E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	202752
Number of I/O	440
Number of Gates	1000000
Voltage - Supply	2.3V ~ 2.7V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	624-BCLGA
Supplier Device Package	624-CLGA (32.5x32.5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/apa1000-lg624m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Resources

	User I/Os ²												
				Comme	ercial/Inc	dustrial					Milita	r y/MIL-S 1	D-883B
Device	TQFP 100-Pin	TQFP 144-Pin	PQFP 208-Pin	PBGA 456-Pin	FBGA 144-Pin	FBGA 256-Pin	FBGA 484-Pin	FBGA 676-Pin	FBGA 896-Pin	FBGA 1152-Pin	CQFP 208-Pin	CQFP 352-Pin	CCGA/ LGA 624-Pin
APA075	66	107	158		100								
APA150	66		158	242	100	186 ³							
APA300			158 ⁴	290 ⁴	100 ⁴	186 ^{3, 4}					158	248	
APA450			158	344	100	186 ³	344 ³						
APA600			158 ⁴	356 ⁴		186 ^{3, 4}	370 ³	454			158	248	440
APA750			158	356				454	562 ⁵				
APA1000			158 ⁴	356 ⁴					642 ^{4, 5}	712 ⁵	158	248	440

Notes:

1. Package Definitions: TQFP = Thin Quad Flat Pack, PQFP = Plastic Quad Flat Pack, PBGA = Plastic Ball Grid Array, FBGA = Fine Pitch Ball Grid Array, CQFP = Ceramic Quad Flat Pack, CCGA = Ceramic Column Grid Array, LGA = Land Grid Array

2. Each pair of PECL I/Os is counted as one user I/O.

3. FG256 and FG484 are footprint-compatible packages.

4. Military Temperature Plastic Package Offering

5. FG896 and FG1152 are footprint-compatible packages.

General Guideline

Maximum performance numbers in this datasheet are based on characterized data. Actel does not guarantee performance beyond the limits specified within the datasheet.

ProASIC^{PLUS} Architecture

The proprietary ProASIC^{PLUS} architecture provides granularity comparable to gate arrays.

The ProASIC^{PLUS} device core consists of a Sea-of-Tiles (Figure 1-1). Each tile can be configured as a three-input logic function (e.g., NAND gate, D-Flip-Flop, etc.) by programming the appropriate Flash switch interconnections (Figure 1-2 and Figure 1-3 on page 1-3). Tiles and larger functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Flash switches are programmed to connect signal lines to

the appropriate logic cell inputs and outputs. Dedicated high-performance lines are connected as needed for fast, low-skew global signal distribution throughout the core. Maximum core utilization is possible for virtually any design.

ProASIC^{PLUS} devices also contain embedded, two-port SRAM blocks with built-in FIFO/RAM control logic. Programming options include synchronous or asynchronous operation, two-port RAM configurations, user defined depth and width, and parity generation or checking. Please see the "Embedded Memory Configurations" section on page 1-23 for more information.

Figure 1-1 • The ProASIC^{PLUS} Device Architecture

Figure 1-2 • Flash Switch

Figure 1-16 • Using the PLL 33 MHz In, 133 MHz Out

Figure 1-17 • Using the PLL 40 MHz In, 50 MHz Out

Logic Tile Timing Characteristics

Timing characteristics for ProASIC^{PLUS} devices fall into three categories: family dependent, device dependent, and design dependent. The input and output buffer characteristics are common to all ProASIC^{PLUS} family members. Internal routing delays are device dependent. Design dependency means that actual delays are not determined until after placement and routing of the user's design are complete. Delay values may then be determined by using the Timer utility or by performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing-critical paths. Critical nets are determined by net property assignment prior to place-and-route. Refer to the Actel *Designer User's Guide* or online help for details on using constraints.

Timing Derating

Since ProASIC^{PLUS} devices are manufactured with a CMOS process, device performance will vary with temperature, voltage, and process. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and optimal process variations. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case process variations (within process specifications). The derating factors shown in Table 1-9 should be applied to all timing data contained within this datasheet.

All timing numbers listed in this datasheet represent sample timing characteristics of ProASIC^{PLUS} devices. Actual timing delay values are design-specific and can be derived from the Timer tool in Actel's Designer software after place-and-route.

Table 1-9 •	Temperature and Voltage Derating Factors
	(Normalized to Worst-Case Commercial, T _J = 70°C, V _{DD} = 2.3 V)

	–55°C	–40°C	0°C	25°C	70°C	85°C	110°C	125°C	135°C	150°C
2.3 V	0.84	0.86	0.91	0.94	1.00	1.02	1.05	1.13	1.18	1.27
2.5 V	0.81	0.82	0.87	0.90	0.95	0.98	1.01	1.09	1.13	1.21
2.7 V	0.77	0.79	0.83	0.86	0.91	0.93	0.96	1.04	1.08	1.16

Notes:

1. The user can set the junction temperature in Designer software to be any integer value in the range of -55°C to 175°C.

2. The user can set the core voltage in Designer software to be any value between 1.4 V and 1.6 V.

B [®]User Security

ProASICPLUS devices have FlashLock protection bits that, FlashLockonce programmed, block the entire programmed contents from being read externally. Please refer to Table 1-11 for details on the number of bits in the key for each device. If locked, the user can only reprogram the device employing the user-defined security key. This protects the device from being read back and duplicated. Since programmed data is stored in nonvolatile memory cells (actually very small capacitors) rather than in the wiring, physical deconstruction cannot be used to compromise data. This type of security breach is further discouraged by the placement of the memory cells beneath the four metal layers (whose removal cannot be accomplished without disturbing the charge in the capacitor). This is the highest security provided in the industry. For more information, refer to Actel's Design Security in Nonvolatile Flash and Antifuse FPGAs white paper.

Device	Key Size
APA075	79 bits
APA150	79 bits
APA300	79 bits
APA450	119 bits
APA600	167 bits
APA750	191 bits
APA1000	263 bits

Table 1-11 • Flashlock Key Size by Device

Embedded Memory Floorplan

The embedded memory is located across the top and bottom of the device in 256x9 blocks (Figure 1-1 on page 1-2). Depending on the device, up to 88 blocks are available to support a variety of memory configurations. Each block can be programmed as an independent memory array or combined (using dedicated memory routing resources) to form larger, more complex memory configurations. A single memory configuration could include blocks from both the top and bottom memory locations.

Table 1-12 • ProASIC^{PLUS} Memory Configurations by Device

Embedded Memory Configurations

The embedded memory in the ProASIC^{PLUS} family provides great configuration flexibility (Table 1-12). Each ProASIC^{PLUS} block is designed and optimized as a two-port memory (one read, one write). This provides 198 kbits of two-port and/or single port memory in the APA1000 device.

Each memory block can be configured as FIFO or SRAM, with independent selection of synchronous or asynchronous read and write ports (Table 1-13). Additional characteristics include programmable flags as well as parity checking and generation. Figure 1-21 on page 1-25 and Figure 1-22 on page 1-26 show the block diagrams of the basic SRAM and FIFO blocks. Table 1-14 on page 1-25 and Table 1-15 on page 1-26 describe memory block SRAM and FIFO interface signals, respectively. A single memory block is designed to operate at up to 150 MHz (standard speed grade typical conditions). Each block is comprised of 256 9-bit words (one read port, one write port). The memory blocks may be cascaded in width and/or depth to create the desired memory organization. (Figure 1-23 on page 1-27). This provides optimal bit widths of 9 (one block), 18, 36, and 72, and optimal depths of 256, 512, 768, and 1,024. Refer to Actel's SmartGen User's Guide for more information.

Figure 1-24 on page 1-27 gives an example of optimal memory usage. Ten blocks with 23,040 bits have been used to generate three arrays of various widths and depths. Figure 1-25 on page 1-27 shows how RAM blocks can be used in parallel to create extra read ports. In this example, using only 10 of the 88 available blocks of the APA1000 yields an effective 6,912 bits of multiple port RAM. The Actel SmartGen software facilitates building wider and deeper memory configurations for optimal memory usage.

			Maximum Width		Maximum Depth	
Device	Bottom	Тор	D	W	D	W
APA075	0	12	256	108	1,536	9
APA150	0	16	256	144	2,048	9
APA300	16	16	256	144	2,048	9
APA450	24	24	256	216	3,072	9
APA600	28	28	256	252	3,584	9

ProASIC^{PLUS} Flash Family FPGAs

Table 1-12 • I	ProASIC ^{PLUS}	Memory	Configurations	by Device
----------------	-------------------------	--------	----------------	-----------

			Maximu	m Width	Maximu	m Depth
Device	Bottom	Тор	D	w	D	w
APA750	32	32	256	288	4,096	9
APA1000	44	44	256	396	5,632	9

Table 1-13 • Basic Memory Configurations

Туре	Write Access	Read Access	Parity	Library Cell Name	
RAM	Asynchronous	Asynchronous	Checked	RAM256x9AA	
RAM	Asynchronous	Asynchronous	Generated	RAM256x9AAP	
RAM	Asynchronous	Synchronous Transparent	Checked	RAM256x9AST	
RAM	Asynchronous	Synchronous Transparent	Generated	RAM256x9ASTP	
RAM	Asynchronous	Synchronous Pipelined	Checked	RAM256x9ASR	
RAM	Asynchronous	Synchronous Pipelined	Generated	RAM256x9ASRP	
RAM	Synchronous	Asynchronous	Checked	RAM256x9SA	
RAM	Synchronous	Asynchronous	Generated	RAM256xSAP	
RAM	Synchronous	Synchronous Transparent	Checked	RAM256x9SST	
RAM	Synchronous	Synchronous Transparent	Generated	RAM256x9SSTP	
RAM	Synchronous	Synchronous Pipelined	Checked	RAM256x9SSR	
RAM	Synchronous	Synchronous Pipelined	Generated	RAM256x9SSRP	
FIFO	Asynchronous	Asynchronous	Checked	FIFO256x9AA	
FIFO	Asynchronous	Asynchronous	Generated	FIFO256x9AAP	
FIFO	Asynchronous	Synchronous Transparent	Checked	FIFO256x9AST	
FIFO	Asynchronous	Synchronous Transparent	Generated	FIFO256x9ASTP	
FIFO	Asynchronous	Synchronous Pipelined	Checked	FIFO256x9ASR	
FIFO	Asynchronous	Synchronous Pipelined	Generated	FIFO256x9ASRP	
FIFO	Synchronous	Asynchronous	Checked	FIFO256x9SA	
FIFO	Synchronous	Asynchronous	Generated	FIFO256x9SAP	
FIFO	Synchronous	Synchronous Transparent	Checked	FIFO256x9SST	
FIFO	Synchronous	Synchronous Transparent	Generated	FIFO256x9SSTP	
FIFO	Synchronous	Synchronous Pipelined	Checked	FIFO256x9SSR	
FIFO	Synchronous	Synchronous Pipelined	Generated	FIFO256x9SSRP	

Package Thermal Characteristics

The ProASIC^{PLUS} family is available in several package types with a range of pin counts. Actel has selected packages based on high pin count, reliability factors, and superior thermal characteristics.

Thermal resistance defines the ability of a package to conduct heat away from the silicon, through the package to the surrounding air. Junction-to-ambient thermal resistance is measured in degrees Celsius/Watt and is represented as Theta ja (Θ_{ja}) . The lower the thermal resistance, the more efficiently a package will dissipate heat.

A package's maximum allowed power (P) is a function of maximum junction temperature (T_J) , maximum ambient operating temperature (T_A) , and junction-to-ambient thermal resistance Θ_{ia} . Maximum junction temperature is

the maximum allowable temperature on the active surface of the IC and is 110° C. P is defined as:

$$P = \frac{T_J - T_A}{\Theta_{ja}}$$

EQ 1-4

 Θ_{ja} is a function of the rate (in linear feet per minute (lfpm)) of airflow in contact with the package. When the estimated power consumption exceeds the maximum allowed power, other means of cooling, such as increasing the airflow rate, must be used. The maximum power dissipation allowed for a Military temperature device is specified as a function of Θ_{jc} . The absolute maximum junction temperature is 150°C.

The calculation of the absolute maximum power dissipation allowed for a Military temperature application is illustrated in the following example for a 456-pin PBGA package:

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. case temp. (°C)}}{\theta_{ic}(°C/W)} = \frac{150°C - 125°C}{3.0°C/W} = 8.333W$$

EQ 1-5

 θ_{ja} 1.0 m/s 2.5 m/s **Plastic Packages Pin Count** Still Air 200 ft./min. 500 ft./min. Units θ_{ic} Thin Ouad Flat Pack (TOFP) 100 14.0 33.5 27.4 25.0 °C/W Thin Quad Flat Pack (TQFP) 144 11.0 33.5 28.0 25.7 °C/W Plastic Quad Flat Pack (PQFP)¹ 208 8.0 26.1 22.5 20.8 °C/W PQFP with Heat spreader² 208 3.8 16.2 13.3 11.9 °C/W 456 15.6 Plastic Ball Grid Array (PBGA) 3.0 12.5 °C/W 11.6 Fine Pitch Ball Grid Array (FBGA) 144 3.8 26.9 22.9 21.5 °CW Fine Pitch Ball Grid Array (FBGA) 256 26.6 22.8 °C/W 3.8 21.5 Fine Pitch Ball Grid Array (FBGA)³ 484 3.2 18.0 14.7 13.6 °C/W Fine Pitch Ball Grid Array (FBGA)⁴ 484 3.2 20.5 17.0 15.9 °C/W Fine Pitch Ball Grid Array (FBGA) 676 3.2 16.4 13.0 12.0 °C/W 2.4 10.4 °C/W Fine Pitch Ball Grid Array (FBGA) 896 13.6 9.4 1152 1.8 8.9 7.9 °C/W Fine Pitch Ball Grid Array (FBGA) 12.0 Ceramic Quad Flat Pack (CQFP) 208 2.0 22.0 °C/W 19.8 18.0 Ceramic Quad Flat Pack (CQFP) 352 2.0 17.9 16.1 14.7 °C/W Ceramic Column Grid Array (CCGA/LGA) 624 6.5 8.9 8.5 8.0 °C/W

Table 1-16 • Package Thermal Characteristics

Notes:

1. Valid for the following devices irrespective of temperature grade: APA075, APA150, and APA300

2. Valid for the following devices irrespective of temperature grade: APA450, APA600, APA750, and APA1000

3. Depopulated Array

4. Full array

Operating Conditions

Standard and -F parts are the same unless otherwise noted. All -F parts are only available as commercial.

Table 1-17 • Absolute Maximum Ratings*

Parameter	Condition	Minimum	Maximum	Units
Supply Voltage Core (V _{DD})		-0.3	3.0	V
Supply Voltage I/O Ring (V _{DDP})		-0.3	4.0	V
DC Input Voltage		-0.3	V _{DDP} + 0.3	V
PCI DC Input Voltage		-1.0	V _{DDP} + 1.0	V
PCI DC Input Clamp Current (absolute)	$V_{IN} < -1$ or $V_{IN} = V_{DDP} + 1$ V	10		mA
LVPECL Input Voltage		-0.3	V _{DDP} + 0.5	V
GND		0	0	V

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions.

Table 1-18	٠	Programming, Storage, and Operating Limits
------------	---	--

			Storage Temperature		Operating
Product Grade	Programming Cycles (min.)	Program Retention (min.)	Min.	Max.	T _J Max. Junction Temperature
Commercial	500	20 years	–55°C	110°C	110°C
Industrial	500	20 years	–55°C	110°C	110°C
Military	100	Refer to Table 1-19 on page 1-35	–65°C	150°C	150°C
MIL-STD-883	100	Refer to Table 1-19 on page 1-35	–65°C	150°C	150°C

Performance Retention

For devices operated and stored at 110°C or less, the performance retention period is 20 years after programming. For devices operated and stored at temperatures greater than 110°C, refer to Table 1-19 on page 1-35 to determine the performance retention period. Actel does not guarantee performance if the performance retention period is exceeded. Designers can determine the performance retention period from the following table.

Evaluate the percentage of time spent at the highest temperature, then determine the next highest temperature to which the device will be exposed. In Table 1-19 on page 1-35, find the temperature profile that most closely matches the application. Example – the ambient temperature of a system cycles between 100°C (25% of the time) and 50°C (75% of the time). No forced ventilation cooling system is in use. An APA600-PQ208M FPGA operates in the system, dissipating 1 W. The package thermal resistance (junction-to-ambient) in still air Θ_{ja} is 20°C/W, indicating that the junction temperature of the FPGA will be 120°C (25% of the time) and 70°C (75% of the time). The entry in Table 1-19 on page 1-35, which most closely matches the application, is 25% at 125°C with 75% at 110°C. Performance retention in this example is at least 16.0 years.

Note that exceeding the stated retention period may result in a performance degradation in the FPGA below the worst-case performance indicated in the Actel Timer. To ensure that performance does not degrade below the worst-case values in the Actel Timer, the FPGA must be reprogrammed within the performance retention period. In addition, note that performance retention is independent of whether or not the FPGA is operating. The retention period of a device in storage at a given temperature will be the same as the retention period of a device operating at that junction temperature.

Minimum Time at T _J 110°C or below	Minimum Time at T _J 125°C or below	Minimum Time at T _J 135°C or below	Minimum Time at T _J 150°C or below	Minimum Performance Retention (Years)
100%				20.0
90%	10%			18.2
75%	25%			16
90%		10%		15.4
50%	50%			13.3
90%			10%	11.8
75%		25%		11.4
	100%			10
	90%	10%		9.1
50%		50%		8
	75%	25%		8
	90%		10%	7.7
75%			25%	7.3
	50%	50%		6.7
	75%		25%	5.7
		100%		5
		90%	10%	4.5
50%			50%	4.4
	50%		50%	4
		75%	25%	4
		50%	50%	3.3
			100%	2.5

Table 1-19 • Military Temperature Grade Product Performance Retention

ProASIC^{PLUS} Flash Family FPGAs

		Commercial/Industria	l/Military/MIL-STD-883	
Parameter	Condition	Minimum	Maximum	Units
V _{PP}	During Programming	15.8	16.5	V
	Normal Operation ¹	0	16.5	V
V _{PN}	During Programming	-13.8	-13.2	V
	Normal Operation ²	-13.8	0.5	V
I _{PP}	During Programming		25	mA
I _{PN}	During Programming		10	mA
AVDD		V _{DD}	V _{DD}	V
AGND		GND	GND	V

Table 1-20 • Recommended Maximum Operating Conditions Programming and PLL Supplies

Notes:

Please refer to the "VPP Programming Supply Pin" section on page 1-77 for more information.
 Please refer to the "VPN Programming Supply Pin" section on page 1-77 for more information.

Table 1-21 • Recommended Operating Conditions

			Limits	
Parameter	Symbol	Commercial	Industrial	Military/MIL-STD-883
DC Supply Voltage (2.5 V I/Os)	V_{DD} and V_{DDP}	2.5 V ± 0.2 V	2.5 V ± 0.2 V	2.5 V \pm 0.2 V
DC Supply Voltage (3.3 V I/Os)	V _{DDP} V _{DD}	3.3 V ± 0.3 V 2.5 V ± 0.2 V	3.3 V ± 0.3 V 2.5 V ± 0.2 V	3.3 V ± 0.3 V 2.5 V ± 0.2 V
Operating Ambient Temperature Range	T _A , T _C	0°C to 70°C	–40°C to 85°C	–55°C (T _A) to 125°C (T _C)
Maximum Operating Junction Temperature	Tj	110°C	110°C	150°C

Note: For I/O long-term reliability, external pull-up resistors cannot be used to increase output voltage above V_{DDP}.

				Comm Militar	ercial/Ind y/MIL-STD	ustrial/ -883 ^{1, 2}	
Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
V _{OH}	Output High Voltage High Drive (OB25LPH) Low Drive (OB25LPL)	$I_{OH} = -6 \text{ mA}$ $I_{OH} = -12 \text{ mA}$ $I_{OH} = -24 \text{ mA}$ $I_{OH} = -3 \text{ mA}$ $I_{OH} = -6 \text{ mA}$		2.1 2.0 1.7 2.1 1.9			V
		$I_{OH} = -8 \text{ mA}$		1.7			
V _{OL}	Output Low Voltage High Drive (OB25LPH) Low Drive (OB25LPL)	$I_{OL} = 8 \text{ mA}$ $I_{OL} = 15 \text{ mA}$ $I_{OL} = 24 \text{ mA}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$ $I_{OL} = 15 \text{ mA}$				0.2 0.4 0.7 0.2 0.4 0.7	V
V _{IH} ⁶	Input High Voltage			1.7		V _{DDP} + 0.3	V
V _{IL} ⁷	Input Low Voltage			-0.3		0.7	V
R _{WEAKPULLUP}	Weak Pull-up Resistance (OTB25LPU)	$V_{IN} \ge 1.25 V$		6		56	kΩ
HYST	Input Hysteresis Schmitt	See Table 1-4 on page 1-9		0.3	0.35	0.45	V
I _{IN}	Input Current	with pull up ($V_{IN} = GND$)		-240		- 20	μΑ
		without pull up ($V_{IN} = GND \text{ or } V_{DD}$)		-10		10	μΑ
I _{DDQ}	Quiescent Supply Current (standby) Commercial	$V_{IN} = GND^4 \text{ or } V_{DD}$	Std. F ³		5.0 5.0	15 25	mA mA
I _{DDQ}	Quiescent Supply Current (standby) Industrial	$V_{IN} = GND^4 \text{ or } V_{DD}$	Std.		5.0	20	mA
I _{DDQ}	Quiescent Supply Current (standby) Military/MIL-STD-883	$V_{IN} = GND^4 \text{ or } V_{DD}$	Std.		5.0	25	mA
I _{OZ}	Tristate Output Leakage Current	V _{OH} = GND or V _{DD}	Std.	-10		10	μA
			-F ^{3, 5}	-10		100	μA

Table 1-22 • DC Electrical Specifications (V_{DDP} = 2.5 V \pm 0.2V)

Notes:

1. All process conditions. Commercial/Industrial: Junction Temperature: -40 to +110°C.

2. All process conditions. Military: Junction Temperature: -55 to +150°C.

- 3. All –F parts are available only as commercial.
- 4. No pull-up resistor.
- 5. This will not exceed 2 mA total per device.
- 6. During transitions, the input signal may overshoot to V_{DDP} +1.0V for a limited time of no larger than 10% of the duty cycle.

7. During transitions, the input signal may undershoot to -1.0V for a limited time of no larger than 10% of the duty cycle.

ProASIC^{PLUS} Flash Family FPGAs

			Commercial/Industria	al/Military/MIL-STD- 883	
Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 0.3 V_{DDP}^{*}$	-12V _{DDP}		mA
		$0.3V_{DDP} \le V_{OUT} < 0.9V_{DDP}^{*}$	(–17.1 + (V _{DDP} – V _{OUT}))		mA
		0.7V _{DDP} < V _{OUT} < V _{DDP} *		See equation C – page 124 of the PCI Specification document rev. 2.2	
	(Test Point)	$V_{OUT} = 0.7 V_{DDP}^{*}$		-32V _{DDP}	mA
I _{OL(AC)}	Switching Current Low	$V_{DDP} > V_{OUT} \ge 0.6 V_{DDP}^{*}$	16V _{DDP}		mA
		$0.6V_{DDP} > V_{OUT} > 0.1V_{DDP}^{-1}$	(26.7V _{OUT})		mA
		0.18V _{DDP} > V _{OUT} > 0 [*]		See equation D – page 124 of the PCI Specification document rev. 2.2	
	(Test Point)	$V_{OUT} = 0.18 V_{DDP}$		38V _{DDP}	mA
I _{CL}	Low Clamp Current	$-3 < V_{IN} \le -1$	–25 + (V _{IN} + 1)/0.015		mA
I _{CH}	High Clamp Current	$V_{DDP} + 4 > V_{IN} \ge V_{DDP} + 1$	25 + (V _{IN} – V _{DDP} – 1)/0.015		mA
slew _R	Output Rise Slew Rate	$0.2V_{DDP}$ to $0.6V_{DDP}$ load [*]	1	4	V/ns
slew _F	Output Fall Slew Rate	$0.6V_{DDP}$ to $0.2V_{DDP}$ load [*]	1	4	V/ns

Table 1-26 • AC Specifications (3.3 V PCI Revision 2.2 Operation)

Note: * Refer to the PCI Specification document rev. 2.2.

Pad Loading Applicable to the Rising Edge PCI

Pad Loading Applicable to the Falling Edge PCI

Predicted Global Routing Delay

Table 1-43 • Worst-Case Commercial Conditions¹

 $V_{DDP} = 3.0 V, V_{DD} = 2.3 V, T_{J} = 70^{\circ}C$

		Ma	ax.	
Parameter	Description	Std.	- F ²	Units
t _{RCKH}	Input Low to High ³	1.1	1.3	ns
t _{RCKL}	Input High to Low ³	1.0	1.2	ns
t _{RCKH}	Input Low to High ⁴	0.8	1.0	ns
t _{RCKL}	Input High to Low ⁴	0.8	1.0	ns

Notes:

1. The timing delay difference between tile locations is less than 15ps.

2. All –F parts are only available as commercial.

3. Highly loaded row 50%.

4. Minimally loaded row.

Table 1-44 Worst-Case Military Conditions

V_{DDP} = 3.0V, V_{DD} = 2.3V, T_J = 125°C for Military/MIL-STD-883

Parameter	Description	Max.	Units
t _{RCKH}	Input Low to High (high loaded row of 50%)	1.1	ns
t _{RCKL}	Input High to Low (high loaded row of 50%)	1.0	ns
t _{RCKH}	Input Low to High (minimally loaded row)	0.8	ns
t _{RCKL}	Input High to Low (minimally loaded row)	0.8	ns

Note: * The timing delay difference between tile locations is less than 15 ps.

Global Routing Skew

Table 1-45 Worst-Case Commercial Conditions

 $V_{DDP} = 3.0 V, V_{DD} = 2.3 V, T_{J} = 70^{\circ}C$

		Ma	ax.	
Parameter	Description	Std.	-F*	Units
t _{RCKSWH}	Maximum Skew Low to High	270	320	ps
t _{RCKSHH}	Maximum Skew High to Low	270	320	ps

Note: **All* –*F* parts are only available as commercial.

Table 1-46 • Worst-Case Commercial Conditions

 V_{DDP} = 3.0V, V_{DD} = 2.3V, T_{J} = 125°C for Military/MIL-STD-883

Parameter	Description	Max.	Units
t _{RCKSWH}	Maximum Skew Low to High	270	ps
t _{RCKSHH}	Maximum Skew High to Low	270	ps

Table 1-48 Recommended Operating Conditions

		Limits		
Parameter	Symbol	Commercial/Industrial	Military/MIL-STD-883	
Maximum Clock Frequency*	f _{CLOCK}	180 MHz	180 MHz	
Maximum RAM Frequency*	f _{RAM}	150 MHz	150 MHz	
Maximum Rise/Fall Time on Inputs*				
• Schmitt Trigger Mode (10% to 90%)	t _R /t _F	N/A	100 ns	
 Non-Schmitt Trigger Mode (10% to 90%) 	t _R /t _F	100 ns	10 ns	
Maximum LVPECL Frequency*		180 MHz	180 MHz	
Maximum TCK Frequency (JTAG)	f _{TCK}	10 MHz	10 MHz	

Note: *All –F parts will be 20% slower than standard commercial devices.

Table 1-49 • Slew Rates Measured at C = 30pF, Nominal Power Supplies and 25°C

Туре	Trig. Level	Rising Edge (ns)	Slew Rate (V/ns)	Falling Edge (ns)	Slew Rate (V/ns)	PCI Mode
OB33PH	10%-90%	1.60	1.65	1.65	1.60	Yes
OB33PN	10%-90%	1.57	1.68	3.32	0.80	No
OB33PL	10%-90%	1.57	1.68	1.99	1.32	No
OB33LH	10%-90%	3.80	0.70	4.84	0.55	No
OB33LN	10%-90%	4.19	0.63	3.37	0.78	No
OB33LL	10%-90%	5.49	0.48	2.98	0.89	No
OB25LPHH	10%-90%	1.55	1.29	1.56	1.28	No
OB25LPHN	10%-90%	1.70	1.18	2.08	0.96	No
OB25LPHL	10%-90%	1.97	1.02	2.09	0.96	No
OB25LPLH	10%-90%	3.57	0.56	3.93	0.51	No
OB25LPLN	10%-90%	4.65	0.43	3.28	0.61	No
OB25LPLL	10%-90%	5.52	0.36	3.44	0.58	No

Notes:

1. Standard and –F parts.

2. All –F only available as commercial.

Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)

Note: The plot shows the normal operation status.

Figure 1-31 • Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)

Table 1-52 •	$T_J = 0^{\circ}C$ to 110°C; $V_{DD} = 2.3 V$ to 2.7 V for Commercial/industrial
	$T_J = -55^{\circ}C$ to 150°C, $V_{DD} = 2.3$ V to 2.7 V for Military/MIL-STD-883

Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
СМН	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
OCA	New DO access from RCLKS \uparrow	7.5		ns	
OCH	Old DO valid from RCLKS ↑		3.0	ns	
RACH	RADDR hold from RCLKS \uparrow	0.5		ns	
RACS	RADDR setup to RCLKS ↑	1.0		ns	
RDCH	RDB hold from RCLKS ↑	0.5		ns	
RDCS	RDB setup to RCLKS ↑	1.0		ns	
RPCA	New RPE access from RCLKS \uparrow	9.5		ns	
RPCH	Old RPE valid from RCLKS \uparrow		3.0	ns	

Note: All –F speed grade devices are 20% slower than the standard numbers.

Asynchronous SRAM Write

Note: The plot shows the normal operation status.

Figure 1-33 • Asynchronous SRAM Write

Table 1-54T_J = 0°C to 110°C; V_{DD} = 2.3 V to 2.7 V for Commercial/industrialT_J = -55°C to 150°C, V_{DD} = 2.3 V to 2.7 V for Military/MIL-STD-883B

Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
AWRH	WADDR hold from WB ↑	1.0		ns	
AWRS	WADDR setup to WB \downarrow	0.5		ns	
DWRH	DI hold from WB ↑	1.5		ns	
DWRS	DI setup to WB ↑	0.5		ns	PARGEN is inactive.
DWRS	DI setup to WB ↑	2.5		ns	PARGEN is active.
WPDA	WPE access from DI	3.0		ns	WPE is invalid, while PARGEN is active.
WPDH	WPE hold from DI		1.0	ns	
WRCYC	Cycle time	7.5		ns	
WRMH	WB high phase	3.0		ns	Inactive
WRML	WB low phase	3.0		ns	Active

Note: All –F speed grade devices are 20% slower than the standard numbers.

Asynchronous Write and Synchronous Read to the Same Location

* New data is read if WB \downarrow occurs before setup time. The stored data is read if WB \downarrow occurs after hold time.

Note: The plot shows the normal operation status.

Figure 1-38 •	Asynchronous	Write and Synchronous	Read to the Same Location
---------------	--------------	-----------------------	---------------------------

Table 1-59T_J = 0°C to 110°C; V_{DD} = 2.3 V to 2.7 V for Commercial/industrialT_J = -55°C to 150°C, V_{DD} = 2.3 V to 2.7 V for Military/MIL-STD-883

Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
ССҮС	Cycle time	7.5		ns	
СМН	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
WBRCLKS	WB \downarrow to RCLKS \uparrow setup time	-0.1		ns	
WBRCLKH	WB \downarrow to RCLKS \uparrow hold time		7.0	ns	
ОСН	Old DO valid from RCLKS ↑		3.0	ns	OCA/OCH displayed for
ΟϹΑ	New DO valid from RCLKS ↑	7.5		ns	Access Timed Output
DWRRCLKS	DI to RCLKS ↑ setup time	0		ns	
DWRH	DI to WB ↑ hold time		1.5	ns	

Notes:

- 1. This behavior is valid for Access Timed Output and Pipelined Mode Output. The table shows the timings of an Access Timed Output.
- 2. In asynchronous write and synchronous read access to the same location, the new write data will be read out if the active write signal edge occurs before or at the same time as the active read clock edge. If WB changes to low after hold time, the data will be read.

3. A setup or hold time violation will result in unknown output data.

4. All –F speed grade devices are 20% slower than the standard numbers.

Note: All – F speed grade devices are 20% slower than the standard numbers.

Figure 1-42 • Read Timing Diagram

Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)

Note: The plot shows the normal operation status.

Figure 1-45 • Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)

Table 1-65 • $T_J = 0^{\circ}$ C to 110°C; $V_{DD} = 2.3$ V to 2.7 V for Commercial/industrial $T_J = -55^{\circ}$ C to 150°C, $V_{DD} = 2.3$ V to 2.7 V for Military/MIL-STD-883

Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
СМН	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
ECBA	New EMPTY access from RCLKS \downarrow	3.0 ¹		ns	
FCBA	FULL \downarrow access from RCLKS \downarrow	3.0 ¹		ns	
ЕСВН, FCBH, ТНСВН	Old EMPTY, FULL, EQTH, & GETH valid hold time from RCLKS \downarrow		1.0	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete
OCA	New DO access from RCLKS ↑	7.5		ns	
ОСН	Old DO valid from RCLKS \uparrow		3.0	ns	
RDCH	RDB hold from RCLKS 1	0.5		ns	
RDCS	RDB setup to RCLKS ↑	1.0		ns	
RPCA	New RPE access from RCLKS \uparrow	9.5		ns	
RPCH	Old RPE valid from RCLKS \uparrow		3.0	ns	
НСВА	EQTH or GETH access from RCLKS \downarrow	4.5		ns	

Notes:

1. At fast cycles, ECBA and FCBA = MAX (7.5 ns – CMH), 3.0 ns.

2. All –F speed grade devices are 20% slower than the standard numbers.

FIFO Reset

Notes:

1. During reset, either the enables (WRB and RBD) OR the clocks (WCLKS and RCKLS) must be low.

2. The plot shows the normal operation status.

Figure 1-48 • FIFO Reset

Table 1-68T_J = 0°C to 110°C; V_{DD} = 2.3 V to 2.7 V for Commercial/industrialT_J = -55°C to 150°C, V_{DD} = 2.3 V to 2.7 V for Military/MIL-STD-883

Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
CBRSH ¹	WCLKS or RCLKS \uparrow hold from RESETB \uparrow	1.5		ns	Synchronous mode only
CBRSS ¹	WCLKS or RCLKS \downarrow setup to RESETB \uparrow	1.5		ns	Synchronous mode only
ERSA	New EMPTY \uparrow access from RESETB \downarrow	3.0		ns	
FRSA	FULL \downarrow access from RESETB \downarrow	3.0		ns	
RSL	RESETB low phase	7.5		ns	
THRSA	EQTH or GETH access from RESETB \downarrow	4.5		ns	
WBRSH ¹	WB \downarrow hold from RESETB \uparrow	1.5		ns	Asynchronous mode only
WBRSS ¹	WB \uparrow setup to RESETB \uparrow	1.5		ns	Asynchronous mode only

Notes:

1. During rest, the enables (WRB and RBD) must be high OR the clocks (WCLKS and RCKLS) must be low.

2. All –F speed grade devices are 20% slower than the standard numbers.