E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	
Number of Logic Elements/Cells	
Total RAM Bits	202752
Number of I/O	158
Number of Gates	1000000
Voltage - Supply	2.3V ~ 2.7V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	208-BFCQFP with Tie Bar
Supplier Device Package	208-CQFP (75x75)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/apa1000-cq208m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

Package	APA075	APA150	APA300	APA450	APA600	APA750	APA1000
TQ100	C, I	C, I					
TQ144	C, I						
PQ208	C, I	C, I	C, I, M	C, I	C, I, M	C, I	C, I, M
BG456		C, I	C, I, M	C, I	C, I, M	C, I	C, I, M
FG144	C, I	C, I	C, I, M	C, I			
FG256		C, I	C, I, M	C, I	C, I, M		
FG484				C, I	C, I, M		
FG676					C, I, M	C, I	
FG896						C, I	C, I, M
FG1152							C, I
CQ208			M, B		M, B		M, B
CQ352			M, B		M, B		M, B
CG624					M, B		M, B

Note: C = Commercial

I = Industrial

M = Military

B = MIL-STD-883

Speed Grade and Temperature Matrix

	-F	Std.
С	\checkmark	\checkmark
1		\checkmark
М, В		\checkmark

Note: C = Commercial

l = Industrial

M = Military

B = MIL-STD-883

ProASIC^{PLUS} Architecture

The proprietary ProASIC^{PLUS} architecture provides granularity comparable to gate arrays.

The ProASIC^{PLUS} device core consists of a Sea-of-Tiles (Figure 1-1). Each tile can be configured as a three-input logic function (e.g., NAND gate, D-Flip-Flop, etc.) by programming the appropriate Flash switch interconnections (Figure 1-2 and Figure 1-3 on page 1-3). Tiles and larger functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Flash switches are programmed to connect signal lines to

the appropriate logic cell inputs and outputs. Dedicated high-performance lines are connected as needed for fast, low-skew global signal distribution throughout the core. Maximum core utilization is possible for virtually any design.

ProASIC^{PLUS} devices also contain embedded, two-port SRAM blocks with built-in FIFO/RAM control logic. Programming options include synchronous or asynchronous operation, two-port RAM configurations, user defined depth and width, and parity generation or checking. Please see the "Embedded Memory Configurations" section on page 1-23 for more information.

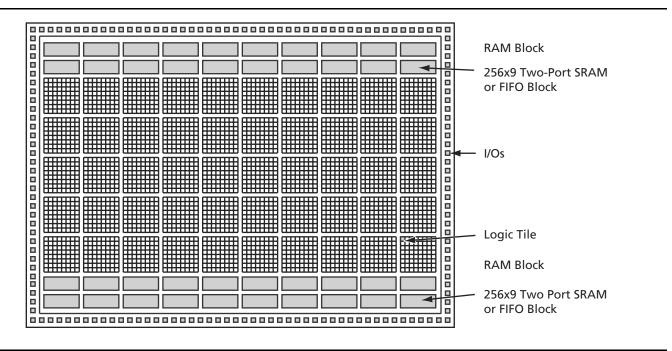


Figure 1-1 • The ProASIC^{PLUS} Device Architecture

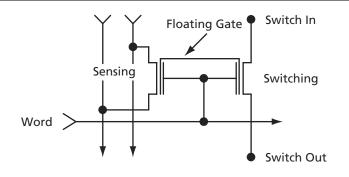


Figure 1-2 • Flash Switch

ProASIC^{PLUS} Flash Family FPGAs

 Table 1-8
 Clock-Conditioning Circuitry Delay-Line

 Settings

Delay Line	Delay Value (ns)
DLYB	·
0	0
1	+0.25
2	+0.50
3	+4.0
DLYA	
0	0
1	+0.25
2	+0.50
3	+4.0

Lock Signal

An active-high Lock signal (added via the SmartGen PLL development tool) indicates that the PLL has locked to the incoming clock signal. The PLL will acquire and maintain lock even when there is jitter on the incoming clock signal. The PLL will maintain lock with an input jitter up to 5% of the input period, with a maximum of 5 ns. Users can employ the Lock signal as a soft reset of the logic driven by GLB and/or GLA. Note if F_{IN} is not within specified frequencies, then both the F_{OUT} and lock signal are indeterminate.

PLL Configuration Options

The PLL can be configured during design (via Flashconfiguration bits set in the programming bitstream) or dynamically during device operation, thus eliminating the need to reprogram the device. The dynamic configuration bits are loaded into a serial-in/parallel-out shift register provided in the clock conditioning circuit. The shift register can be accessed either from user logic within the device or via the JTAG port. Another option is internal dynamic configuration via user-designed hardware. Refer to Actel's *ProASIC*^{PLUS} *PLL Dynamic Reconfiguration Using JTAG* application note for more information.

For information on the clock conditioning circuit, refer to Actel's Using ProASIC^{PLUS} Clock Conditioning Circuits application note.

Sample Implementations

Frequency Synthesis

Figure 1-16 on page 1-17 illustrates an example where the PLL is used to multiply a 33 MHz external clock up to 133 MHz. Figure 1-17 on page 1-17 uses two dividers to synthesize a 50 MHz output clock from a 40 MHz input reference clock. The input frequency of 40 MHz is multiplied by five and divided by four, giving an output clock (GLB) frequency of 50 MHz. When dividers are used, a given ratio can be generated in multiple ways, allowing the user to stay within the operating frequency ranges of the PLL. For example, in this case the input divider could have been two and the output divider also two, giving us a division of the input frequency by four to go with the feedback loop division (effective multiplication) by five.

Adjustable Clock Delay

Figure 1-18 on page 1-18 illustrates the delay of the input clock by employing one of the adjustable delay lines. This is easily done in ProASIC^{PLUS} by bypassing the PLL core entirely and using the output delay line. Notice also that the output clock can be effectively advanced relative to the input clock by using the delay line in the feedback path. This is shown in Figure 1-19 on page 1-18.

Clock Skew Minimization

Figure 1-20 on page 1-19 indicates how feedback from the clock network can be used to create minimal skew between the distributed clock network and the input clock. The input clock is fed to the reference clock input of the PLL. The output clock (GLA) feeds a clock network. The feedback input to the PLL uses a clock input delayed by a routing network. The PLL then adjusts the phase of the input clock to match the delayed clock, thus providing nearly zero effective skew between the two clocks. Refer to Actel's Using ProASIC^{PLUS} Clock Conditioning Circuits application note for more information.

PLL Electrical Specifications

Parameter	Value $T_J \leq -40^{\circ}C$	Value	Value T _J > –40°C		Notes
Frequency Ranges		1			
Reference Frequency f _{IN} (min.)	2.0 MHz		1.5 MHz		Clock conditioning circuitry (min.) lowest input frequency
Reference Frequency f _{IN} (max.)	180 MHz		180 MHz		Clock conditioning circuitry (max.) highest input frequency
OSC Frequency f _{VCO} (min.)	60		24 MHz		Lowest output frequency voltage controlled oscillator
OSC Frequency f _{VCO} (max.)	180		180 MHz		Highest output frequency voltage controlled oscillator
Clock Conditioning Circuitry f _{OUT} (min.)	$\begin{array}{l} f_{\text{IN}} \leq 40 = 18 \text{ MHz} \\ f_{\text{IN}} > 40 = 16 \text{ MHz} \end{array}$		6 MHz		Lowest output frequency clock conditioning circuitry
Clock Conditioning Circuitry f _{OUT} (max.)	180		180 MHz		Highest output frequency clock conditioning circuitry
Acquisition Time from Cold Start					•
Acquisition Time (max.)	80 µs		30 µs		$f_{VCO} \le 40 \text{ MHz}$
Acquisition Time (max.)	80 µs		80 µs		$f_{VCO} > 40 \text{ MHz}$
Long Term Jitter Peak-to-Peak Ma	x.*				•
Temperature		Freq	uency I	ИНz	
		f _{VCO} < 10	10 <f<sub>V co<60</f<sub>		
25°C (or higher)		±1%	±2%	±1%	Jitter(ps) = Jitter(%)*period
					For example:
					Jitter in picoseconds at 100 MHz
					= 0.01 * (1/100E6) = 100 ps
0°C		±1.5%	±2.5%	±1%	
–40°C		±2.5%	±3.5%	±1%	
–55°C		±2.5%	±3.5%	±1%	
Power Consumption	•				•
Analog Supply Power (max.*)		6.9	mW per	PLL	
Digital Supply Current (max.)		7 μW/MHz		Z	
Duty Cycle		50	% ±0.5%	6	
Input Jitter Tolerance		5% inp	ut period 5 ns)	(max.	Maximum jitter allowable on an input clock to acquire and maintain lock.

Note: *High clock frequencies (>60 MHz) under typical setup conditions

ProASIC^{PLUS} Flash Family FPGAs

PLL I/O Constraints

PLL locking is guaranteed only when the following constraints are followed:

Table 1-10 • 1	PLL I/O	Constraints
----------------	---------	-------------

		T _J ≤ −40°C	Value T _J > –40°C	
І/О Туре	low slew rate I/O. PLL	PLL locking is guaranteed only when using low drive strength and low slew rate I/O. PLL locking may be inconsistent when using high drive strength or high slew rate I/Os		
SSO	APA300	Hermetic packages \leq 8 SSO	With FIN \leq 180 MHz and	
		Plastic packages \leq 16 SSO	outputs switching simultaneously	
	APA600	Hermetic packages ≤ 16 SSO	, ,	
		Plastic packages \leq 32 SSO		
	APA1000	Hermetic packages ≤ 16 SSO		
		Plastic packages \leq 32 SSO		
	APA300	Hermetic packages ≤ 12 SSO	With FIN \leq 50 MHz and half	
		Plastic packages \leq 20 SSO	outputs switching on positive clock edge, half switching on	
	APA600	Hermetic packages ≤ 32 SSO	the negative clock edge no less	
		Plastic packages \leq 64 SSO	than 10nsec later	
	APA1000	Hermetic packages ≤ 32 SSO		
		Plastic packages \leq 64 SSO		

B [®]User Security

ProASICPLUS devices have FlashLock protection bits that, FlashLockonce programmed, block the entire programmed contents from being read externally. Please refer to Table 1-11 for details on the number of bits in the key for each device. If locked, the user can only reprogram the device employing the user-defined security key. This protects the device from being read back and duplicated. Since programmed data is stored in nonvolatile memory cells (actually very small capacitors) rather than in the wiring, physical deconstruction cannot be used to compromise data. This type of security breach is further discouraged by the placement of the memory cells beneath the four metal layers (whose removal cannot be accomplished without disturbing the charge in the capacitor). This is the highest security provided in the industry. For more information, refer to Actel's Design Security in Nonvolatile Flash and Antifuse FPGAs white paper.

Device	Key Size
APA075	79 bits
APA150	79 bits
APA300	79 bits
APA450	119 bits
APA600	167 bits
APA750	191 bits
APA1000	263 bits

Table 1-11 • Flashlock Key Size by Device

Embedded Memory Floorplan

The embedded memory is located across the top and bottom of the device in 256x9 blocks (Figure 1-1 on page 1-2). Depending on the device, up to 88 blocks are available to support a variety of memory configurations. Each block can be programmed as an independent memory array or combined (using dedicated memory routing resources) to form larger, more complex memory configurations. A single memory configuration could include blocks from both the top and bottom memory locations.

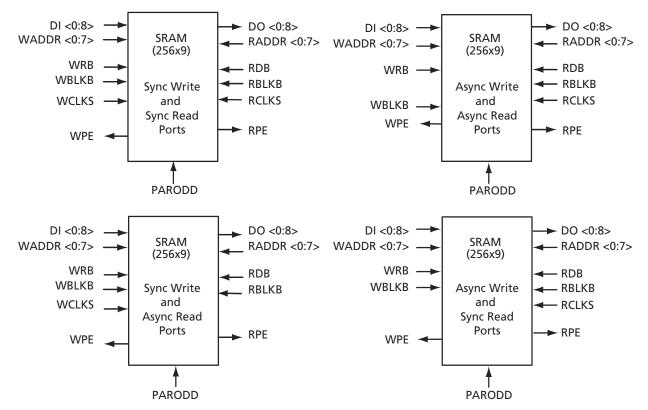
Table 1-12 • ProASIC^{PLUS} Memory Configurations by Device

Embedded Memory Configurations

The embedded memory in the ProASIC^{PLUS} family provides great configuration flexibility (Table 1-12). Each ProASIC^{PLUS} block is designed and optimized as a two-port memory (one read, one write). This provides 198 kbits of two-port and/or single port memory in the APA1000 device.

Each memory block can be configured as FIFO or SRAM, with independent selection of synchronous or asynchronous read and write ports (Table 1-13). Additional characteristics include programmable flags as well as parity checking and generation. Figure 1-21 on page 1-25 and Figure 1-22 on page 1-26 show the block diagrams of the basic SRAM and FIFO blocks. Table 1-14 on page 1-25 and Table 1-15 on page 1-26 describe memory block SRAM and FIFO interface signals, respectively. A single memory block is designed to operate at up to 150 MHz (standard speed grade typical conditions). Each block is comprised of 256 9-bit words (one read port, one write port). The memory blocks may be cascaded in width and/or depth to create the desired memory organization. (Figure 1-23 on page 1-27). This provides optimal bit widths of 9 (one block), 18, 36, and 72, and optimal depths of 256, 512, 768, and 1,024. Refer to Actel's SmartGen User's Guide for more information.

Figure 1-24 on page 1-27 gives an example of optimal memory usage. Ten blocks with 23,040 bits have been used to generate three arrays of various widths and depths. Figure 1-25 on page 1-27 shows how RAM blocks can be used in parallel to create extra read ports. In this example, using only 10 of the 88 available blocks of the APA1000 yields an effective 6,912 bits of multiple port RAM. The Actel SmartGen software facilitates building wider and deeper memory configurations for optimal memory usage.


			Maximu	m Width	Maximum Depth	
Device	Bottom	Тор	D	w	D	w
APA075	0	12	256	108	1,536	9
APA150	0	16	256	144	2,048	9
APA300	16	16	256	144	2,048	9
APA450	24	24	256	216	3,072	9
APA600	28	28	256	252	3,584	9

ProASIC^{PLUS} Flash Family FPGAs

		Maximum Wid		Maximum Width		m Depth
Device	Bottom	Тор	D	W	D	W
APA750	32	32	256	288	4,096	9
APA1000	44	44	256	396	5,632	9

Table 1-13 • Basic Memory Configurations

Туре	Write Access	Read Access	Parity	Library Cell Name
RAM	Asynchronous	Asynchronous	Checked	RAM256x9AA
RAM	Asynchronous	Asynchronous	Generated	RAM256x9AAP
RAM	Asynchronous	Synchronous Transparent	Checked	RAM256x9AST
RAM	Asynchronous	Synchronous Transparent	Generated	RAM256x9ASTP
RAM	Asynchronous	Synchronous Pipelined	Checked	RAM256x9ASR
RAM	Asynchronous	Synchronous Pipelined	Generated	RAM256x9ASRP
RAM	Synchronous	Asynchronous	Checked	RAM256x9SA
RAM	Synchronous	Asynchronous	Generated	RAM256xSAP
RAM	Synchronous	Synchronous Transparent	Checked	RAM256x9SST
RAM	Synchronous	Synchronous Transparent	Generated	RAM256x9SSTP
RAM	Synchronous	Synchronous Pipelined	Checked	RAM256x9SSR
RAM	Synchronous	Synchronous Pipelined	Generated	RAM256x9SSRP
FIFO	Asynchronous	Asynchronous	Checked	FIFO256x9AA
FIFO	Asynchronous	Asynchronous	Generated	FIFO256x9AAP
FIFO	Asynchronous	Synchronous Transparent	Checked	FIFO256x9AST
FIFO	Asynchronous	Synchronous Transparent	Generated	FIFO256x9ASTP
FIFO	Asynchronous	Synchronous Pipelined	Checked	FIFO256x9ASR
FIFO	Asynchronous	Synchronous Pipelined	Generated	FIFO256x9ASRP
FIFO	Synchronous	Asynchronous	Checked	FIFO256x9SA
FIFO	Synchronous	Asynchronous	Generated	FIFO256x9SAP
FIFO	Synchronous	Synchronous Transparent	Checked	FIFO256x9SST
FIFO	Synchronous	Synchronous Transparent	Generated	FIFO256x9SSTP
FIFO	Synchronous	Synchronous Pipelined	Checked	FIFO256x9SSR
FIFO	Synchronous	Synchronous Pipelined	Generated	FIFO256x9SSRP

Note: Each RAM block contains a multiplexer (called DMUX) for each output signal, increasing design efficiency. These DMUX cells do not consume any core logic tiles and connect directly to high-speed routing resources between the RAM blocks. They are used when RAM blocks are cascaded and are automatically inserted by the software tools.

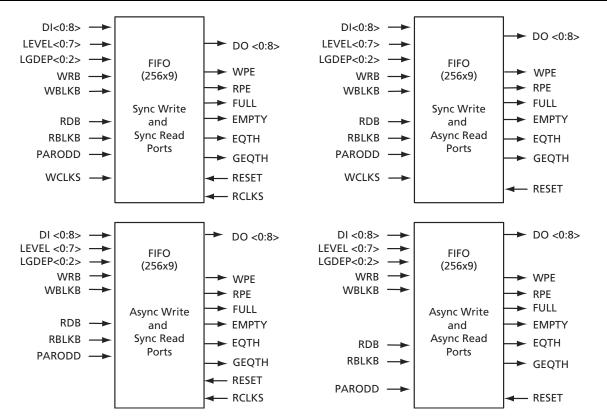

Figure 1-21 • Example SRAM Block Diagrams

Table 1-14 •	Memory	Block SRAM	Interface	Signals
--------------	--------	------------	-----------	---------

SRAM Signal	Bits	In/Out	Description
WCLKS	1	In	Write clock used on synchronization on write side
RCLKS	1	In	Read clock used on synchronization on read side
RADDR<0:7>	8	In	Read address
RBLKB	1	In	Read block select (active Low)
RDB	1	In	Read pulse (active Low)
WADDR<0:7>	8	In	Write address
WBLKB	1	In	Write block select (active Low)
DI<0:8>	9	In	Input data bits <0:8>, <8> can be used for parity In
WRB	1	In	Write pulse (active Low)
DO<0:8>	9	Out	Output data bits <0:8>, <8> can be used for parity Out
RPE	1	Out	Read parity error (active High)
WPE	1	Out	Write parity error (active High)
PARODD	1	In	Selects Odd parity generation/detect when High, Even parity when Low

Note: Not all signals shown are used in all modes.

ProASIC^{PLUS} Flash Family FPGAs

Note: Each RAM block contains a multiplexer (called DMUX) for each output signal, increasing design efficiency. These DMUX cells do not consume any core logic tiles and connect directly to high-speed routing resources between the RAM blocks. They are used when RAM blocks are cascaded and are automatically inserted by the software tools.

Figure 1-22 • Basic FIFO Block Diagrams

FIFO Signal	Bits	In/Out	Description
WCLKS	1	In	Write clock used for synchronization on write side
WCLKS 1 RCLKS 1 LEVEL <0:7> 8		In	Read clock used for synchronization on read side
LEVEL <0:7>	8	In	Direct configuration implements static flag logic
RBLKB	1	In	Read block select (active Low)
RDB	1	In	Read pulse (active Low)
RESET	1	In	Reset for FIFO pointers (active Low)
WBLKB	1	In	Write block select (active Low)
DI<0:8>	9	In	Input data bits <0:8>, <8> will be generated parity if PARGEN is true
WRB	1	In	Write pulse (active Low)
FULL, EMPTY	2	Out	FIFO flags. FULL prevents write and EMPTY prevents read
EQTH, GEQTH	2	Out	EQTH is true when the FIFO holds the number of words specified by the LEVEL signal. GEQTH is true when the FIFO holds (LEVEL) words or more
DO<0:8>	9	Out	Output data bits <0:8>. <8> will be parity output if PARGEN is true.
RPE	1	Out	Read parity error (active High)
WPE	1	Out	Write parity error (active High)
LGDEP <0:2>	3	In	Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD	1	In	Parity generation/detect – Even when Low, Odd when High

Table 1-15 •	Memory	Block FIFO	Interface	Signals
--------------	--------	-------------------	-----------	---------

Package Thermal Characteristics

The ProASIC^{PLUS} family is available in several package types with a range of pin counts. Actel has selected packages based on high pin count, reliability factors, and superior thermal characteristics.

Thermal resistance defines the ability of a package to conduct heat away from the silicon, through the package to the surrounding air. Junction-to-ambient thermal resistance is measured in degrees Celsius/Watt and is represented as Theta ja (Θ_{ja}) . The lower the thermal resistance, the more efficiently a package will dissipate heat.

A package's maximum allowed power (P) is a function of maximum junction temperature (T_J) , maximum ambient operating temperature (T_A) , and junction-to-ambient thermal resistance Θ_{ia} . Maximum junction temperature is

the maximum allowable temperature on the active surface of the IC and is 110° C. P is defined as:

$$P = \frac{T_J - T_A}{\Theta_{ja}}$$

EQ 1-4

 Θ_{ja} is a function of the rate (in linear feet per minute (lfpm)) of airflow in contact with the package. When the estimated power consumption exceeds the maximum allowed power, other means of cooling, such as increasing the airflow rate, must be used. The maximum power dissipation allowed for a Military temperature device is specified as a function of Θ_{jc} . The absolute maximum junction temperature is 150°C.

The calculation of the absolute maximum power dissipation allowed for a Military temperature application is illustrated in the following example for a 456-pin PBGA package:

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. case temp. (°C)}}{\theta_{ic}(°C/W)} = \frac{150°C - 125°C}{3.0°C/W} = 8.333W$$

EQ 1-5

 Table 1-16
 Package Thermal Characteristics

				θ_{ja}			
Plastic Packages	Pin Count	θ_{jc}	Still Air	1.0 m/s 200 ft./min.	2.5 m/s 500 ft./min.	Units	
Thin Quad Flat Pack (TQFP)	100	14.0	33.5	27.4	25.0	°C/W	
Thin Quad Flat Pack (TQFP)	144	11.0	33.5	28.0	25.7	°C/W	
Plastic Quad Flat Pack (PQFP) ¹	208	8.0	26.1	22.5	20.8	°C/W	
PQFP with Heat spreader ²	208	3.8	16.2	13.3	11.9	°C/W	
Plastic Ball Grid Array (PBGA)	456	3.0	15.6	12.5	11.6	°C/W	
Fine Pitch Ball Grid Array (FBGA)	144	3.8	26.9	22.9	21.5	°C/W	
Fine Pitch Ball Grid Array (FBGA)	256	3.8	26.6	22.8	21.5	°C/W	
Fine Pitch Ball Grid Array (FBGA) ³	484	3.2	18.0	14.7	13.6	°C/W	
Fine Pitch Ball Grid Array (FBGA) ⁴	484	3.2	20.5	17.0	15.9	°C/W	
Fine Pitch Ball Grid Array (FBGA)	676	3.2	16.4	13.0	12.0	°C/W	
Fine Pitch Ball Grid Array (FBGA)	896	2.4	13.6	10.4	9.4	°C/W	
Fine Pitch Ball Grid Array (FBGA)	1152	1.8	12.0	8.9	7.9	°C/W	
Ceramic Quad Flat Pack (CQFP)	208	2.0	22.0	19.8	18.0	°C/W	
Ceramic Quad Flat Pack (CQFP)	352	2.0	17.9	16.1	14.7	°C/W	
Ceramic Column Grid Array (CCGA/LGA)	624	6.5	8.9	8.5	8.0	°C/W	

Notes:

1. Valid for the following devices irrespective of temperature grade: APA075, APA150, and APA300

2. Valid for the following devices irrespective of temperature grade: APA450, APA600, APA750, and APA1000

3. Depopulated Array

4. Full array

Operating Conditions

Standard and -F parts are the same unless otherwise noted. All -F parts are only available as commercial.

Table 1-17 • Absolute Maximum Ratings*

Parameter	Condition	Minimum	Maximum	Units
Supply Voltage Core (V _{DD})		-0.3	3.0	V
Supply Voltage I/O Ring (V _{DDP})		-0.3	4.0	V
DC Input Voltage		-0.3	V _{DDP} + 0.3	V
PCI DC Input Voltage		-1.0	V _{DDP} + 1.0	V
PCI DC Input Clamp Current (absolute)	$V_{IN} < -1$ or $V_{IN} = V_{DDP} + 1$ V	10		mA
LVPECL Input Voltage		-0.3	V _{DDP} + 0.5	V
GND		0	0	V

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions.

Table 1-18 •	Programming, Storage, and Operating Limits
--------------	--

			Storage Te	mperature	Operating
Product Grade	Programming Cycles (min.)	Program Retention (min.)	Min.	Max.	T _J Max. Junction Temperature
Commercial	500	20 years	–55°C	110°C	110°C
Industrial	500	20 years	–55°C	110°C	110°C
Military	100	Refer to Table 1-19 on page 1-35	–65°C	150°C	150°C
MIL-STD-883	100	Refer to Table 1-19 on page 1-35	–65°C	150°C	150°C

Performance Retention

For devices operated and stored at 110°C or less, the performance retention period is 20 years after programming. For devices operated and stored at temperatures greater than 110°C, refer to Table 1-19 on page 1-35 to determine the performance retention period. Actel does not guarantee performance if the performance retention period is exceeded. Designers can determine the performance retention period from the following table.

Evaluate the percentage of time spent at the highest temperature, then determine the next highest temperature to which the device will be exposed. In Table 1-19 on page 1-35, find the temperature profile that most closely matches the application. Example – the ambient temperature of a system cycles between 100°C (25% of the time) and 50°C (75% of the time). No forced ventilation cooling system is in use. An APA600-PQ208M FPGA operates in the system, dissipating 1 W. The package thermal resistance (junction-to-ambient) in still air Θ_{ja} is 20°C/W, indicating that the junction temperature of the FPGA will be 120°C (25% of the time) and 70°C (75% of the time). The entry in Table 1-19 on page 1-35, which most closely matches the application, is 25% at 125°C with 75% at 110°C. Performance retention in this example is at least 16.0 years.

Note that exceeding the stated retention period may result in a performance degradation in the FPGA below the worst-case performance indicated in the Actel Timer. To ensure that performance does not degrade below the worst-case values in the Actel Timer, the FPGA must be reprogrammed within the performance retention period. In addition, note that performance retention is independent of whether or not the FPGA is operating. The retention period of a device in storage at a given temperature will be the same as the retention period of a device operating at that junction temperature.

					nercial/ strial ^{2,3}	Military/MI	L-STD- 883 ^{2,3}	
Symbol	Parameter	Condition		Min.	Max.	Min.	Max.	Units
V _{DD}	Supply Voltage for Core			2.3	2.7	2.3	2.7	V
V _{DDP}	Supply Voltage for I/O Ring			3.0	3.6	3.0	3.6	V
V _{IH}	Input High Voltage			$0.5V_{DDP}$	V _{DDP} + 0.5	0.5V _{DDP}	V _{DDP} + 0.5	V
V _{IL}	Input Low Voltage			-0.5	0.3V _{DDP}	-0.5	0.3V _{DDP}	V
I _{IPU}	Input Pull-up Voltage ⁴			$0.7V_{\text{DDP}}$		0.7V _{DDP}		V
I _{IL}	Input Leakage Current ⁵	$0 < V_{IN} < V_{DDP}$	Std.	-10	10	-50	50	μΑ
			-F ^{3, 6}	-10	100			μΑ
V _{OH}	Output High Voltage	I _{OUT} = -500 μA		$0.9V_{\text{DDP}}$		0.9V _{DDP}		V
V _{OL}	Output Low Voltage	I _{OUT} = 1500 μA			0.1V _{DDP}		0.1V _{DDP}	V
C _{IN}	Input Pin Capacitance (except CLK)				10		10	pF
C _{CLK}	CLK Pin Capacitance			5	12	5	12	рF

Notes:

1. For PCI operation, use GL33, OTB33PH, OB33PH, IOB33PH, IB33, or IB33S macro library cell only.

2. All process conditions. Junction Temperature: -40 to +110°C for Commercial and Industrial devices and -55 to +125°C for Military.

3. All –F parts are available as commercial only.

4. This specification is guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Designers with applications sensitive to static power utilization should ensure that the input buffer is conducting minimum current at this input voltage.

5. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.

6. The sum of the leakage currents for all inputs shall not exceed 2mA per device.

Table 1-48 Recommended Operating Conditions

		Limits			
Parameter	Symbol	Commercial/Industrial	Military/MIL-STD-883		
Maximum Clock Frequency*	f _{CLOCK}	180 MHz	180 MHz		
Maximum RAM Frequency*	f _{RAM}	150 MHz	150 MHz		
Maximum Rise/Fall Time on Inputs*					
• Schmitt Trigger Mode (10% to 90%)	t _R /t _F	N/A	100 ns		
• Non-Schmitt Trigger Mode (10% to 90%)	t _R /t _F	100 ns	10 ns		
Maximum LVPECL Frequency*		180 MHz	180 MHz		
Maximum TCK Frequency (JTAG)	f _{TCK}	10 MHz	10 MHz		

Note: *All –F parts will be 20% slower than standard commercial devices.

Table 1-49 • Slew Rates Measured at C = 30pF, Nominal Power Supplies and 25°C

Туре	Trig. Level	Rising Edge (ns)	Slew Rate (V/ns)	Falling Edge (ns)	Slew Rate (V/ns)	PCI Mode
OB33PH	10%-90%	1.60	1.65	1.65	1.60	Yes
OB33PN	10%-90%	1.57	1.68	3.32	0.80	No
OB33PL	10%-90%	1.57	1.68	1.99	1.32	No
OB33LH	10%-90%	3.80	0.70	4.84	0.55	No
OB33LN	10%-90%	4.19	0.63	3.37	0.78	No
OB33LL	10%-90%	5.49	0.48	2.98	0.89	No
OB25LPHH	10%-90%	1.55	1.29	1.56	1.28	No
OB25LPHN	10%-90%	1.70	1.18	2.08	0.96	No
OB25LPHL	10%-90%	1.97	1.02	2.09	0.96	No
OB25LPLH	10%-90%	3.57	0.56	3.93	0.51	No
OB25LPLN	10%-90%	4.65	0.43	3.28	0.61	No
OB25LPLL	10%-90%	5.52	0.36	3.44	0.58	No

Notes:

1. Standard and –F parts.

2. All –F only available as commercial.

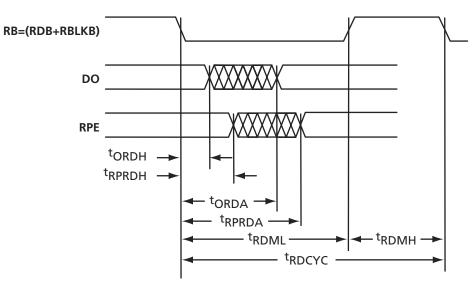
Embedded Memory Specifications

This section discusses ProASIC^{PLUS} SRAM/FIFO embedded memory and its interface signals, including timing diagrams that show the relationships of signals as they pertain to single embedded memory blocks (Table 1-51). Table 1-13 on page 1-24 shows basic SRAM and FIFO configurations. Simultaneous read and write to the same location must be done with care. On such accesses the DI bus is output to the DO bus. Refer to the *ProASIC*^{PLUS} *RAM and FIFO Blocks* application note for more information.

Enclosed Timing Diagrams—SRAM Mode:

- "Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)" section on page 1-58
- "Synchronous SRAM Read, Pipeline Mode Outputs (Synchronous Pipelined)" section on page 1-59
- "Asynchronous SRAM Write" section on page 1-60
- "Asynchronous SRAM Read, Address Controlled, RDB=0" section on page 1-61

- "Asynchronous SRAM Read, RDB Controlled" section on page 1-62
- "Synchronous SRAM Write"
- Embedded Memory Specifications


The difference between synchronous transparent and pipeline modes is the timing of all the output signals from the memory. In transparent mode, the outputs will change within the same clock cycle to reflect the data requested by the currently valid access to the memory. If clock cycles are short (high clock speed), the data requires most of the clock cycle to change to valid values (stable signals). Processing of this data in the same clock cycle is nearly impossible. Most designers add registers at all outputs of the memory to push the data processing into the next clock cycle. An entire clock cycle can then be used to process the data. To simplify use of this memorv setup, suitable registers have been implemented as part of the memory primitive and are available to the user in the synchronous pipeline mode. In this mode, the output signals will change shortly after the second rising edge, following the initiation of the read access.

SRAM Signal Bits In/Out Descript		Description				
WCLKS	1	In	Write clock used on synchronization on write side			
RCLKS	1	In	Read clock used on synchronization on read side			
RADDR<0:7>	8	In	Read address			
RBLKB	1	In	True read block select (active Low)			
RDB	1	In	True read pulse (active Low)			
WADDR<0:7>	8	In	Write address			
WBLKB	1	In	Write block select (active Low)			
DI<0:8>	9	In	Input data bits <0:8>, <8> can be used for parity In			
WRB	1	In	Negative true write pulse			
DO<0:8>	9	Out	Output data bits <0:8>, <8> can be used for parity Out			
RPE	1	Out	Read parity error (active High)			
WPE	1	Out	Write parity error (active High)			
PARODD	1	In	Selects Odd parity generation/detect when high, Even when low			

Table 1-51 • Memory Block SRAM Interface Signals

Note: Not all signals shown are used in all modes.

Asynchronous SRAM Read, RDB Controlled

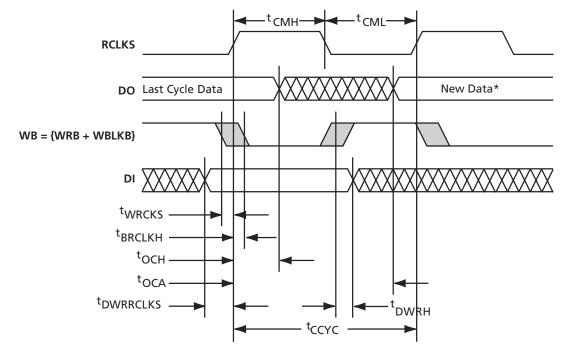

Note: The plot shows the normal operation status.

Figure 1-35 • Asynchronous SRAM Read, RDB Controlled

Table 1-56T_J = 0°C to 110°C; V_DD = 2.3 V to 2.7 V for Commercial/industrial $T_J = -55°C$ to 150°C, $V_{DD} = 2.3$ V to 2.7 V for Military/MIL-STD-883

		•			
Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
ORDA	New DO access from RB \downarrow	7.5		ns	
ORDH	Old DO valid from RB \downarrow		3.0	ns	
RDCYC	Read cycle time	7.5		ns	
RDMH	RB high phase	3.0		ns	Inactive setup to new cycle
RDML	RB low phase	3.0		ns	Active
RPRDA	New RPE access from RB \downarrow	9.5		ns	
RPRDH	Old RPE valid from RB \downarrow		3.0	ns	

Note: All –F speed grade devices are 20% slower than the standard numbers.

Asynchronous Write and Synchronous Read to the Same Location

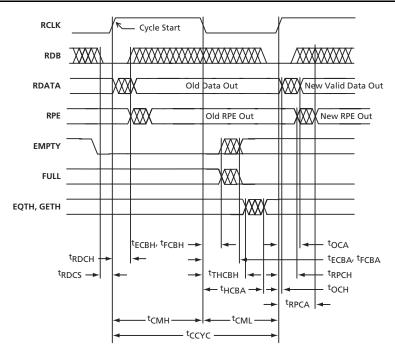
* New data is read if WB \downarrow occurs before setup time. The stored data is read if WB \downarrow occurs after hold time.

Note: The plot shows the normal operation status.

Figure 1-38 •	Asynchronous	Write and Synchronous Read to the Same Location
---------------	--------------	---

Table 1-59T_J = 0°C to 110°C; V_{DD} = 2.3 V to 2.7 V for Commercial/industrialT_J = -55°C to 150°C, V_{DD} = 2.3 V to 2.7 V for Military/MIL-STD-883

Symbol t _{xxx}	Description	Min.	Max.	Units	Notes	
ССҮС	Cycle time	7.5		ns		
СМН	Clock high phase	3.0		ns		
CML	Clock low phase	3.0		ns		
WBRCLKS	WB \downarrow to RCLKS \uparrow setup time	-0.1		ns		
WBRCLKH	WB \downarrow to RCLKS \uparrow hold time		7.0	ns		
ОСН	Old DO valid from RCLKS \uparrow		3.0	ns	OCA/OCH displayed for	
OCA	New DO valid from RCLKS \uparrow	7.5		ns	Access Timed Output	
DWRRCLKS	DI to RCLKS ↑ setup time	0		ns		
DWRH	DI to WB ↑ hold time		1.5	ns		


Notes:

- 1. This behavior is valid for Access Timed Output and Pipelined Mode Output. The table shows the timings of an Access Timed Output.
- 2. In asynchronous write and synchronous read access to the same location, the new write data will be read out if the active write signal edge occurs before or at the same time as the active read clock edge. If WB changes to low after hold time, the data will be read.

3. A setup or hold time violation will result in unknown output data.

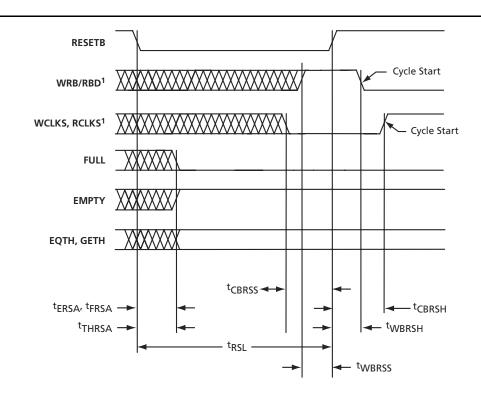
4. All –F speed grade devices are 20% slower than the standard numbers.

Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)

Note: The plot shows the normal operation status.

Figure 1-46 •	Synchronous F	IFO Read, Pipeline	Mode Outputs	(Synchronous Pipelined)
---------------	---------------	--------------------	--------------	-------------------------

Table 1-66T_J = 0°C to 110°C; V_{DD} = 2.3 V to 2.7 V for Commercial/industrialT_J = -55°C to 150°C, V_{DD} = 2.3 V to 2.7 V for Military/MIL-STD-883


Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
ECBA	New EMPTY access from RCLKS \downarrow	3.0 ¹		ns	
FCBA	FULL \downarrow access from RCLKS \downarrow	3.0 ¹		ns	
ЕСВН, FCBH, ТНСВН	Old EMPTY, FULL, EQTH, & GETH valid hold time from RCLKS \downarrow		1.0	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete
OCA	New DO access from RCLKS \uparrow	2.0		ns	
OCH	Old DO valid from RCLKS \uparrow		0.75	ns	
RDCH	RDB hold from RCLKS 个	0.5		ns	
RDCS	RDB setup to RCLKS ↑	1.0		ns	
RPCA	New RPE access from RCLKS ↑	4.0		ns	
RPCH	Old RPE valid from RCLKS 个		1.0	ns	
НСВА	EQTH or GETH access from RCLKS \downarrow	4.5		ns	

Notes:

1. At fast cycles, ECBA and FCBA = MAX (7.5 ns - CMS), 3.0 ns.

2. All –F speed grade devices are 20% slower than the standard numbers.

FIFO Reset

Notes:

1. During reset, either the enables (WRB and RBD) OR the clocks (WCLKS and RCKLS) must be low.

2. The plot shows the normal operation status.

Figure 1-48 • FIFO Reset

Table 1-68T_J = 0°C to 110°C; V_{DD} = 2.3 V to 2.7 V for Commercial/industrialT_J = -55°C to 150°C, V_{DD} = 2.3 V to 2.7 V for Military/MIL-STD-883

Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
CBRSH ¹	WCLKS or RCLKS \uparrow hold from RESETB \uparrow	1.5		ns	Synchronous mode only
CBRSS ¹	WCLKS or RCLKS \downarrow setup to RESETB \uparrow	1.5		ns	Synchronous mode only
ERSA	New EMPTY \uparrow access from RESETB \downarrow	3.0		ns	
FRSA	FULL \downarrow access from RESETB \downarrow	3.0		ns	
RSL	RESETB low phase	7.5		ns	
THRSA	EQTH or GETH access from RESETB \downarrow	4.5		ns	
WBRSH ¹	WB \downarrow hold from RESETB \uparrow	1.5		ns	Asynchronous mode only
WBRSS ¹	WB ↑ setup to RESETB ↑	1.5		ns	Asynchronous mode only

Notes:

1. During rest, the enables (WRB and RBD) must be high OR the clocks (WCLKS and RCKLS) must be low.

2. All –F speed grade devices are 20% slower than the standard numbers.

Pin Description

User Pins

I/O User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with standard LVTTL and LVCMOS specifications. Unused I/O pins are configured as inputs with pull-up resistors.

NC No Connect

To maintain compatibility with other Actel ProASIC^{PLUS} products, it is recommended that this pin not be connected to the circuitry on the board.

GL Global Pin

Low skew input pin for clock or other global signals. This pin can be configured with an internal pull-up resistor. When it is not connected to the global network or the clock conditioning circuit, it can be configured and used as a normal I/O.

GLMX Global Multiplexing Pin

Low skew input pin for clock or other global signals. This pin can be used in one of two special ways (refer to Actel's Using ProASIC^{PLUS} Clock Conditioning Circuits).

When the external feedback option is selected for the PLL block, this pin is routed as the external feedback source to the clock conditioning circuit.

In applications where two different signals access the same global net at different times through the use of GLMXx and GLMXLx macros, this pin will be fixed as one of the source pins.

This pin can be configured with an internal pull-up resistor. When it is not connected to the global network or the clock conditioning circuit, it can be configured and used as any normal I/O. If not used, the GLMXx pin will be configured as an input with pull-up.

Dedicated Pins

GND Ground

Common ground supply voltage.

V_{DD} Logic Array Power Supply Pin

2.5 V supply voltage.

V_{DDP} I/O Pad Power Supply Pin

2.5 V or 3.3 V supply voltage.

TMS Test Mode Select

The TMS pin controls the use of boundary-scan circuitry. This pin has an internal pull-up resistor.

TCK Test Clock

Clock input pin for boundary scan (maximum 10 MHz). Actel recommends adding a nominal 20 $k\Omega$ pull-up resistor to this pin.

TDI Test Data In

Serial input for boundary scan. A dedicated pull-up resistor is included to pull this pin high when not being driven.

TDO Test Data Out

Serial output for boundary scan. Actel recommends adding a nominal $20k\Omega$ pull-up resistor to this pin.

TRST Test Reset Input

Asynchronous, active-low input pin for resetting boundary-scan circuitry. This pin has an internal pull-up resistor. For more information, please refer to *Power-up Behavior of ProASIC*^{PLUS} *Devices* application note.

Special Function Pins

RCK Running Clock

A free running clock is needed during programming if the programmer cannot guarantee that TCK will be uninterrupted. If not used, this pin has an internal pullup and can be left floating.

NPECL User Negative Input

Provides high speed clock or data signals to the PLL block. If unused, leave the pin unconnected.

PPECL User Positive Input

Provides high speed clock or data signals to the PLL block. If unused, leave the pin unconnected.

AVDD PLL Power Supply

Analog V_{DD} should be V_{DD} (core voltage) 2.5 V (nominal) and be decoupled from GND with suitable decoupling capacitors to reduce noise. For more information, refer to Actel's Using ProASIC^{PLUS} Clock Conditioning Circuits application note. If the clock conditioning circuitry is not used in a design, AVDD can either be left floating or tied to 2.5 V.

AGND PLL Power Ground

The analog ground can be connected to the system ground. For more information, refer to Actel's Using ProASIC^{PLUS} Clock Conditioning Circuits application note. If the PLLs or clock conditioning circuitry are not used in a design, AGND should be tied to GND.

V_{PP} Programming Supply Pin

This pin may be connected to any voltage between GND and 16.5 V during normal operation, or it can be left unconnected.² For information on using this pin during programming, see the *In-System Programming ProASIC*^{PLUS} Devices application note. Actel recommends floating the pin or connecting it to V_{DDP}

V_{PN} Programming Supply Pin

This pin may be connected to any voltage between 0.5V and -13.8 V during normal operation, or it can be left unconnected.³ For information on using this pin during programming, see the *In-System Programming ProASIC*^{PLUS} Devices application note. Actel recommends floating the pin or connecting it to GND.

Recommended Design Practice for V_{PN}/V_{PP}

ProASIC^{PLUS} Devices – APA450, APA600, APA750, APA1000

Bypass capacitors are required from V_{PP} to GND and V_{PN} to GND for all ProASIC^{PLUS} devices during programming. During the erase cycle, ProASIC^{PLUS} devices may have current surges on the V_{PP} and V_{PN} power supplies. The only way to maintain the integrity of the power distribution to the ProASIC^{PLUS} device during these current surges is to counteract the inductance of the finite length conductors that distribute the power to the device. This can be accomplished by providing sufficient bypass capacitance between the V_{PP} and V_{PN} pins and GND (using the shortest paths possible). Without sufficient bypass capacitance to counteract the inductance, the V_{PP} and V_{PN} pins may incur a voltage spike beyond the voltage that the device can withstand. This issue applies to all programming configurations.

The solution prevents spikes from damaging the ProASIC^{PLUS} devices. Bypass capacitors are required for the V_{PP} and V_{PN} pads. Use a 0.01 μ F to 0.1 μ F ceramic capacitor with a 25 V or greater rating. To filter low-frequency noise (decoupling), use a 4.7 μ F (low ESR, <1 < Ω , tantalum, 25 V or greater rating) capacitor. The capacitors should be located as close to the device pins as possible (within 2.5 cm is desirable). The smaller, high-frequency capacitor should be placed closer to the device pins than the larger low-frequency capacitor. The same dual-capacitor circuit should be used on both the V_{PP} and V_{PN} pins (Figure 1-49).

ProASIC^{PLUS} Devices – APA075, APA150, APA300

These devices do not require bypass capacitors on the V_{PP} and V_{PN} pins as long as the total combined distance of the programming cable and the trace length on the board is less than or equal to 30 inches. Note: For trace lengths greater than 30 inches, use the bypass capacitor recommendations in the previous section.

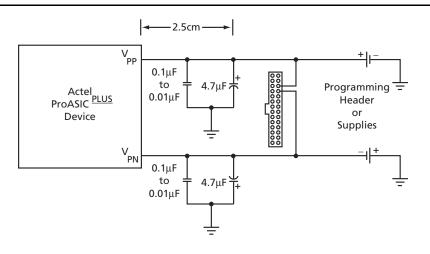


Figure 1-49 • ProASICPLUS V_{PP} and V_{PN} Capacitor Requirements

2. There is a nominal 40 k Ω pull-up resistor on V_{PP}

3. There is a nominal 40 k pull-down resistor on V_{PN}