E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	202752
Number of I/O	440
Number of Gates	1000000
Voltage - Supply	2.3V ~ 2.7V
Mounting Type	Through Hole
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	624-BCCGA
Supplier Device Package	624-CCGA (32.5x32.5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/apa1000-cgs624m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Array Coordinates

During many place-and-route operations in Actel's Designer software tool, it is possible to set constraints that require array coordinates.

Table 1-2 is provided as a reference. The array coordinates are measured from the lower left (0,0). They can be used in region constraints for specific groups of core cells, I/Os, and RAM blocks. Wild cards are also allowed.

I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed because there is not a one-to-one correspondence between I/O cells and core cells. In addition, the I/O coordinate system changes depending on the die/package combination.

Core cell coordinates start at the lower left corner (represented as (1,1)) or at (1,5) if memory blocks are present at the bottom. Memory coordinates use the same system and are indicated in Table 1-2. The memory coordinates for an APA1000 are illustrated in Figure 1-8. For more information on how to use constraints, see the *Designer User's Guide* or online help for ProASIC^{PLUS} software tools.

Table 1-2 •	Array Coordinates
-------------	-------------------

	Logic Tile				Me	emory Rows		
	M	lin.	М	ax.	Bottom	Тор		All
Device	х	У	x	У	У	у у		Max.
APA075	1	1	96	32	-	(33,33) or (33, 35)	0,0	97, 37
APA150	1	1	128	48	-	– (49,49) or (49, 51)		129, 53
APA300	1	5	128	68	(1,1) or (1,3)	(69,69) or (69, 71)	0,0	129, 73
APA450	1	5	192	68	(1,1) or (1,3)	(69,69) or (69, 71)	0,0	193, 73
APA600	1	5	224	100	(1,1) or (1,3)	(101,101) or (101, 103)	0,0	225, 105
APA750	1	5	256	132	(1,1) or (1,3)	(133,133) or (133, 135)	0,0	257, 137
APA1000	1	5	352	164	(1,1) or (1,3)	(165,165) or (165, 167)	0,0	353, 169

Figure 1-8 • Core Cell Coordinates for the APA1000

Timing Control and Characteristics

ProASIC^{PLUS} Clock Management System

ProASIC^{PLUS} devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC^{PLUS} family contains two phase-locked loop (PLL) blocks which perform the following functions:

- Clock Phase Adjustment via Programmable Delay (250 ps steps from –7 ns to +8 ns)
- Clock Skew Minimization
- Clock Frequency Synthesis

Each PLL has the following key features:

- Input Frequency Range (f_{IN}) = 1.5 to 180 MHz
- Feedback Frequency Range (f_{VCO}) = 24 to 180 MHz
- Output Frequency Range (f_{OUT}) = 8 to 180 MHz
- Output Phase Shift = 0 ° and 180 °
- Output Duty Cycle = 50%
- Low Output Jitter (max at 25°C)
 - f_{VCO} <10 MHz. Jitter ±1% or better
 - 10 MHz < f_{VCO} < 60 MHz. Jitter ±2% or better
 - f_{VCO} > 60 MHz. Jitter ±1% or better

Note: Jitter(ps) = Jitter(%)* period

For Example:

Jitter in picoseconds at 100 MHz = 0.01 * (1/100E6) = 100 ps

• Maximum Acquisition = 80 µs for f_{VCO} > 40 MHz Time

= 30 μ s for f_{VCO} < 40 MHz

 Low Power Consumption – 6.9 mW (max – analog supply) + 7.0µW/MHz (max – digital supply)

Physical Implementation

Each side of the chip contains a clock conditioning circuit based on a 180 MHz PLL block (Figure 1-14 on page 1-14). Two global multiplexed lines extend along each side of the chip to provide bidirectional access to the PLL on that side (neither MUX can be connected to the opposite side's PLL). Each global line has optional LVPECL input pads (described below). The global lines may be driven by either the LVPECL global input pad or the outputs from the PLL block, or both. Each global line can be driven by a different output from the PLL. Unused global pins can be configured as regular I/Os or left unconnected. They default to an input with pull-up. The two signals available to drive the global networks are as follows (Figure 1-15 on page 1-15, Table 1-7 on page 1-15, and Table 1-8 on page 1-16):

Global A (secondary clock)

- Output from Global MUX A
- Conditioned version of PLL output (f_{OUT}) delayed or advanced
- Divided version of either of the above
- Further delayed version of either of the above (0.25 ns, 0.50 ns, or 4.00 ns delay)¹

Global B

- Output from Global MUX B
- Delayed or advanced version of f_{OUT}
- Divided version of either of the above
- Further delayed version of either of the above (0.25 ns, 0.50 ns, or 4.00 ns delay)²

Functional Description

Each PLL block contains four programmable dividers as shown in Figure 1-14 on page 1-14. These allow frequency scaling of the input clock signal as follows:

- The n divider divides the input clock by integer factors from 1 to 32.
- The m divider in the feedback path allows multiplication of the input clock by integer factors ranging from 1 to 64.
- The two dividers together can implement any combination of multiplication and division resulting in a clock frequency between 24 and 180 MHz exiting the PLL core. This clock has a fixed 50% duty cycle.
- The output frequency of the PLL core is given by the formula EQ 1-1 (f_{REF} is the reference clock frequency):

 $f_{OUT} = f_{REF} * m/n$

EQ 1-1

• The third and fourth dividers (u and v) permit the signals applied to the global network to each be further divided by integer factors ranging from 1 to 4.

The implementations shown in EQ2 and EQ3 enable the user to define a wide range of frequency multiplier and divisors.

$$f_{GLB} = m/(n*u)$$

$$EQ 1-2$$

$$f_{GLA} = m/(n*v)$$

$$EQ 1-3$$

1. This mode is available through the delay feature of the Global MUX driver.

Note: When a signal from an I/O tile is connected to the core, it cannot be connected to the Global MUX at the same time. Figure 1-15 • Input Connectors to ProASIC^{PLUS} Clock Conditioning Circuitry

Table 1-7 • Clock-Conditioning Circuitry MUX Settings

MUX	Datapath	Comments
FBSEL		
1	Internal Feedback	
2	Internal Feedback and Advance Clock Using FBDLY	-0.25 to -4 ns in 0.25 ns increments
3	External Feedback (EXTFB)	
XDLYSEL	·	·
0	Feedback Unchanged	
1	Deskew feedback by advancing clock by system delay	Fixed delay of -2.95 ns
OBMUX	GLB	
0	Primary bypass, no divider	
1	Primary bypass, use divider	
2	Delay Clock Using FBDLY	+0.25 to +4 ns in 0.25 ns increments
4	Phase Shift Clock by 0°	
5	Reserved	
6	Phase Shift Clock by +180°	
7	Reserved	
OAMUX	GLA	
0	Secondary bypass, no divider	
1	Secondary bypass, use divider	
2	Delay Clock Using FBDLY	+0.25 to +4 ns in 0.25 ns increments
3	Phase Shift Clock by 0°	

Figure 1-16 • Using the PLL 33 MHz In, 133 MHz Out

Figure 1-17 • Using the PLL 40 MHz In, 50 MHz Out

Figure 1-18 • Using the PLL to Delay the Input Clock

ProASIC^{PLUS} Flash Family FPGAs

Table 1-12 • I	ProASIC ^{PLUS}	Memory	Configurations	by Device
----------------	-------------------------	--------	----------------	-----------

			Maximu	m Width	Maximu	m Depth
Device	Bottom	Тор	D	w	D	w
APA750	32	32	256	288	4,096	9
APA1000	44	44	256	396	5,632	9

Table 1-13 • Basic Memory Configurations

Туре	Write Access	Read Access	Parity	Library Cell Name
RAM	Asynchronous	Asynchronous	Checked	RAM256x9AA
RAM	Asynchronous	Asynchronous	Generated	RAM256x9AAP
RAM	Asynchronous	Synchronous Transparent	Checked	RAM256x9AST
RAM	Asynchronous	Synchronous Transparent	Generated	RAM256x9ASTP
RAM	Asynchronous	Synchronous Pipelined	Checked	RAM256x9ASR
RAM	Asynchronous	Synchronous Pipelined	Generated	RAM256x9ASRP
RAM	Synchronous	Asynchronous	Checked	RAM256x9SA
RAM	Synchronous	Asynchronous	Generated	RAM256xSAP
RAM	Synchronous	Synchronous Transparent	Checked	RAM256x9SST
RAM	Synchronous	Synchronous Transparent	Generated	RAM256x9SSTP
RAM	Synchronous	Synchronous Pipelined	Checked	RAM256x9SSR
RAM	Synchronous	Synchronous Pipelined	Generated	RAM256x9SSRP
FIFO	Asynchronous	Asynchronous	Checked	FIFO256x9AA
FIFO	Asynchronous	Asynchronous	Generated	FIFO256x9AAP
FIFO	Asynchronous	Synchronous Transparent	Checked	FIFO256x9AST
FIFO	Asynchronous	Synchronous Transparent	Generated	FIFO256x9ASTP
FIFO	Asynchronous	Synchronous Pipelined	Checked	FIFO256x9ASR
FIFO	Asynchronous	Synchronous Pipelined	Generated	FIFO256x9ASRP
FIFO	Synchronous	Asynchronous	Checked	FIFO256x9SA
FIFO	Synchronous	Asynchronous	Generated	FIFO256x9SAP
FIFO	Synchronous	Synchronous Transparent	Checked	FIFO256x9SST
FIFO	Synchronous	Synchronous Transparent	Generated	FIFO256x9SSTP
FIFO	Synchronous	Synchronous Pipelined	Checked	FIFO256x9SSR
FIFO	Synchronous	Synchronous Pipelined	Generated	FIFO256x9SSRP

				Comme	rcial/In	dustrial ¹	
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
V _{OH}	Output High Voltage 3.3 V I/O, High Drive (OB33P)	I _{OH} = –14 mA I _{OH} = –24 mA		0.9*V _{DDP} 2.4			V
	3.3 V I/O, Low Drive (OB33L)	I _{OH} = –6 mA I _{OH} = –12 mA		0.9*V _{DDP} 2.4			
V _{OL}	Output Low Voltage 3.3 V VO, High Drive (OB33P) 3.3 V VO, Low Drive (OB33L)	I _{OL} = 15 mA I _{OL} = 20 mA I _{OL} = 28 mA				0.1V _{DDP} 0.4 0.7	V
		I _{OL} = 7 mA I _{OL} = 10 mA I _{OL} = 15 mA				0.1V _{DDP} 0.4 0.7	
V _{IH} ⁵	Input High Voltage 3.3 V Schmitt Trigger Inputs 3.3 V LVTTL/LVCMOS 2.5 V Mode			1.6 2 1.7		V _{DDP} + 0.3 V _{DDP} + 0.3 V _{DDP} + 0.3	V
V _{IL} ⁶	Input Low Voltage 3.3 V Schmitt Trigger Inputs 3.3 V LVTTL/LVCMOS 2.5 V Mode			-0.3 -0.3 -0.3		0.8 0.8 0.7	V
R _{WEAKPULLUP}	Weak Pull-up Resistance (IOB33U)	$V_{IN} \ge 1.5 V$		7		43	kΩ
R _{WEAKPULLUP}	Weak Pull-up Resistance (IOB25U)	$V_{IN} \ge 1.5 V$		7		43	kΩ
I _{IN}	Input Current	with pull up ($V_{IN} = GND$)		-300		-40	μA
		without pull up (V_{IN} = GND or V_{DD})		-10		10	μΑ
I _{DDQ}	Quiescent Supply Current	$V_{IN} = GND^3 \text{ or } V_{DD}$	Std.		5.0	15	mA
	(standby) Commercial		-F ²		5.0	25	mA
I _{DDQ}	Quiescent Supply Current (standby) Industrial	$V_{IN} = GND^3 \text{ or } V_{DD}$	Std.		5.0	20	mA
I _{DDQ}	Quiescent Supply Current (standby) Military	$V_{IN} = GND^3 \text{ or } V_{DD}$	Std		5.0	25	mA

Table 1-23DC Electrical Specifications (VVDP3.3 VV0.3 Vand VVDP2.5 V10.2 VVApplies to Commercial and Industrial Temperature Only

Notes:

1. All process conditions. Commercial/Industrial: Junction Temperature: -40 to +110°C.

2. All –F parts are only available as commercial.

3. No pull-up resistor required.

4. This will not exceed 2 mA total per device.

5. During transitions, the input signal may overshoot to V_{DDP} +1.0 V for a limited time of no larger than 10% of the duty cycle.

6. During transitions, the input signal may undershoot to -1.0 V for a limited time of no larger than 10% of the duty cycle.

ProASIC^{PLUS} Flash Family FPGAs

Table 1-23DC Electrical Specifications (VP3.3 V±0.3 Vand VP2.5 V±0.2 V) (Continued)Applies to Commercial and Industrial Temperature Only

			Comme	rcial/In	dustrial ¹		
Symbol	Parameter	Conditions	ľ	Min.	Тур.	Max.	Units
I _{OZ}	Tristate Output Leakage	$V_{OH} = GND \text{ or } V_{DD}$	Std.	-10		10	μA
	Current		-F ^{2, 4}	-10		100	μΑ
I _{OSH}	Output Short Circuit Current High 3.3 V High Drive (OB33P) 3.3 V Low Drive (OB33L)	$V_{IN} = GND$ $V_{IN} = GND$		-200 -100			
I _{OSL}	Output Short Circuit Current Low 3.3 V High Drive 3.3 V Low Drive	$V_{IN} = V_{DD}$ $V_{IN} = V_{DD}$				200 100	
CI/O	I/O Pad Capacitance					10	pF
C _{CLK}	Clock Input Pad Capacitance					10	pF

Notes:

1. All process conditions. Commercial/Industrial: Junction Temperature: -40 to +110°C.

2. All –F parts are only available as commercial.

3. No pull-up resistor required.

4. This will not exceed 2 mA total per device.

5. During transitions, the input signal may overshoot to V_{DDP} +1.0 V for a limited time of no larger than 10% of the duty cycle.

6. During transitions, the input signal may undershoot to -1.0 V for a limited time of no larger than 10% of the duty cycle.

ProASIC^{PLUS} Flash Family FPGAs

Table 1-24DC Electrical Specifications (VVDE3.3 V \pm 0.3 Vand VVDE2.5 V \pm 0.2 V) (Continued)Applies to Military Temperature and MIL-STD-883B Temperature Only

				Military	/MIL-S	rd-883B ¹	
Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
I _{DDQ}	Quiescent Supply Current (standby) Industrial	$V_{IN} = GND^2 \text{ or } V_{DD}$	Std.		5.0	20	mA
I _{DDQ}	Quiescent Supply Current (standby) Military	$V_{IN} = GND^2 \text{ or } V_{DD}$	Std.		5.0	25	mA
I _{OZ}	Tristate Output Leakage	$V_{OH} = GND \text{ or } V_{DD}$	Std.	-10		10	μΑ
	Current		-F ³	-10		100	μA
I _{OSH}	Output Short Circuit Current High 3.3 V High Drive (OB33P) 3.3 V Low Drive (OB33L)	$V_{IN} = GND$ $V_{IN} = GND$		-200 -100			
I _{OSL}	Output Short Circuit Current Low 3.3 V High Drive 3.3 V Low Drive	$V_{IN} = V_{DD}$ $V_{IN} = V_{DD}$				200 100	
CI/O	I/O Pad Capacitance					10	pF
C _{CLK}	Clock Input Pad Capacitance					10	pF

Notes:

1. All process conditions. Military Temperature / MIL-STD-883 Class B: Junction Temperature: -55 to +125°C.

2. No pull-up resistor required.

3. This will not exceed 2 mA total per device.

4. During transitions, the input signal may overshoot to V_{DDP}+1.0 V for a limited time of no larger than 10% of the duty cycle.

5. During transitions, the input signal may undershoot to -1.0 V for a limited time of no larger than 10% of the duty cycle.

Output Buffer Delays

Figure 1-27 • Output Buffer Delays

Table 1-31 • Worst-Case Commercial Conditions

 V_{DDP} = 3.0 V, V_{DD} = 2.3 V, 35 pF load, T_J = 70°C

	Max t _{DLH} 1		Max t _{DHL} ²			
Macro Type	Description	Std.	-F	Std.	-F	Units
OB33PH	3.3 V, PCI Output Current, High Slew Rate	2.0	2.4	2.2	2.6	ns
OB33PN	3.3 V, High Output Current, Nominal Slew Rate	2.2	2.6	2.9	3.5	ns
OB33PL	3.3 V, High Output Current, Low Slew Rate	2.5	3.0	3.2	3.9	ns
OB33LH	3.3 V, Low Output Current, High Slew Rate	2.6	3.1	4.0	4.8	ns
OB33LN	3.3 V, Low Output Current, Nominal Slew Rate	2.9	3.5	4.3	5.2	ns
OB33LL	3.3 V, Low Output Current, Low Slew Rate	3.0	3.6	5.6	6.7	ns

Notes:

1. $t_{DLH} = Data-to-Pad High$

2. t_{DHL} = Data-to-Pad Low

3. All –F parts are only available as commercial.

Table 1-32 Worst-Case Commercial Conditions

		Max t _{DLH} 1		Max t _{DHL} ²		
Macro Type	Description	Std.	-F	Std.	-F	Units
OB25LPHH	2.5 V, Low Power, High Output Current, High Slew Rate ³	2.0	2.4	2.1	2.6	ns
OB25LPHN	2.5 V, Low Power, High Output Current, Nominal Slew Rate ³	2.4	2.9	3.0	3.6	ns
OB25LPHL	2.5 V, Low Power, High Output Current, Low Slew Rate ³	2.9	3.5	3.2	3.8	ns
OB25LPLH	2.5 V, Low Power, Low Output Current, High Slew Rate ³	2.7	3.3	4.6	5.5	ns
OB25LPLN	2.5 V, Low Power, Low Output Current, Nominal Slew Rate ³	3.5	4.2	4.2	5.1	ns
OB25LPLL	2.5 V, Low Power, Low Output Current, Low Slew Rate ³	4.0	4.8	5.3	6.4	ns

Notes:

- 1. $t_{DLH} = Data-to-Pad High$
- 2. t_{DHL} = Data-to-Pad Low
- 3. Low-power I/Os work with V_{DDP} =2.5 V ±10% only. V_{DDP} =2.3 V for delays.
- 4. All –F parts are only available as commercial.

Input Buffer Delays

Figure 1-28 • Input Buffer Delays

Table 1-35 Worst-Case Commercial Conditions

V_{DDP} = 3.0 V, V_{DD} = 2.3 V, T_J = 70°C

		Max. t _{INYH} 1 M		Max.	Max. t _{INYL} ²	
Macro Type	Description	Std.	-F	Std.	-F	Units
IB33	3.3 V, CMOS Input Levels ³ , No Pull-up Resistor	0.4	0.5	0.6	0.7	ns
IB33S	3.3 V, CMOS Input Levels ³ , No Pull-up Resistor, Schmitt Trigger		0.7	0.8	0.9	ns

Notes:

- 1. $t_{INYH} = Input Pad-to-Y High$
- 2. $t_{INYL} = Input Pad-to-Y Low$
- 3. LVTTL delays are the same as CMOS delays.
- 4. For LP Macros, V_{DDP}=2.3 V for delays.
- 5. All –F parts are only available as commercial.

Table 1-36 • Worst-Case Commercial Conditions

V_{DDP} = 2.3 V, V_{DD} = 2.3 V, T_J = 70°C

		Max. t _{INYH} 1		Max. t _{INYL} 2		
Macro Type	Description	Std.	-F	Std.	-F	Units
IB25LP	2.5 V, CMOS Input Levels ³ , Low Power	0.9	1.1	0.6	0.8	ns
IB25LPS	2.5 V, CMOS Input Levels ³ , Low Power, Schmitt Trigger	0.7	0.9	0.9	1.1	ns

Notes:

- 1. $t_{INYH} = Input Pad-to-Y High$
- 2. $t_{INYL} = Input Pad-to-Y Low$
- 3. LVTTL delays are the same as CMOS delays.
- 4. For LP Macros, V_{DDP} =2.3 V for delays.
- 5. All –F parts are only available as commercial.

Predicted Global Routing Delay

Table 1-43 • Worst-Case Commercial Conditions¹

 $V_{DDP} = 3.0 V, V_{DD} = 2.3 V, T_{J} = 70^{\circ}C$

		Ma		
Parameter	Description	Std.	- F ²	Units
t _{RCKH}	Input Low to High ³	1.1	1.3	ns
t _{RCKL}	Input High to Low ³	1.0	1.2	ns
t _{RCKH}	Input Low to High ⁴	0.8	1.0	ns
t _{RCKL}	Input High to Low ⁴	0.8	1.0	ns

Notes:

1. The timing delay difference between tile locations is less than 15ps.

2. All –F parts are only available as commercial.

3. Highly loaded row 50%.

4. Minimally loaded row.

Table 1-44 Worst-Case Military Conditions

V_{DDP} = 3.0V, V_{DD} = 2.3V, T_J = 125°C for Military/MIL-STD-883

Parameter	Description	Max.	Units
t _{RCKH}	Input Low to High (high loaded row of 50%)	1.1	ns
t _{RCKL}	Input High to Low (high loaded row of 50%)	1.0	ns
t _{RCKH}	Input Low to High (minimally loaded row)	0.8	ns
t _{RCKL}	Input High to Low (minimally loaded row)	0.8	ns

Note: * The timing delay difference between tile locations is less than 15 ps.

Global Routing Skew

Table 1-45 Worst-Case Commercial Conditions

 $V_{DDP} = 3.0 V, V_{DD} = 2.3 V, T_{J} = 70^{\circ}C$

		Max.		
Parameter	Description	Std.	-F*	Units
t _{RCKSWH}	Maximum Skew Low to High	270	320	ps
t _{RCKSHH}	Maximum Skew High to Low	270	320	ps

Note: **All* –*F* parts are only available as commercial.

Table 1-46 • Worst-Case Commercial Conditions

 V_{DDP} = 3.0V, V_{DD} = 2.3V, T_{J} = 125°C for Military/MIL-STD-883

Parameter	Description	Max.	Units
t _{RCKSWH}	Maximum Skew Low to High	270	ps
t _{RCKSHH}	Maximum Skew High to Low	270	ps

Embedded Memory Specifications

This section discusses ProASIC^{PLUS} SRAM/FIFO embedded memory and its interface signals, including timing diagrams that show the relationships of signals as they pertain to single embedded memory blocks (Table 1-51). Table 1-13 on page 1-24 shows basic SRAM and FIFO configurations. Simultaneous read and write to the same location must be done with care. On such accesses the DI bus is output to the DO bus. Refer to the *ProASIC*^{PLUS} *RAM and FIFO Blocks* application note for more information.

Enclosed Timing Diagrams—SRAM Mode:

- "Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)" section on page 1-58
- "Synchronous SRAM Read, Pipeline Mode Outputs (Synchronous Pipelined)" section on page 1-59
- "Asynchronous SRAM Write" section on page 1-60
- "Asynchronous SRAM Read, Address Controlled, RDB=0" section on page 1-61

- "Asynchronous SRAM Read, RDB Controlled" section on page 1-62
- "Synchronous SRAM Write"
- Embedded Memory Specifications

The difference between synchronous transparent and pipeline modes is the timing of all the output signals from the memory. In transparent mode, the outputs will change within the same clock cycle to reflect the data requested by the currently valid access to the memory. If clock cycles are short (high clock speed), the data requires most of the clock cycle to change to valid values (stable signals). Processing of this data in the same clock cycle is nearly impossible. Most designers add registers at all outputs of the memory to push the data processing into the next clock cycle. An entire clock cycle can then be used to process the data. To simplify use of this memorv setup, suitable registers have been implemented as part of the memory primitive and are available to the user in the synchronous pipeline mode. In this mode, the output signals will change shortly after the second rising edge, following the initiation of the read access.

SRAM Signal	Bits	In/Out	Description	
WCLKS	1	In	Write clock used on synchronization on write side	
RCLKS	1	In	Read clock used on synchronization on read side	
RADDR<0:7>	8	In	Read address	
RBLKB	1	In	True read block select (active Low)	
RDB	1	In	True read pulse (active Low)	
WADDR<0:7>	8	In	Write address	
WBLKB	1	In	Write block select (active Low)	
DI<0:8>	9	In	Input data bits <0:8>, <8> can be used for parity In	
WRB	1	In	Negative true write pulse	
DO<0:8>	9	Out	Output data bits <0:8>, <8> can be used for parity Out	
RPE	1	Out	Read parity error (active High)	
WPE	1	Out	Write parity error (active High)	
PARODD	1	In	Selects Odd parity generation/detect when high, Even when low	

Table 1-51 • Memory Block SRAM Interface Signals

Note: Not all signals shown are used in all modes.

Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)

Note: The plot shows the normal operation status.

Figure 1-31 • Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)

Table 1-52 •	$T_J = 0^{\circ}C$ to 110°C; $V_{DD} = 2.3 V$ to 2.7 V for Commercial/industrial
	$T_J = -55^{\circ}C$ to 150°C, $V_{DD} = 2.3$ V to 2.7 V for Military/MIL-STD-883

Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
СМН	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
OCA	New DO access from RCLKS \uparrow	7.5		ns	
OCH	Old DO valid from RCLKS ↑		3.0	ns	
RACH	RADDR hold from RCLKS \uparrow	0.5		ns	
RACS	RADDR setup to RCLKS ↑	1.0		ns	
RDCH	RDB hold from RCLKS ↑	0.5		ns	
RDCS	RDB setup to RCLKS ↑	1.0		ns	
RPCA	New RPE access from RCLKS \uparrow	9.5		ns	
RPCH	Old RPE valid from RCLKS \uparrow		3.0	ns	

Note: All –F speed grade devices are 20% slower than the standard numbers.

Synchronous SRAM Write

Note: The plot shows the normal operation status.

Figure 1-36 • Synchronous SRAM Write

Table 1-57• $T_J = 0^{\circ}C$ to 110°C; $V_{DD} = 2.3$ V to 2.7 V for Commercial/industrial $T_J = -55^{\circ}C$ to 150°C, $V_{DD} = 2.3$ V to 2.7 V for Military/MIL-STD-883

Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
СМН	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
DCH	DI hold from WCLKS ↑	0.5		ns	
DCS	DI setup to WCLKS ↑	1.0		ns	
WACH	WADDR hold from WCLKS \uparrow	0.5		ns	
WDCS	WADDR setup to WCLKS \uparrow	1.0		ns	
WPCA	New WPE access from WCLKS \uparrow	3.0		ns	WPE is invalid while
WPCH	Old WPE valid from WCLKS \uparrow		0.5	ns	PARGEN is active
WRCH, WBCH	WRB & WBLKB hold from WCLKS \uparrow	0.5		ns	
WRCS, WBCS	WRB & WBLKB setup to WCLKS \uparrow	1.0		ns	

Notes:

1. On simultaneous read and write accesses to the same location, DI is output to DO.

2. All –F speed grade devices are 20% slower than the standard numbers.

Synchronous Write and Read to the Same Location

Note: The plot shows the normal operation status.

Figure 1-37 • Synchronous Write and Read to the Same Location

Table 1-58 • $T_J = 0^{\circ}C$ to 110°C; $V_{DD} = 2.3$ V to 2.7 V for Commercial/industrial $T_J = -55^{\circ}C$ to 150°C, $V_{DD} = 2.3$ V to 2.7 V for Military/MIL-STD-883

Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
ССҮС	Cycle time	7.5		ns	
СМН	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
WCLKRCLKS	WCLKS \uparrow to RCLKS \uparrow setup time	- 0.1		ns	
WCLKRCLKH	WCLKS \uparrow to RCLKS \uparrow hold time		7.0	ns	
ОСН	Old DO valid from RCLKS ↑		3.0	ns	OCA/OCH displayed for
OCA	New DO valid from RCLKS \uparrow	7.5		ns	Access Timed Output

Notes:

1. This behavior is valid for Access Timed Output and Pipelined Mode Output. The table shows the timings of an Access Timed Output.

2. During synchronous write and synchronous read access to the same location, the new write data will be read out if the active write clock edge occurs before or at the same time as the active read clock edge. The negative setup time insures this behavior for WCLKS and RCLKS driven by the same design signal.

- 3. If WCLKS changes after the hold time, the data will be read.
- 4. A setup or hold time violation will result in unknown output data.
- 5. All –F speed grade devices are 20% slower than the standard numbers.

Asynchronous FIFO Write

Note: The plot shows the normal operation status.

Figure 1-44 • Asynchronous FIFO Write

Table 1-64 • $T_J = 0^{\circ}$ C to 110°C; $V_{DD} = 2.3$ V to 2.7 V for Commercial/industrial $T_J = -55^{\circ}$ C to 150°C, $V_{DD} = 2.3$ V to 2.7 V for Military/MIL-STD-883

Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
DWRH	DI hold from WB ↑	1.5		ns	
DWRS	DI setup to WB ↑	0.5		ns	PARGEN is inactive
DWRS	DI setup to WB ↑	2.5		ns	PARGEN is active
EWRH, FWRH, THWRH	Old EMPTY, FULL, EQTH, & GETH valid hold time after WB \uparrow		0.5	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete
EWRA	EMPTY \downarrow access from WB \uparrow	3.0 ¹		ns	
FWRA	New FULL access from WB \uparrow	3.0 ¹		ns	
THWRA	EQTH or GETH access from WB ↑	4.5		ns	
WPDA	WPE access from DI	3.0		ns	WPE is invalid while PARGEN is active
WPDH	WPE hold from DI		1.0	ns	
WRCYC	Cycle time	7.5		ns	
WRRDS	RB \uparrow , clearing FULL, setup to	3.0 ²		ns	Enabling the write operation
	WB↓		1.0		Inhibiting the write operation
WRH	WB high phase	3.0		ns	Inactive
WRL	WB low phase	3.0		ns	Active

Notes:

1. At fast cycles, EWRA, FWRA = MAX (7.5 ns – WRL), 3.0 ns.

2. At fast cycles, WRRDS (for enabling write) = MAX (7.5 ns - RDL), 3.0 ns.

3. All –F speed grade devices are 20% slower than the standard numbers.

4. After FIFO reset, WRB needs an initial falling edge prior to any write actions.

FIFO Reset

Notes:

1. During reset, either the enables (WRB and RBD) OR the clocks (WCLKS and RCKLS) must be low.

2. The plot shows the normal operation status.

Figure 1-48 • FIFO Reset

Table 1-68T_J = 0°C to 110°C; V_{DD} = 2.3 V to 2.7 V for Commercial/industrialT_J = -55°C to 150°C, V_{DD} = 2.3 V to 2.7 V for Military/MIL-STD-883

Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
CBRSH ¹	WCLKS or RCLKS \uparrow hold from RESETB \uparrow	1.5		ns	Synchronous mode only
CBRSS ¹	WCLKS or RCLKS \downarrow setup to RESETB \uparrow	1.5		ns	Synchronous mode only
ERSA	New EMPTY \uparrow access from RESETB \downarrow	3.0		ns	
FRSA	FULL \downarrow access from RESETB \downarrow	3.0		ns	
RSL	RESETB low phase	7.5		ns	
THRSA	EQTH or GETH access from RESETB \downarrow	4.5		ns	
WBRSH ¹	WB \downarrow hold from RESETB \uparrow	1.5		ns	Asynchronous mode only
WBRSS ¹	WB \uparrow setup to RESETB \uparrow	1.5		ns	Asynchronous mode only

Notes:

1. During rest, the enables (WRB and RBD) must be high OR the clocks (WCLKS and RCKLS) must be low.

2. All –F speed grade devices are 20% slower than the standard numbers.

Pin Description

User Pins

I/O User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with standard LVTTL and LVCMOS specifications. Unused I/O pins are configured as inputs with pull-up resistors.

NC No Connect

To maintain compatibility with other Actel ProASIC^{PLUS} products, it is recommended that this pin not be connected to the circuitry on the board.

GL Global Pin

Low skew input pin for clock or other global signals. This pin can be configured with an internal pull-up resistor. When it is not connected to the global network or the clock conditioning circuit, it can be configured and used as a normal I/O.

GLMX Global Multiplexing Pin

Low skew input pin for clock or other global signals. This pin can be used in one of two special ways (refer to Actel's Using ProASIC^{PLUS} Clock Conditioning Circuits).

When the external feedback option is selected for the PLL block, this pin is routed as the external feedback source to the clock conditioning circuit.

In applications where two different signals access the same global net at different times through the use of GLMXx and GLMXLx macros, this pin will be fixed as one of the source pins.

This pin can be configured with an internal pull-up resistor. When it is not connected to the global network or the clock conditioning circuit, it can be configured and used as any normal I/O. If not used, the GLMXx pin will be configured as an input with pull-up.

Dedicated Pins

GND Ground

Common ground supply voltage.

V_{DD} Logic Array Power Supply Pin

2.5 V supply voltage.

V_{DDP} I/O Pad Power Supply Pin

2.5 V or 3.3 V supply voltage.

TMS Test Mode Select

The TMS pin controls the use of boundary-scan circuitry. This pin has an internal pull-up resistor.

TCK Test Clock

Clock input pin for boundary scan (maximum 10 MHz). Actel recommends adding a nominal 20 $k\Omega$ pull-up resistor to this pin.

TDI Test Data In

Serial input for boundary scan. A dedicated pull-up resistor is included to pull this pin high when not being driven.

TDO Test Data Out

Serial output for boundary scan. Actel recommends adding a nominal $20k\Omega$ pull-up resistor to this pin.

TRST Test Reset Input

Asynchronous, active-low input pin for resetting boundary-scan circuitry. This pin has an internal pull-up resistor. For more information, please refer to *Power-up Behavior of ProASIC*^{PLUS} Devices application note.

Special Function Pins

RCK Running Clock

A free running clock is needed during programming if the programmer cannot guarantee that TCK will be uninterrupted. If not used, this pin has an internal pullup and can be left floating.

NPECL User Negative Input

Provides high speed clock or data signals to the PLL block. If unused, leave the pin unconnected.

PPECL User Positive Input

Provides high speed clock or data signals to the PLL block. If unused, leave the pin unconnected.

AVDD PLL Power Supply

Analog V_{DD} should be V_{DD} (core voltage) 2.5 V (nominal) and be decoupled from GND with suitable decoupling capacitors to reduce noise. For more information, refer to Actel's Using ProASIC^{PLUS} Clock Conditioning Circuits application note. If the clock conditioning circuitry is not used in a design, AVDD can either be left floating or tied to 2.5 V.

AGND PLL Power Ground

The analog ground can be connected to the system ground. For more information, refer to Actel's Using ProASIC^{PLUS} Clock Conditioning Circuits application note. If the PLLs or clock conditioning circuitry are not used in a design, AGND should be tied to GND.