_NRDY4	PIPEB_NRDY3	PIPEB_NRDY2	PIPEB_NRDY1	DCP_NRDY
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-		-

<H/W reset: H'0000> <S/W reset: H'0000> <USB bus reset: ->

	<usb bu<="" th=""></usb>									
b	Bit name	Function	R	W						
15~7	Reserved. Set it to "0".		"0"	"0"						
6	PIPEB_NRDY6	• Read	0	0						
	PIPE6 Buffer Not Ready Interrupt	0: No occurrence of interrupt								
		1: Occurrence of interrupt								
		Write								
		0: Clear interrupt								
		1: Invalid (Ignored when written)								
5	PIPEB_NRDY5	• Read	0	0						
	PIPE5 Buffer Not Ready Interrupt	0: No occurrence of interrupt								
		1: Occurrence of interrupt								
		• Write								
		0: Clear interrupt								
		1: Invalid (Ignored when written)								
4	PIPEB_NRDY4	• Read	0	0						
	PIPE4 Buffer Not Ready Interrupt	0: No occurrence of interrupt								
		1: Occurrence of interrupt								
		Write								
		0: Clear interrupt								
		1: Invalid (Ignored when written)								
3	PIPEB_NRDY3	Read	0	0						
	PIPE3 Buffer Not Ready Interrupt	0: No occurrence of interrupt								
		1: Occurrence of interrupt								
		• Write								
		0: Clear interrupt								
		1: Invalid (Ignored when written)								
2	PIPEB_NRDY2	• Read	0	0						
	PIPE2 Buffer Not Ready Interrupt	0: No occurrence of interrupt								
		1: Occurrence of interrupt								
		• Write								
		0: Clear interrupt								
		1: Invalid (Ignored when written)								
1	PIPEB_NRDY1	• Read	0	0						
	PIPE1 Buffer Not Ready Interrupt	0: No occurrence of interrupt								
		1: Occurrence of interrupt								
		• Write								
		0: Clear interrupt								
		1: Invalid (Ignored when written)								
0	DCP_NRDY	Read	0	0						
	Default Control PIPE Buffer Not Ready	0: No occurrence of interrupt								
	Interrupt	1: Occurrence of interrupt								
		Write								
		0: Clear interrupt								
		1: Invalid (Ignored when written)								

RENESAS

Note for clearing the buffer not ready interrupt (PIPEB_NRDY6-PIPEB_NRDY1/DCP_NRDY) status bits:

In order to continuously clear status bits while the PIPEB_NRDY6-PIPEB_NRDY1/DCP_NRDY status bits are set to "1" by being multiplexed, the access cycle time of 100ns or more is required from clear to the next clear. For example, where both the PIPEB_NRDY1 status bit and the PIPEB_NRDY2 status bit are simultaneously set, the access cycle required from when "0" is written to the PIPEB_NRDY1 bit until when "0" is written to the PIPEB_NRDY2 bit is 100ns or more. Also at this time, it is enable to clear the PIPEB_NRDY1 bit and the PIPEB_NRDY2 bit at the same time.

7~0

2.33 DCP Configuration Register 1

DCP Configuration Register 1 (DCPCfg1)

<Address: H'82>

"0" "0"

b15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	b	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(0
b	<h res<br="" w=""><s res<br="" w=""><usb b<br="">Bit name Function</usb></s></h>												/W rese USB bu	t: H'0 is res	<000	
	Reser	ved. Set														"0"
8	CNTM	1D					0: Non-continuous transmit/receive mode								0	0
	Contir	nuous Tr	ansmit/R	eceive N	Node		1: Co	ntinuous	s transmi	t/receive	mode					

(1) CNTMD (Continuous Transmit/Receive Mode) Bits (b8)

These bits set the transmit/receive mode in data stage of the control read/write transfer.

In case of the control read transfer:

Reserved. Set it to "0".

CNTMD = "0": Non-continuous transmit mode

The transmit completes under the conditions as follows:

• Transmits the data equivalent to the size set by the DCP_MXPS [6:0] bits of DCP Configuration Register 2 or transmits the short packet by setting the BVAL bit of C_FIFO Port Control Register 1 to "1".

The writing completes under the conditions as follows:

• Writes to the buffer the data equivalent to the size set by the DCP_MXPS [6:0] bits. (BVAL bit changes to "1").

• Writes "1" to the BVAL bit.

CNTMD = "1": Continuous transmit mode

The transmit completes under the conditions as follows:

• Transmits the data equivalent to the size set by the SDLN [8:0] bits of DCP Continuous Transmit Data Length Register or transmits the short packet by setting the BVAL bit to "1".

The writing completes under the conditions as follows:

- Writes to the buffer the data equivalent to the size set by the SDLN [8:0] bits. (BVAL bit changes to "1").
- Writes "1" to the BVAL bit.

In case of the control write transfer:

CNTMD = "0": Non-continuous receive mode. The receive completes by receiving one packet under the condition as follows:

Receives the data equivalent to the size set by the DCP_MXPS [6:0] bits of DCP Configuration Register 2.
Receives the short packet.

CNTMD = "1": Continuous receive mode. The receive completes by receiving several packets under the condition as follows:

- Receives the data equivalent to 256 bytes set by buffer size of DCP.
- Receives the short packet.

2.34 DCP Configuration Register 2

■ DCP	Configuration Register 2 (DCPCfg2)						</th <th>Addre</th> <th>ss: ⊦</th> <th>ľ84></th>	Addre	ss: ⊦	ľ84>						
b15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		b0
									DC	P_MXPS	[6:0]					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
														/W res		
														/W res		
													<	USB b	us re	set: ->
b			Bit n	ame						Functi	on				R	W
15~7	Rese	ved. Set	it to "0".												"0"	"0"
6~0	DCP_	MXPS [6	5:0]				Upper lii	mit of the	transm	it/receive	data for	one pac	ket trans	sfer	0	0

DCP Maximum Packet Size

(1) DCP_MXPS [6:0] (DCP Maximum Packet Size) Bits (b6-b0)

These bits set the upper limit (byte count) of the transmit/receive data for one packet transfer in data stage. For these bits, 8, 16, 32 and 64 are available during operation in the Full-Speed mode, and 64 during operation in the Hi-Speed mode. Other values are not permitted.

(Settable only 8,16,32 and 64)

At the time of transmitting, the data equivalent to the size set by these bits are read from the buffer for transmission. When the buffer does not have the data equivalent to the size set by these bits, the data are transmitted as the short packet.

At the time of receiving, the data equivalent to the size set by these bits are written to the buffer. If the received packet data are larger than the size set by these bits, the DCP_EMP_OVR bit of the Interrupt Status Register 3 is set to "1".

When initializing DCP, be sure to set these bits before setting the PID bits of DCP Control Register to "01". Also, when changing the value of these bits, be sure to set beforehand the PID bits of DCP Control Register to "00" (NAK).

(3) SQCLR (Sequence Bit Clear) Bit (b8)

This bit clears the sequence bit of the PIPE1 to PIPE4 to set the next data PID to the "DATA0". The sequence bit is toggled through hardware control in the transfers after the sequence bit is cleared. With the USB bus reset, the sequence toggle bit is not cleared. It is necessary to clear the sequence bit by software. Writing "0" to this bit is invalid. This bit is always read "0". Before setting this bit, be sure to set the PID [1:0] bits to "00" (NAK).

Note: To clear two or more sequence toggle bits of the PIPE continuously, the access cycle time of 200ns or more is required from one SQCLR bit of the PIPE access to the next SQCLR bit of the PIPE access. For example, when the sequence toggle bits of both PIPE1 and PIPE2 are cleared, the access cycle required from when "1" is written to the SQCLR bit of PIPE1 to when "1" is written to the SQCLR bit of PIPE2 is 200ns or more.

(4) NYETMD (NYET Handshake Mode) Bit (b4)

This bit sets the NYET response mode.

0: Automatic response mode (ACK/NYET is automatically selected.)

1: ACK response only mode (Always with ACK response. No NYET response.)

This bit is valid when the PID [1:0] bits of the OUT transfer are "01" (BUF) in case the bulk transfer operated in the Hi-Speed mode. In any other case, this bit is invalid.

In the automatic response mode, hardware automatically selects an appropriate response PID (NAK/ACK/NYET) according to the buffer status below:

- (1) When the buffer to receive the data packet is the buffer full, the NAK response is executed.
- (2) When an empty space existing in the buffer is equal to or more than twice as large as the max packet size before receiving of the data packet, the ACK response is executed.
- (3) When an empty space existing in the buffer is less than twice as large as the max packet size before receiving of the data packet, the NYET response is executed.

In the ACK response only mode, the device does not transmit the NYET packet. The ACK/NAK response is executed.

(5) PID [1:0] (Response PID) Bits (b1-b0)

These bits set the PID for response of PIPE1 to PIPE4.

00: NAK response

The NAK response is executed irrespective of buffer status.

01: BUF response

The response ID is selected according to the buffer status, the value of the NYETMD bit and the value of the sequence toggle bit.

When the NYETMD bit is "00" and in the bulk OUT transfer, the NYET response is executed in the following conditions:

(1) When the non-continuous transmit/receive mode and the single buffer mode.

- (2) When the buffer on the CPU-side is not empty in the non-continuous transmit/receive mode and the double buffer mode before receiving the data packet.
- 1x: STALL response

The STALL response is executed irrespective of buffer status.

When the data packet exceeding the max packet size (512 bytes when Hi-Speed, 64 bytes when Full-Speed) of PIPE1 to PIPE4 has been received while setting the transfer direction of the PIPE to OUT, these bits are automatically set to "1x".

To set the STALL response, follow the procedure below in accordance with this bit value before setting:

(1) Set to "10" when PID [1:0] are set to "00"

(2) Set to "11" when PID [1:0] are set to "01" $\,$

3.2.2 Process After Detection of Attach/Detach (VBUS Interrupt)

M66591 uses VBUS interrupt to detect attach to the host to or detach from the host.

The VBUS interrupt occurs when either "Low"->"High" or "High"->"Low" change has occurred in the VBUS pin input. The attach to the host or detach from the host is judged by polling of the VBUSSTS bit of the Interrupt Status Register 0.

When attach to the host has been determined, M66591 execute the USB attach processing.

When detach from the host has been determined, M66591 execute the USB detach processing.

The detailed process flowchart is shown in the following Figure 3.4.

The VBUS interrupt is occurred even while the internal clock (SCKE bit of the USB Transceiver Control Register 0 = "0") is not supplied. Also, The VBUSSTS bit is capable of reading correct value even if the internal clock is not supplied.

- The VBUS interrupt (VBUSINT bit) is cleared by the following two methods according to the internal clock:
 (1) State when the internal clock is supplied (SCKE bit of the USB Transceiver Control Register 0 = "1")
 This bit is cleared to "0" by writing "0" to the VBUSINT bit.
- (2) State when the internal clock is not supplied (SCKE bit of the USB Transceiver Control Register 0 = "0") This bit is cleared to "0" by writing "0" to the VBUSINT bit. Write "1" to this bit once again to enable next VBUS interrupt.

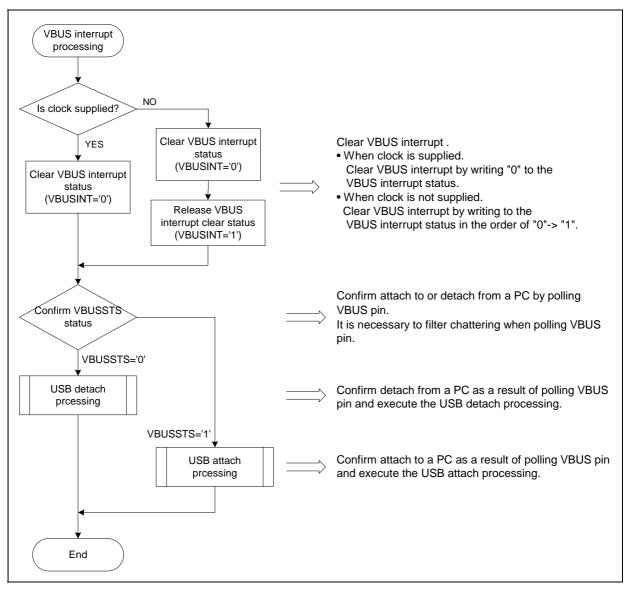


Figure 3.4 M66591 VBUS Interrupt Process Flowchart

RENESAS

3.3 Interrupt

3.3.1 Features

There are 7 factors of interrupts in M66591. The 7 factors of interrupts is shown in Table 3.2.

The interrupt factors can set to enable/disable by the INT Pin Configuration Register 0, 2, 3. A diagrams related to the interrupt is shown in Figure 3.10.

The sense mode and polarity of the interrupt output can set to enable by the INT Pin Configuration Register 1. Figure 3.11 shows the interrupt pin output timing.

Status Bit	Interrupt Name	Interrupt Factor	Related Status Bit
VBUSINT	VBUS Interrupt	Change of the VBUS input level	VBUSSTS
	(Detection of attach/detach)	(change of "Low"->"High", "High"->"Low")	
RESM	Resume Interrupt	Change of the USB bus state in suspended state	-
-		(J state -> K state, J state -> "SE0")	
DVST	Device State Transition	Device State Transition	DVST [2:0]
-	Interrupt	Detection of the USB bus reset	
		Detection of suspended state	
		Execution of the SET_ADDRESS	
		Execution of the SET_CONFIGURATION	
CTRT	Control Transfer Stage	Control Transfer Stage Transition	CTSQ [2:0]
	Transition Interrupt	Completion of setup stage	
		Transition of control write transfer status stage	
		Transition of control read transfer status stage	
		Completion of control transfer	
		Occurrence of control transfer sequence error	
BEMP	PIPE Buffer Empty / Size	In each PIPE;	PIPEB_EMP_OVR6,
	Error Interrupt	When all data in the FIFO buffer have been transmitted	PIPEB_EMP_OVR5,
		completely and the buffer has become empty for the IN	PIPEB_EMP_OVR4,
		token.	PIPEB_EMP_OVR3,
		When a packet exceeding the max packet size has been	PIPEB_EMP_OVR2,
		received for the OUT token.	PIPEB_EMP_OVR1,
			DCP_EMP_OVR
INTN	PIPE Buffer Not Ready	In each PIPE;	PIPEB_NRDY6,
	Interrupt	When no transmittable data exist in the FIFO buffer for	PIPEB_NRDY5,
		the IN token.	PIPEB_NRDY4,
		When the FIFO buffer does not have any data storage	PIPEB_NRDY3,
		space and disables receiving for the OUT token.	PIPEB_NRDY2,
			PIPEB_NRDY1,
			DCP_NRDY
INTR	PIPE Buffer Ready Interrupt	When each PIPE buffer is ready state (read/write enable	PIPEB_RDY6,
		state)	PIPEB_RDY5,
			PIPEB_RDY4,
			PIPEB_RDY3,
			PIPEB_RDY2,
			PIPEB_RDY1,
			DCP_RDY

Table 3.2	List of	Interrupts
	LISCU	menupis

3.3.5 Control Transfer Stage Transition Interrupt

The control transfer stage transition of M66591 is shown in Figure 3.13. Control transfer stage transition interrupt occurs when a stage transition occurs by the control transfer. Interrupt occurs when stage transition is detected except for the SET_ADDRESS request because it is responded automatically. Each stage transition can be individually enabled/disabled by enabling bit of INT Pin Configuration Register 0. However, setup stage completion can not be disabled. The control transfer stage is shown in DVSQ [2:0] bits of Interrupt Status Register 0.

The control transfer sequence errors are shown below. When an error occurs, the PID [1:0] bits of Default Control PIPE Control Register are set to "1X" (STALL).

- <In the case of control read transfer>
- Receives the OUT or PING token for the IN token of the data stage when data transfer has not occurred even once.
- Receives the IN token in the status stage
- Receives the DATA packet with PID = DATA0 in the status stage
- <In the case of control write transfer>
- Receives the IN token for the OUT token of the data stage when ACK response has not executed even once.
- Receives the first DATA packet with DATA PID = DATA0 in the data stage
- Receives the OUT or PING token in the status stage
- <When control write no data transfer>
- Receives the OUT or PING token in the status stage

Further, when the number of the receive data of the data stage in none no data control write transfer has exceeded the wLength value of the request, the control transfer sequence error cannot be detected.

When the CTRT interrupt occurs ("SEER = 1" setting) by sequence error, the "CTSQ [2:0] = 110" bits is held until "CTRT = 0" is wrote. Therefore, the CTRT interrupt of setup stage completion will not occur even if a new USB request is received in the "CTSQ [2:0] = 110" held state.

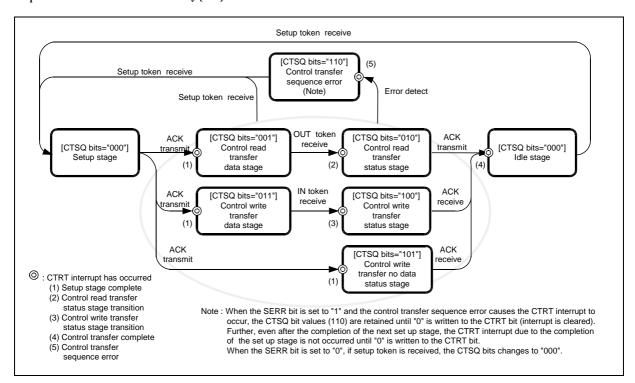


Figure 3.13 Control Transfer Stage Transition Diagram

3.3.6 PIPE Buffer Ready Interrupt

The condition of M66591 INTR interrupt occurring is shown in Table 3.3. The timing of M66591 INTR interrupt occurring is shown in Figure 3.14. The status of each PIPE is confirmed by the appropriate bit of Interrupt Status Register 1. When the DMA transfer is used, an interruption factor sets up by the BFRE bit of PIPE configuration window register 0 and the buffer memory access direction. So that the interrupt may not occur every transaction but every transfer. However, there is no BFRE bit in DCP.

The interrupt request is stored in Interrupt Status Register 1 even if INTRE bit of INT Pin Configuration Register 0 and PIPEB_RE6-1 bits, DCP_RE bit of INT Pin Configuration Register 2 is disabled.

INTR bit of Interrupt Status Register 0 is cleared by clearing all bits of Interrupt Status Register 1.

Buffer access	Direction	PIPE	BFRE	Occur condition of INTR interrupt	Remark
Read	OUT	DCP	-	Zero-length packet received	Necessary for buffer clear
				Short packet received, buffer full	
		1-4	0	Zero-length packet received	Necessary for buffer clear
				Short packet received, buffer full or completion	
				of transaction counter	
			1	Zero-length packet received	Necessary for buffer clear
				Read completed after short packet received or	Necessary for buffer clear
				completion of transaction counter	
Write	IN	DCP	-	Not occurred	
		1-4	0	Packet transmit (buffer full)	Writable
			1	Not occurred	
		5-6	-	Packet transmit (buffer full)	Writable

Table 3.3 INTR interrupt occurring condition

Although INTR bit is set to "1" when a zero-length packet is received, it is necessary to clear buffer even if the zero-length packet cannot be read-out.

Zero-length P	Packet
USB bus –	Token Packet Zero-length Packet ACK Handshake
INTR interrupt	
BFRE = 0: short p	packet received
USB bus –	Token Packet Short Data Packet / ACK Handshake Data Packet (Full)
INTR interrupt	
BFRE = 1: short p	backet received
USB bus –	Token Packet Short Data Packet / ACK Handshake Data Packet (Transaction Count) Buffer read
INTR interrupt	
Packet Transmit	
USB bus –	Token Packet Data Packet ACK Handshake Buffer write
INTR interrupt	

Figure 3.14 INTR interrupt occurring timing

3.4 Control Transfer and Enumeration

The control transfer consists of the setup stage, data stage, and status stage. M66591 executes the stage control and notifies the CPU of the stage transition by the interrupt.

The control transfer executes the data transfer by using the default control PIPE (EP0).

DCP buffer memory is a fixed 256 bytes single buffer shared with control read and write. The read and write to the DCP buffer is executed via C_FIFO Port Register. C_FIFO Port Register can be accessed only by CPU access.

3.4.1 Setup Stage

According to USB Specification, M66591 respond ACK to setup packet.

USB Request Register 0, USB Request Register 1, USB Request Register 2 and USB Request Register 3 are exclusive registers for storing USB request. The VALID bit of Interrupt Status Register 0 is set to "1", and PID [1:0] bits of DCP Control Register are set "00 (NAK)" when these request registers are renewed (New USB request is received.).

In order to confirm if new USB request is received, it is necessary to clear VALID bit of Interrupt Status Register 0 to "0" before respond to control transfer. The register bits shown below are protected when VALID = 1. So it is possible to respond to the newest request any time.

- 1. PID [1:0] bits of DCP Control Register
 - These bits can not to be set to "01 (ACK)" to complete data stage when VALID = 1.
- 2. CCPL bit of DCP Control Register

This bit can not to be set to "1" to complete status stage correctly (Respond zero-length packet and ACK) when VALID = 1.

M66591 judges if the control transfer is control read transfer or control write transfer or control write no data transfer according to the direction bit (bit 8 of bmRequestType) and request data length (wLength) automatically.

3.4.2 Data Stage

Using DCP buffer memory to send data according to USB request received.

Before access DCP buffer memory, it is necessary to specify the access direction by ISEL bit of C_FIFO Port Control Register 0. It is possible to transfer plural packets using INTR interrupt and BEMP interrupt.

NYET is responded according to the condition of buffer memory in control write transfer. Refer to "3.5.6 PING/NYET Control" about NYET response.

3.4.3 Status Stage

Complete control transfer only by accessing CCPL bit of DCP Control Register not using buffer memory. M66591 does sending zero-length packet then receiving ACK or receiving zero-length packet then sending ACK.

3.4.4 Automatic Response Control

M66591 respond to correct SET_ADDRESS request automatically. It is necessary to respond to all request except for SET_ADDRESS by software. It is necessary to respond to SET_ADDRESS by software if any error shown below occurs.

- 1. In the case of control transfer except control read transfer, bmRequestTypq is not equal 0x00.
- 2. In the case of control transfer with an error, wIndex is not equal 0x00.
- 3. In the case of control transfer except control write no data transfer, wLength is not 0x00.
- 4. In the case of control transfer with an request error, wValue is large than 0x7F.
- 5. In the case of control transfer with an device state error, DVSQ is equal "011 (Configured State)".

3.6 Buffer Memory

3.6.1 Buffer Memory Assignment and Buffer Area

The buffer memory of DCP and PIPE1-PIPE6 is assigned to a fixed buffer memory area and size. It is not necessary to assign by S/W.

The FIFO buffer memory area mapping is shown in Table 3.5.

Buffer memory	Buffer size	Remark			
Buffer for DCP	256 bytes	Single buffer, Continuous transfer			
Buffer for PIPE1	1K bytes	Double buffer, Continuous transfer for Full-Speed mode			
Buffer for PIPE2	1K bytes	Double buffer, Continuous transfer for Full-Speed mode			
Buffer for PIPE3	512 bytes	Single buffer, Continuous transfer for Full-Speed mode			
Buffer for PIPE4	512 bytes	Single buffer, Continuous transfer for Full-Speed mode			
Buffer for PIPE5	64 bytes	Single buffer, Non-continuous transfer only			
Buffer for PIPE6	64 bytes	Single buffer, Non-continuous transfer only			

Table 3.5 Buffer Memory Mapping	

3.6.2 FIFO Buffer Access

The FIFO buffer assigned to the DCP and PIPE1 to PIPE6 of M66591 can be accessed via the two FIFO port registers. M66591 contains two FIFO port registers including C_FIFO port (for the CPU access) and D0_FIFO port (for the DMA access).

The FIFO port functional setting of M66591 is shown in Table 3.6.

In the case of access of writing data, the buffer will be ready (VALID state) automatically for transmitting when the data is written till the buffer full (or till the number of max packet size when the PIPE setting is non-continuous transmission). It is necessary to report the end of writing to let buffer be ready for transmitting fraction data by setting BVAL bit of "C_FIFO Port Control Register 1" and "D0_FIFO Port Control Register 2". It is possible to report the end of writing by DEND signal when DMA transfer is used.

In the case of access of reading data, the buffer will be ready (empty state) automatically for receiving new data packets when the all data in the buffer is read out. The received data length can be confirmed by the DTLN [9:0] bits of "C_FIFO Port Control Register 1" and "D0_FIFO Port Control Register 2". Although the buffer will be available to read (ready state) when a zero-length packet is received (DTLN = 0), no data can be read out. At this time, it is necessary to clear the buffer by the BCLR bit of the same register.

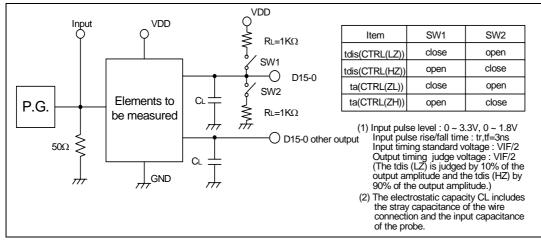
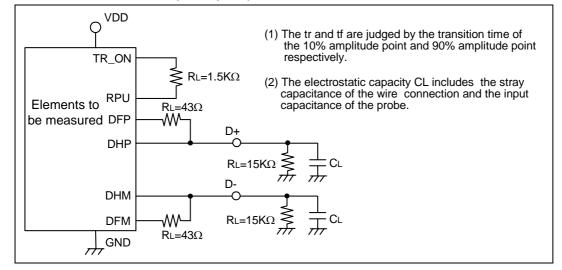
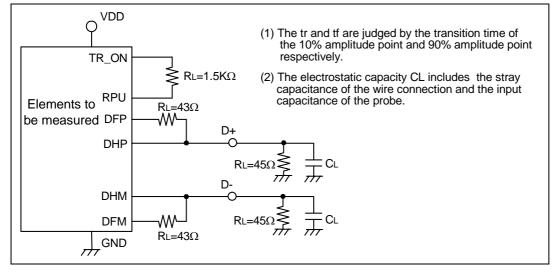

Register Name	Bit Name	Contents of Setting and Function
C_FIFO Port Control Register 0	RCNT	Read Count Mode
	REW	Buffer Rewind (Re-reading, Re-writing)
	MBW	FIFO Access Maximum Bit Width
	ISEL	DCP Buffer Select
	Current_PIPE [2:0]	C_FIFO Port Access PIPE Designate
C_FIFO Port Control Register 1	BVAL	Buffer Valid Flag
	BCLR	Buffer Clear
	FRDY	C_FIFO Port Ready
	CPU_DTLN	Receive Data Length
C_FIFO Port Control Register 2	TGL	CPU/SIE Buffer Toggle
	SCLR	SIE Buffer Clear
	SBUSY	SIE Buffer Busy
D0_FIFO Port Control Register 0	RCNT	Read Count Mode
	REW	Buffer Rewind (Re-reading, Re-writing)
	ABCR	Automatic Buffer Clear Mode, Only used for D0_FIFO port
	MBW	FIFO Access Maximum Bit Width
	TREnb	Transaction Counter Enable
	TRclr	Transaction Counter Clear
	Current_PIPE [2:0]	D0_FIFO Port Access PIPE Designate
D0_FIFO Port Control Register 2	BVAL	Buffer Valid Flag
	BCLR	Buffer Clear
	FRDY	D0_FIFO Port Ready
	DMA_DTLN	Receive Data Length
D0_FIFO Port Control Register 3	TRNCNT [15:0]	Transaction Counter

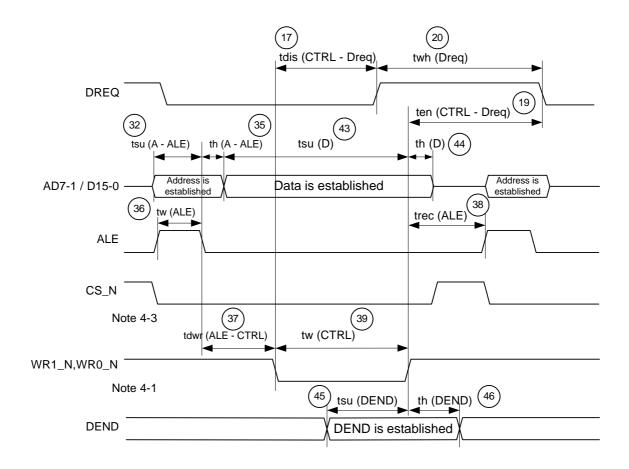
Table 3.6 The table of FIFO port functional setting



4.5 Measurement circuit


4.5.1 Pins except for USB buffer block

4.5.2 USB buffer block (Full-Speed)


4.5.3 USB buffer block (Hi-Speed)

4.7 Switching Characteristics (VIF = 3.0~3.6V or 1.7~2.0V)

Parameter Address access time Data valid time after address Data access time after control Data access time after control Data output enable time after control Data output disable time after control Data access time after control when set to plit bus (DMA Interface) Obus=0 Data valid time after control when set to plit bus (DMA Interface) Obus=0 DEND output access time after control DEND output valid time after control DEND output valid time after control	others CL=50pF CL=10pF CL=50pF CL=10pF CL=30pF CL=30pF CL=30pF	Min. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Тур.	Max. 40 30 30 30 30	Unit ns ns ns ns ns ns ns ns	No. 1 3 4 5 6 9 10
Data valid time after address Data access time after control Data valid time after control Data output enable time after control Data output disable time after control Data access time after control when set to plit bus (DMA Interface) Obus=0 Data valid time after control when set to plit bus (DMA Interface) Obus=0 DEND output access time after control DEND output access time after control	CL=10pF CL=50pF CL=10pF CL=50pF CL=30pF CL=10pF CL=30pF CL=30pF	2 2		30	ns ns ns ns ns ns	
Data access time after control Data valid time after control Data output enable time after control Data output disable time after control Data access time after control when set to plit bus (DMA Interface) Obus=0 Data valid time after control when set to plit bus (DMA Interface) Obus=0 DEND output access time after control DEND output valid time after control	CL=50pF CL=10pF CL=50pF CL=30pF CL=10pF CL=30pF	2 2		30	ns ns ns ns ns	
Data valid time after control Data output enable time after control Data output disable time after control Data access time after control when set to plit bus (DMA Interface) Obus=0 Data valid time after control when set to plit bus (DMA Interface) Obus=0 DEND output access time after control DEND output valid time after control	CL=10pF CL=50pF CL=30pF CL=10pF CL=30pF	2		30	ns ns ns ns	(4) (5) (6) (9)
Data output enable time after control Data output disable time after control Data access time after control when set to plit bus (DMA Interface) Obus=0 Data valid time after control when set to plit bus (DMA Interface) Obus=0 DEND output access time after control DEND output valid time after control	CL=50pF CL=30pF CL=10pF CL=30pF	2			ns ns ns	569
Data output disable time after control Data access time after control when set to plit bus (DMA Interface) Obus=0 Data valid time after control when set to plit bus (DMA Interface) Obus=0 DEND output access time after control DEND output valid time after control	CL=30pF CL=10pF CL=30pF				ns ns	69
Data access time after control when set to plit bus (DMA Interface) Obus=0 Data valid time after control when set to plit bus (DMA Interface) Obus=0 DEND output access time after control DEND output valid time after control	CL=30pF CL=10pF CL=30pF	2			ns	9
plit bus (DMA Interface) Obus=0 Data valid time after control when set to plit bus (DMA Interface) Obus=0 DEND output access time after control DEND output valid time after control	CL=10pF CL=30pF	2		30		0
plit bus (DMA Interface) Obus=0 DEND output access time after control DEND output valid time after control	CL=30pF	2			ns	(10)
END output valid time after control						
-		1		30	ns	(11)
END output access time after central	CL=10pF	2			ns	(12)
hen set to split bus (DMA Interface)	CL=30pF			30	ns	13
END output valid time after control when et to split bus (DMA Interface) Obus=1	CL=10pF	2			ns	(14)
DEND output enable time after control /hen set to split bus (DMA Interface) Dbus=1		2			ns	(15)
DEND output disable time after control /hen set to split bus (DMA Interface) Dbus=1	CL=30pF			30	ns	16
REQ output disable time after control				70	ns	(17)
DREQ output disable time after control /hen completed transfer End signal by the DEND signal				70	ns	18
REQ output enable time after control		30			ns	(19)
REQ output high pulse width		20		50	ns	20
NT output negate delay time				250	ns	21
NT output high pulse width		650			ns	22
Data access time after starting assert the				0	ns	23
REQ signal when set to split bus						
0bus=0						
END output access time after starting sert the DREQ signal when set to split				0	ns	24
http://www.weither.com/weithe	ND output access time after control een set to split bus (DMA Interface) DUS=1 ND output valid time after control when to split bus (DMA Interface) Obus=1 ND output enable time after control een set to split bus (DMA Interface) DUS=1 ND output disable time after control een set to split bus (DMA Interface) DUS=1 REQ output disable time after control REQ output disable time after control en completed transfer End signal by DEND signal REQ output enable time after control REQ output high pulse width T output negate delay time T output high pulse width ta access time after starting assert the REQ signal when set to split bus DUS=0 ND output access time after starting	ND output access time after control leen set to split bus (DMA Interface) CL=30pF ND output valid time after control when to split bus (DMA Interface) Obus=1 CL=10pF ND output enable time after control leen set to split bus (DMA Interface) ous=1 CL=30pF ND output disable time after control leen set to split bus (DMA Interface) ous=1 CL=30pF REQ output disable time after control leen set to split bus (DMA Interface) ous=1 CL=30pF REQ output disable time after control leen completed transfer End signal by <u>a DEND signal</u> CL=30pF REQ output disable time after control leen completed transfer End signal by <u>a DEND signal</u> CL=30pF REQ output high pulse width Toutput negate delay time CL=30pF Toutput high pulse width Toutput high pulse width Toutput high pulse width REQ signal when set to split bus pus=0 Set to split bus Set to split bus	ND output access time after control ben set to split bus (DMA Interface) CL=30pF ND output valid time after control when t to split bus (DMA Interface) Obus=1 CL=10pF 2 ND output enable time after control ten set to split bus (DMA Interface) ous=1 CL=30pF 2 ND output disable time after control ten set to split bus (DMA Interface) ous=1 CL=30pF 2 ND output disable time after control ten set to split bus (DMA Interface) ous=1 CL=30pF 2 REQ output disable time after control ten completed transfer End signal by a DEND signal CL=30pF 2 REQ output high pulse width 30 20 30 T output high pulse width ta access time after starting assert the REQ signal when set to split bus ous=0 650 30 ND output access time after starting sert the DREQ signal when set to split 650 30	ND output access time after control ten set to split bus (DMA Interface) ous=1 CL=30pF ND output valid time after control when to split bus (DMA Interface) Obus=1 CL=10pF 2 ND output enable time after control ten set to split bus (DMA Interface) ous=1 CL=30pF 2 ND output disable time after control ten set to split bus (DMA Interface) ous=1 CL=30pF 2 REQ output disable time after control en set to split bus (DMA Interface) ous=1 CL=30pF 2 REQ output disable time after control en completed transfer End signal by a DEND signal 30 30 REQ output high pulse width 20 30 30 REQ output high pulse width tha access time after starting assert the REQ signal when set to split bus ous=0 650 650 ND output access time after starting sert the DREQ signal when set to split 650 650	ND output access time after control pus=1 CL=30pF 30 ND output valid time after control when to split bus (DMA Interface) Obus=1 CL=10pF 2 ND output enable time after control pus=1 CL=10pF 2 ND output disable time after control pus=1 CL=30pF 2 ND output disable time after control pus=1 CL=30pF 2 ND output disable time after control pus=1 CL=30pF 30 REQ output disable time after control pus=1 CL=30pF 30 REQ output disable time after control pus=1 CL=30pF 30 REQ output disable time after control pus=1 70 70 REQ output disable time after control pus=1 70 70 REQ output disable time after control pus opplated transfer End signal by opplated transfer End signal by opplated transfer starting assert the REQ output high pulse width 30 20 50 T output high pulse width ta access time after starting assert the REQ signal when set to split bus pus=0 0 650 0 SND output access time after starting sert the DREQ signal when set to split 0 0	ND output access time after control ren set to split bus (DMA Interface) sus=1CL=30pF30nsSND output valid time after control when to split bus (DMA Interface) Obus=1CL=10pF2nsSND output enable time after control ren set to split bus (DMA Interface) ous=1CL=30pF2nsSND output disable time after control ren set to split bus (DMA Interface) ous=1CL=30pF30nsSND output disable time after control ren set to split bus (DMA Interface) ous=1CL=30pF30nsSND output disable time after control ren completed transfer End signal by a DEND signalCL=30pF30nsREQ output disable time after control ren completed transfer End signal by a DEND signal70nsREQ output high pulse width rta access time after starting assert the REQ signal when set to split bus ous=030nsND output access time after starting sert the DREQ signal when set to split0ns

4.9.12 DMA transfer write timing (when set to multiplex bus and cycle steal transfer)

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors.
 Renesas Technology Corp. assumes no responsibility for any damage, ilability, or other loss rising from these inaccuracies or errors.
 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for unter loss resu

- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and
- a mode products of country other than the approved destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

© 2004. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon .1.0

http://www.renesas.com