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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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ProASICPLUS Flash Family FPGAs
General Description

The ProASICPLUS family of devices, Actel’s second-
generation Flash FPGAs, offers enhanced performance
over Actel’s ProASIC family. It combines the advantages
of ASICs with the benefits of programmable devices
through nonvolatile Flash technology. This enables
engineers to create high-density systems using existing
ASIC or FPGA design flows and tools. In addition, the
ProASICPLUS family offers a unique clock conditioning
circuit based on two on-board phase-locked loops (PLLs).
The family offers up to one million system gates,
supported with up to 198 kbits of two-port SRAM and up
to 712 user I/Os, all providing 50 MHz PCI performance.

Advantages to the designer extend beyond
performance. Unlike SRAM-based FPGAs, four levels of
routing hierarchy simplify routing, while the use of Flash
technology allows all functionality to be live at power-
up. No external boot PROM is required to support device
programming. While on-board security mechanisms
prevent access to the program information,
reprogramming can be performed in-system to support
future design iterations and field upgrades. The device’s
architecture mitigates the complexity of ASIC migration
at higher user volume. This makes ProASICPLUS a cost-
effective solution for applications in the networking,
communications, computing, and avionics markets.

The ProASICPLUS family achieves its nonvolatility and
reprogrammability through an advanced Flash-based
0.22 μm LVCMOS process with four layers of metal.
Standard CMOS design techniques are used to
implement logic and control functions, including the
PLLs and LVPECL inputs. This results in predictable
performance compatible with gate arrays.

The ProASICPLUS architecture provides granularity
comparable to gate arrays. The device core consists of a
Sea-of-Tiles™. Each tile can be configured as a flip-flop,
latch, or three-input/one-output logic function by
programming the appropriate Flash switches. The

combination of fine granularity, flexible routing
resources, and abundant Flash switches allow 100%
utilization and over 95% routability for highly congested
designs. Tiles and larger functions are interconnected
through a four-level routing hierarchy. 

Embedded two-port SRAM blocks with built-in FIFO/RAM
control logic can have user-defined depths and widths.
Users can also select programming for synchronous or
asynchronous operation, as well as parity generations or
checking.

The unique clock conditioning circuitry in each device
includes two clock conditioning blocks. Each block
provides a PLL core, delay lines, phase shifts (0° and
180°), and clock multipliers/dividers, as well as the
circuitry needed to provide bidirectional access to the
PLL. The PLL block contains four programmable
frequency dividers which allow the incoming clock signal
to be divided by a wide range of factors from 1 to 64.
The clock conditioning circuit also delays or advances the
incoming reference clock up to 8 ns (in increments of
0.25 ns). The PLL can be configured internally or
externally during operation without redesigning or
reprogramming the part. In addition to the PLL, there
are two LVPECL differential input pairs to accommodate
high-speed clock and data inputs.

To support customer needs for more comprehensive,
lower-cost, board-level testing, Actel’s ProASICPLUS

devices are fully compatible with IEEE Standard 1149.1
for test access port and boundary-scan test architecture.
For more information concerning the Flash FPGA
implementation, please refer to the "Boundary Scan
(JTAG)" section on page 1-11.

ProASICPLUS devices are available in a variety of high-
performance plastic packages. Those packages and the
performance features discussed above are described in
more detail in the following sections.
v5.8 1-1



ProASICPLUS Flash Family FPGAs
Live at Power-Up
The Actel Flash-based ProASICPLUS devices support
Level 0 of the live at power-up (LAPU) classification
standard. This feature helps in system component
initialization, executing critical tasks before the
processor wakes up, setting up and configuring memory
blocks, clock generation, and bus activity management.
The LAPU feature of Flash-based ProASICPLUS devices
greatly simplifies total system design and reduces total
system cost, often eliminating the need for Complex
Programmable Logic Device (CPLD) and clock generation
PLLs that are used for this purpose in a system. In
addition, glitches and brownouts in system power will
not corrupt the ProASICPLUS device's Flash configuration,
and unlike SRAM-based FPGAs, the device will not have
to be reloaded when system power is restored. This
enables the reduction or complete removal of the
configuration PROM, expensive voltage monitor,
brownout detection, and clock generator devices from
the PCB design. Flash-based ProASICPLUS devices simplify
total system design, and reduce cost and design risk,
while increasing system reliability and improving system
initialization time.

Flash Switch
Unlike SRAM FPGAs, ProASICPLUS uses a live-on-power-up
ISP Flash switch as its programming element.

In the ProASICPLUS Flash switch, two transistors share the
floating gate, which stores the programming
information. One is the sensing transistor, which is only
used for writing and verification of the floating gate
voltage. The other is the switching transistor. It can be
used in the architecture to connect/separate routing nets
or to configure logic. It is also used to erase the floating
gate (Figure 1-2 on page 1-2). 

Logic Tile
The logic tile cell (Figure 1-3) has three inputs (any or all
of which can be inverted) and one output (which can
connect to both ultra-fast local and efficient long-line
routing resources). Any three-input, one-output logic
function (except a three-input XOR) can be configured as
one tile. The tile can be configured as a latch with clear
or set or as a flip-flop with clear or set. Thus, the tiles can
flexibly map logic and sequential gates of a design.

Figure 1-3 • Core Logic Tile

Local Routing
In 1

In 2 (CLK)

In 3 (Reset)

Efficient Long-Line Routing
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ProASICPLUS Flash Family FPGAs
Routing Resources
The routing structure of ProASICPLUS devices is designed
to provide high performance through a flexible four-
level hierarchy of routing resources: ultra-fast local
resources, efficient long-line resources, high-speed, very
long-line resources, and high performance global
networks.

The ultra-fast local resources are dedicated lines that
allow the output of each tile to connect directly to every
input of the eight surrounding tiles (Figure 1-4). 

The efficient long-line resources provide routing for
longer distances and higher fanout connections. These
resources vary in length (spanning 1, 2, or 4 tiles), run
both vertically and horizontally, and cover the entire
ProASICPLUS device (Figure 1-5 on page 1-5). Each tile can
drive signals onto the efficient long-line resources, which

can in turn access every input of every tile. Active buffers
are inserted automatically by routing software to limit
the loading effects due to distance and fanout. 

The high-speed, very long-line resources, which span the
entire device with minimal delay, are used to route very
long or very high fanout nets. (Figure 1-6 on page 1-6). 

The high-performance global networks are low-skew,
high fanout nets that are accessible from external pins or
from internal logic (Figure 1-7 on page 1-7). These nets
are typically used to distribute clocks, resets, and other
high fanout nets requiring a minimum skew. The global
networks are implemented as clock trees, and signals can
be introduced at any junction. These can be employed
hierarchically with signals accessing every input on all
tiles. 

Figure 1-4 • Ultra-Fast Local Resources
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ProASICPLUS Flash Family FPGAs
Note: This figure shows routing for only one global path.
Figure 1-7 • High-Performance Global Network

Table 1-1 • Clock Spines

APA075 APA150 APA300 APA450 APA600 APA750 APA1000

Global Clock Networks (Trees) 4 4 4 4 4 4 4

Clock Spines/Tree 6 8 8 12 14 16 22

Total Spines 24 32 32 48 56 64 88

Top or Bottom Spine Height (Tiles) 16 24 32 32 48 64 80

Tiles in Each Top or Bottom Spine 512 768 1,024 1,024 1,536 2,048 2,560

Total Tiles 3,072 6,144 8,192 12,288 21,504 32,768 56,320
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ProASICPLUS Flash Family FPGAs
Timing Control and 
Characteristics

ProASICPLUS Clock Management System
ProASICPLUS devices provide designers with very flexible
clock conditioning capabilities. Each member of the
ProASICPLUS family contains two phase-locked loop (PLL)
blocks which perform the following functions:

• Clock Phase Adjustment via Programmable Delay
(250 ps steps from –7 ns to +8 ns)

• Clock Skew Minimization

• Clock Frequency Synthesis

Each PLL has the following key features:

• Input Frequency Range (fIN) = 1.5 to 180 MHz

• Feedback Frequency Range (fVCO) = 24 to 180 MHz

• Output Frequency Range (fOUT) = 8 to 180 MHz

• Output Phase Shift = 0 ° and 180 °

• Output Duty Cycle = 50%

• Low Output Jitter (max at 25°C)

– fVCO <10 MHz. Jitter ±1% or better

– 10 MHz < fVCO < 60 MHz. Jitter ±2% or better

– fVCO > 60 MHz. Jitter ±1% or better

Note: Jitter(ps) = Jitter(%)* period

For Example: 

• Low Power Consumption – 6.9 mW (max – analog
supply) + 7.0μW/MHz (max – digital supply)

Physical Implementation
Each side of the chip contains a clock conditioning circuit
based on a 180 MHz PLL block (Figure 1-14 on page 1-
14). Two global multiplexed lines extend along each side
of the chip to provide bidirectional access to the PLL on
that side (neither MUX can be connected to the opposite
side's PLL). Each global line has optional LVPECL input
pads (described below). The global lines may be driven
by either the LVPECL global input pad or the outputs
from the PLL block, or both. Each global line can be
driven by a different output from the PLL. Unused global
pins can be configured as regular I/Os or left
unconnected. They default to an input with pull-up. The
two signals available to drive the global networks are as

follows (Figure 1-15 on page 1-15, Table 1-7 on page 1-
15, and Table 1-8 on page 1-16):

Global A (secondary clock)
• Output from Global MUX A
• Conditioned version of PLL output (fOUT) – delayed

or advanced
• Divided version of either of the above
• Further delayed version of either of the above

(0.25 ns, 0.50 ns, or 4.00 ns delay)1

Global B
• Output from Global MUX B
• Delayed or advanced version of fOUT
• Divided version of either of the above
• Further delayed version of either of the above

(0.25 ns, 0.50 ns, or 4.00 ns delay)2

Functional Description
Each PLL block contains four programmable dividers as
shown in Figure 1-14 on page 1-14. These allow
frequency scaling of the input clock signal as follows:

• The n divider divides the input clock by integer
factors from 1 to 32.

• The m divider in the feedback path allows
multiplication of the input clock by integer factors
ranging from 1 to 64.

• The two dividers together can implement any
combination of multiplication and division
resulting in a clock frequency between 24 and 180
MHz exiting the PLL core. This clock has a fixed
50% duty cycle.

• The output frequency of the PLL core is given by
the formula EQ 1-1 (fREF is the reference clock
frequency):

fOUT = fREF * m/n

EQ 1-1

• The third and fourth dividers (u and v) permit the
signals applied to the global network to each be
further divided by integer factors ranging from 1
to 4.

The implementations shown in EQ2 and EQ3 enable the
user to define a wide range of frequency multiplier and
divisors. 

fGLB = m/(n*u)

EQ 1-2

fGLA = m/(n*v) 

EQ 1-3

Jitter in picoseconds at 100 MHz = 0.01 * (1/100E6) = 100 ps

• Maximum Acquisition
Time

=  80 µs for fVCO > 40 MHz

=  30 µs for fVCO < 40 MHz

1. This mode is available through the delay feature of the Global MUX driver.
v5.8 1-13



ProASICPLUS Flash Family FPGAs
 

Note: When a signal from an I/O tile is connected to the core, it cannot be connected to the Global MUX at the same time. 
Figure 1-15 • Input Connectors to ProASICPLUS Clock Conditioning Circuitry

Table 1-7 • Clock-Conditioning Circuitry MUX Settings

MUX Datapath Comments

FBSEL

1 Internal Feedback

2 Internal Feedback and Advance Clock Using FBDLY –0.25 to –4 ns in 0.25 ns increments

3 External Feedback (EXTFB)

XDLYSEL

0 Feedback Unchanged

1 Deskew feedback by advancing clock by system delay Fixed delay of -2.95 ns

OBMUX GLB

0 Primary bypass, no divider

1 Primary bypass, use divider

2 Delay Clock Using FBDLY +0.25 to +4 ns in 0.25 ns increments

4 Phase Shift Clock by 0°

5 Reserved

6 Phase Shift Clock by +180°

7 Reserved

OAMUX GLA

0 Secondary bypass, no divider

1 Secondary bypass, use divider

2 Delay Clock Using FBDLY +0.25 to +4 ns in 0.25 ns increments

3 Phase Shift Clock by 0°

Configuration Tile

Configuration Tile

PECL Pad Cell
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GL
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CORE
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Legend

Physical Pin

DATA Signals to the Core

DATA Signals to the PLL Block

DATA Signals to the Global MUX
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ProASICPLUS Flash Family FPGAs
Figure 1-20 • Using the PLL for Clock Deskewing
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ProASICPLUS Flash Family FPGAs
User Security
ProASICPLUS devices have FlashLock protection bits that,
once programmed, block the entire programmed
contents from being read externally. Please refer to
Table 1-11 for details on the number of bits in the key for
each device. If locked, the user can only reprogram the
device employing the user-defined security key. This
protects the device from being read back and duplicated.
Since programmed data is stored in nonvolatile memory
cells (actually very small capacitors) rather than in the
wiring, physical deconstruction cannot be used to
compromise data. This type of security breach is further
discouraged by the placement of the memory cells
beneath the four metal layers (whose removal cannot be
accomplished without disturbing the charge in the
capacitor). This is the highest security provided in the
industry. For more information, refer to Actel’s Design
Security in Nonvolatile Flash and Antifuse FPGAs white
paper. 

Embedded Memory Floorplan
The embedded memory is located across the top and
bottom of the device in 256x9 blocks (Figure 1-1 on page
1-2). Depending on the device, up to 88 blocks are
available to support a variety of memory configurations.
Each block can be programmed as an independent
memory array or combined (using dedicated memory
routing resources) to form larger, more complex memory
configurations. A single memory configuration could
include blocks from both the top and bottom memory
locations.

Embedded Memory Configurations
The embedded memory in the ProASICPLUS family
provides great configuration flexibility (Table 1-12). Each
ProASICPLUS block is designed and optimized as a two-
port memory (one read, one write). This provides 198
kbits of two-port and/or single port memory in the
APA1000 device. 

Each memory block can be configured as FIFO or SRAM,
with independent selection of synchronous or
asynchronous read and write ports (Table 1-13).
Additional characteristics include programmable flags as
well as parity checking and generation. Figure 1-21 on
page 1-25 and Figure 1-22 on page 1-26 show the block
diagrams of the basic SRAM and FIFO blocks. Table 1-14
on page 1-25 and Table 1-15 on page 1-26 describe
memory block SRAM and FIFO interface signals,
respectively. A single memory block is designed to
operate at up to 150 MHz (standard speed grade typical
conditions). Each block is comprised of 256 9-bit words
(one read port, one write port). The memory blocks may
be cascaded in width and/or depth to create the desired
memory organization. (Figure 1-23 on page 1-27). This
provides optimal bit widths of 9 (one block), 18, 36, and
72, and optimal depths of 256, 512, 768, and 1,024. Refer
to Actel’s SmartGen User’s Guide for more information.

Figure 1-24 on page 1-27 gives an example of optimal
memory usage. Ten blocks with 23,040 bits have been
used to generate three arrays of various widths and
depths. Figure 1-25 on page 1-27 shows how RAM blocks
can be used in parallel to create extra read ports. In this
example, using only 10 of the 88 available blocks of the
APA1000 yields an effective 6,912 bits of multiple port
RAM. The Actel SmartGen software facilitates building
wider and deeper memory configurations for optimal
memory usage.

      

Table 1-11 • Flashlock Key Size by Device

Device Key Size

APA075 79 bits

APA150 79 bits

APA300 79 bits

APA450 119 bits

APA600 167 bits

APA750 191 bits

APA1000 263 bits

®

Table 1-12 • ProASICPLUS Memory Configurations by Device

Device Bottom Top

Maximum Width Maximum Depth

D W D W

APA075 0 12 256 108 1,536 9
APA150 0 16 256 144 2,048 9
APA300 16 16 256 144 2,048 9
APA450 24 24 256 216 3,072 9
APA600 28 28 256 252 3,584 9
v5.8 1-23
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ProASICPLUS Flash Family FPGAs
Logic-Tile Contribution—Plogic
Plogic, the logic-tile component of AC power dissipation, is given by

Plogic = P3 * mc * Fs

where:

I/O Output Buffer Contribution—Poutputs
Poutputs, the I/O component of AC power dissipation, is given by

Poutputs = (P4 + (Cload * VDDP
2)) * p * Fp

where:  

I/O Input Buffer's Buffer Contribution—Pinputs
The input’s component of AC power dissipation is given by

Pinputs = P8 * q * Fq 

where: 

PLL Contribution—Ppll

Ppll = P9 * Npll

where: 

RAM Contribution—Pmemory
Finally, Pmemory, the memory component of AC power consumption, is given by

Pmemory = P6 * Nmemory * Fmemory * Ememory

where:       

P3 = 1.4 μW/MHz is the average power consumption of a logic tile per MHz of its output toggling rate. The
maximum output toggling rate is Fs/2.

mc = the number of logic tiles switching during each Fs cycle
Fs = the clock frequency

P4 = 326 μW/MHz is the intrinsic power consumption of an output pad normalized per MHz of the output
frequency. This is the total I/O current VDDP.

Cload = the output load
p = the number of outputs
Fp = the average output frequency

P8 = 29 μW/MHz is the intrinsic power consumption of an input pad normalized per MHz of the input
frequency.

q = the number of inputs

Fq = the average input frequency

P9 = 7.5 mW. This value has been estimated at maximum PLL clock frequency.

NPll = number of PLLs used

P6 = 175 μW/MHz is the average power consumption of a memory block per MHz of the clock
Nmemory = the number of RAM/FIFO blocks 

(1 block = 256 words * 9 bits)
Fmemory = the clock frequency of the memory
Ememory = the average number of active blocks divided by the total number of blocks (N) of the memory.

• Typical values for Ememory would be 1/4 for a 1k x 8,9,16, 32 memory and 1/16 for a 4kx8,
9, 16, and 32 memory configuration

• In addition, an application-dependent component to Ememory can be considered. For
example, for a 1kx8 memory configuration using only 1 cycle out of 2, Ememory = 1/4*1/2 = 1/8
1-32 v5.8



ProASICPLUS Flash Family FPGAs
 

Table 1-20 • Recommended Maximum Operating Conditions Programming and PLL Supplies

Parameter Condition

Commercial/Industrial/Military/MIL-STD-883

UnitsMinimum Maximum

VPP During Programming 15.8 16.5 V

Normal Operation1 0 16.5 V

VPN During Programming –13.8 –13.2 V

Normal Operation2 –13.8 0.5 V

IPP During Programming 25 mA

IPN During Programming 10 mA

AVDD VDD VDD V

AGND GND GND V

Notes: 
1. Please refer to the "VPP Programming Supply Pin" section on page 1-77 for more information.
2. Please refer to the "VPN Programming Supply Pin" section on page 1-77 for more information.

Table 1-21 • Recommended Operating Conditions

Parameter Symbol

Limits

Commercial Industrial Military/MIL-STD-883

DC Supply Voltage (2.5 V I/Os) VDD and VDDP 2.5 V ± 0.2 V 2.5 V ± 0.2 V 2.5 V ± 0.2 V

DC Supply Voltage (3.3 V I/Os) VDDP
VDD

3.3 V ± 0.3 V
2.5 V ± 0.2 V

3.3 V ± 0.3 V
2.5 V ± 0.2 V

3.3 V ± 0.3 V
2.5 V ± 0.2 V

Operating Ambient Temperature Range TA, TC 0°C to 70°C –40°C to 85°C –55°C (TA) to 125°C (TC)

Maximum Operating Junction Temperature TJ 110°C 110°C 150°C

Note: For I/O long-term reliability, external pull-up resistors cannot be used to increase output voltage above VDDP.
1-36 v5.8



ProASICPLUS Flash Family FPGAs
IOZ Tristate Output Leakage
Current

VOH = GND or VDD Std. –10 10 µA

–F2, 4 –10 100 µA

IOSH Output Short Circuit Current
High
3.3 V High Drive (OB33P)
3.3 V Low Drive (OB33L)

VIN = GND
VIN = GND

 –200
 –100

IOSL Output Short Circuit Current
Low
3.3 V High Drive 
3.3 V Low Drive 

VIN = VDD
VIN = VDD

 200
 100

CI/O I/O Pad Capacitance 10 pF

CCLK Clock Input Pad Capacitance 10 pF

Table 1-23 • DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V)  (Continued)
Applies to Commercial and Industrial Temperature Only

Symbol Parameter Conditions

Commercial/Industrial1

UnitsMin. Typ. Max.

Notes:

1. All process conditions. Commercial/Industrial: Junction Temperature: –40 to +110°C.
2. All –F parts are only available as commercial.
3. No pull-up resistor required.
4. This will not exceed 2 mA total per device.
5. During transitions, the input signal may overshoot to VDDP +1.0 V for a limited time of no larger than 10% of the duty cycle.
6. During transitions, the input signal may undershoot to –1.0 V for a limited time of no larger than 10% of the duty cycle. 
1-40 v5.8



ProASICPLUS Flash Family FPGAs
Table 1-26 • AC Specifications (3.3 V PCI Revision 2.2 Operation) 

Symbol Parameter Condition

Commercial/Industrial/Military/MIL-STD- 883

UnitsMin. Max.

IOH(AC) Switching Current High 0 < VOUT ≤ 0.3VDDP
* –12VDDP mA

0.3VDDP ≤ VOUT < 0.9VDDP
* (–17.1 + (VDDP – VOUT)) mA

0.7VDDP < VOUT < VDDP
* See equation C – page 124 of 

the PCI Specification 
document rev. 2.2

(Test Point) VOUT = 0.7VDDP
* –32VDDP mA

IOL(AC) Switching Current Low VDDP > VOUT ≥ 0.6VDDP
* 16VDDP mA

0.6VDDP > VOUT > 0.1VDDP 
1 (26.7VOUT) mA

0.18VDDP > VOUT > 0* See equation D – page 124 of 
the PCI Specification 
document rev. 2.2

(Test Point) VOUT = 0.18VDDP
 38VDDP mA

ICL Low Clamp Current –3 < VIN ≤ –1 –25 + (VIN + 1)/0.015 mA

ICH High Clamp Current VDDP + 4 > VIN ≥ VDDP + 1 25 + (VIN – VDDP – 1)/0.015 mA

slewR Output Rise Slew Rate 0.2VDDP to 0.6VDDP load* 1 4 V/ns

slewF Output Fall Slew Rate 0.6VDDP to 0.2VDDP load* 1 4 V/ns

Note: * Refer to the PCI Specification document rev. 2.2.

pin

output
buffer

1/2 in. max

10 pF
1kΩ

pin

output
buffer 10 pF

1kΩ

Pad Loading Applicable to the Rising Edge PCI

Pad Loading Applicable to the Falling Edge PCI
1-44 v5.8



ProASICPLUS Flash Family FPGAs
Input Buffer Delays   

Figure 1-28 • Input Buffer Delays

Table 1-35 • Worst-Case Commercial Conditions 
VDDP = 3.0 V, VDD = 2.3 V, TJ = 70°C 

Macro Type Description

Max. tINYH
1
 Max. tINYL

2

UnitsStd. –F Std. –F

IB33 3.3 V, CMOS Input Levels3, No Pull-up Resistor 0.4 0.5 0.6 0.7 ns

IB33S 3.3 V, CMOS Input Levels3, No Pull-up Resistor, Schmitt Trigger 0.6 0.7 0.8 0.9 ns

Notes:

1. tINYH = Input Pad-to-Y High
2. tINYL = Input Pad-to-Y Low
3. LVTTL delays are the same as CMOS delays.
4. For LP Macros, VDDP=2.3 V for delays. 
5. All –F parts are only available as commercial.

Table 1-36 • Worst-Case Commercial Conditions 
VDDP = 2.3 V, VDD = 2.3 V, TJ = 70°C 

Macro Type Description

Max. tINYH
1
 Max. tINYL

2

UnitsStd. –F Std. –F

IB25LP 2.5 V, CMOS Input Levels3, Low Power 0.9 1.1 0.6 0.8 ns

IB25LPS 2.5 V, CMOS Input Levels3, Low Power, Schmitt Trigger 0.7 0.9 0.9 1.1 ns

Notes:

1. tINYH = Input Pad-to-Y High
2. tINYL = Input Pad-to-Y Low
3. LVTTL delays are the same as CMOS delays.
4. For LP Macros, VDDP=2.3 V for delays. 
5. All –F parts are only available as commercial.

PAD
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PAD
VDDP

0 V50%

Y
GND

VDD

50%

t
INYH

50%

50%

INYL
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ProASICPLUS Flash Family FPGAs
Table 1-41 • Worst-Case Military Conditions
VDDP = 3.0V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883

Macro Type Description

Max. tINYH
1

 Max. tINYL
2 

Std. Std.

GL33 3.3V, CMOS Input Levels3, No Pull-up Resistor 1.1 1.1

GL33S 3.3V, CMOS Input Levels3, No Pull-up Resistor, Schmitt Trigger 1.1 1.1

PECL PPECL Input Levels 1.1 1.1

Notes:

1. tINYH = Input Pad-to-Y High
2. tINYL = Input Pad-to-Y Low
3. LVTTL delays are the same as CMOS delays.
4. For LP Macros, VDDP=2.3V for delays.

Table 1-42 • Worst-Case Military Conditions
VDDP = 2.3V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883

Macro Type Description

Max. tINYH
1

 Max. tINYL
2 

Std. Std.

GL25LP 2.5V, CMOS Input Levels3, Low Power 1.0 1.1

GL25LPS 2.5V, CMOS Input Levels3, Low Power, Schmitt Trigger 1.4 1.0

Notes:

1. tINYH = Input Pad-to-Y High
2. tINYL = Input Pad-to-Y Low
3. LVTTL delays are the same as CMOS delays.
4. For LP Macros, VDDP=2.3V for delays.
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ProASICPLUS Flash Family FPGAs
Embedded Memory Specifications
This section discusses ProASICPLUS SRAM/FIFO embedded
memory and its interface signals, including timing
diagrams that show the relationships of signals as they
pertain to single embedded memory blocks (Table 1-51).
Table 1-13 on page 1-24 shows basic SRAM and FIFO
configurations. Simultaneous read and write to the same
location must be done with care. On such accesses the DI
bus is output to the DO bus. Refer to the ProASICPLUS

RAM and FIFO Blocks application note for more
information.

Enclosed Timing Diagrams—SRAM Mode:
• "Synchronous SRAM Read, Access Timed Output

Strobe (Synchronous Transparent)" section on
page 1-58

• "Synchronous SRAM Read, Pipeline Mode Outputs
(Synchronous Pipelined)" section on page 1-59

• "Asynchronous SRAM Write" section on page 1-60

• "Asynchronous SRAM Read, Address Controlled,
RDB=0" section on page 1-61

• "Asynchronous SRAM Read, RDB Controlled"
section on page 1-62

• "Synchronous SRAM Write"

• Embedded Memory Specifications

The difference between synchronous transparent and
pipeline modes is the timing of all the output signals
from the memory. In transparent mode, the outputs will
change within the same clock cycle to reflect the data
requested by the currently valid access to the memory. If
clock cycles are short (high clock speed), the data
requires most of the clock cycle to change to valid values
(stable signals). Processing of this data in the same clock
cycle is nearly impossible. Most designers add registers at
all outputs of the memory to push the data processing
into the next clock cycle. An entire clock cycle can then
be used to process the data. To simplify use of this
memory setup, suitable registers have been
implemented as part of the memory primitive and are
available to the user in the synchronous pipeline mode.
In this mode, the output signals will change shortly after
the second rising edge, following the initiation of the
read access.  

Table 1-51 • Memory Block SRAM Interface Signals

SRAM Signal Bits In/Out Description

WCLKS 1 In Write clock used on synchronization on write side

RCLKS 1 In Read clock used on synchronization on read side

RADDR<0:7> 8 In Read address

RBLKB 1 In True read block select (active Low)

RDB 1 In True read pulse (active Low)

WADDR<0:7> 8 In Write address

WBLKB 1 In Write block select (active Low)

DI<0:8> 9 In Input data bits <0:8>, <8> can be used for parity In

WRB 1 In Negative true write pulse

DO<0:8> 9 Out Output data bits <0:8>, <8> can be used for parity Out

RPE 1 Out Read parity error (active High)

WPE 1 Out Write parity error (active High)

PARODD 1 In Selects Odd parity generation/detect when high, Even when low

Note: Not all signals shown are used in all modes.
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ProASICPLUS Flash Family FPGAs
Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)

Note: The plot shows the normal operation status.
Figure 1-31 • Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)

Table 1-52 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial 
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883

Symbol txxx Description Min. Max. Units Notes

CCYC Cycle time 7.5 ns

CMH Clock high phase 3.0 ns

CML Clock low phase 3.0 ns

OCA New DO access from RCLKS ↑ 7.5 ns

OCH Old DO valid from RCLKS ↑ 3.0 ns

RACH RADDR hold from RCLKS ↑ 0.5 ns

RACS RADDR setup to RCLKS ↑ 1.0 ns

RDCH RDB hold from RCLKS ↑ 0.5 ns

RDCS RDB setup to RCLKS ↑ 1.0 ns

RPCA New RPE access from RCLKS ↑ 9.5 ns

RPCH Old RPE valid from RCLKS ↑ 3.0 ns

Note: All –F speed grade devices are 20% slower than the standard numbers.

RADDR

RPE

DO 

RCLKS

RBD, RBLKB

New Valid Data Out

Cycle Start

Old Data Out

New Valid
Address

tRACS

tRDCS

tRDCH

tRACH

tOCH

tRPCH

tCMH

tOCA

tRPCA

tCCYC

tCML
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ProASICPLUS Flash Family FPGAs
Asynchronous SRAM Read, Address Controlled, RDB=0

Note: The plot shows the normal operation status.
Figure 1-34 • Asynchronous SRAM Read, Address Controlled, RDB=0

Table 1-55 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883B

Symbol txxx Description Min. Max. Units Notes

ACYC Read cycle time 7.5 ns

OAA New DO access from RADDR stable 7.5 ns

OAH Old DO hold from RADDR stable 3.0 ns

RPAA New RPE access from RADDR stable 10.0 ns

RPAH Old RPE hold from RADDR stable 3.0 ns

Note: All –F speed grade devices are 20% slower than the standard numbers.

RPE

DO

RADDR

tOAH
tRPAH

tOAA
tRPAA

tACYC
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ProASICPLUS Flash Family FPGAs
Note: All –F speed grade devices are 20% slower than the standard numbers.
Figure 1-41 • Write Timing Diagram

Note: All –F speed grade devices are 20% slower than the standard numbers.
Figure 1-42 • Read Timing Diagram
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ProASICPLUS Flash Family FPGAs
Synchronous FIFO Write

Note: The plot shows the normal operation status.
Figure 1-47 • Synchronous FIFO Write

Table 1-67 • TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883 

Symbol txxx Description Min. Max. Units Notes

CCYC Cycle time 7.5 ns

CMH Clock high phase 3.0 ns

CML Clock low phase 3.0 ns

DCH DI hold from WCLKS ↑ 0.5 ns

DCS DI setup to WCLKS ↑ 1.0 ns

FCBA New FULL access from WCLKS ↓ 3.01 ns

ECBA EMPTY↓ access from WCLKS ↓ 3.01 ns

ECBH, 
FCBH, 
HCBH

Old EMPTY, FULL, EQTH, & GETH valid hold
time from WCLKS ↓

1.0 ns Empty/full/thresh are invalid from the end of
hold until the new access is complete

HCBA EQTH or GETH access from WCLKS ↓ 4.5 ns

WPCA New WPE access from WCLKS ↑ 3.0 ns WPE is invalid, while PARGEN is active

WPCH Old WPE valid from WCLKS ↑ 0.5 ns

WRCH, WBCH WRB & WBLKB hold from WCLKS ↑ 0.5 ns

WRCS, WBCS WRB & WBLKB setup to WCLKS ↑ 1.0 ns

Notes:  

1. At fast cycles, ECBA and FCBA = MAX (7.5 ns – CMH), 3.0 ns.
2. All –F speed grade devices are 20% slower than the standard numbers.

WCLKS

WPE

DI

EMPTY

EQTH, GETH

FULL

(Full Inhibits Write)

WRB, WBLKB

Cycle Start

tWRCH, tWBCH tECBH, tFCBH
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tWRCS, tWBCS
tDCS

tWPCA

tCMH tCML

tCCYC
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ProASICPLUS Flash Family FPGAs
VPP Programming Supply Pin

This pin may be connected to any voltage between GND
and 16.5 V during normal operation, or it can be left
unconnected.2 For information on using this pin during
programming, see the In-System Programming
ProASICPLUS Devices application note. Actel recommends
floating the pin or connecting it to VDDP.

VPN Programming Supply Pin

This pin may be connected to any voltage between 0.5V
and –13.8 V during normal operation, or it can be left
unconnected.3 For information on using this pin during
programming, see the In-System Programming
ProASICPLUS Devices application note. Actel recommends
floating the pin or connecting it to GND.

Recommended Design Practice 
for VPN/VPP 

ProASICPLUS Devices – APA450, APA600, 
APA750, APA1000 
Bypass capacitors are required from VPP to GND and VPN
to GND for all ProASICPLUS devices during programming.
During the erase cycle, ProASICPLUS devices may have
current surges on the VPP and VPN power supplies. The
only way to maintain the integrity of the power
distribution to the ProASICPLUS device during these
current surges is to counteract the inductance of the

finite length conductors that distribute the power to the
device. This can be accomplished by providing sufficient
bypass capacitance between the VPP and VPN pins and
GND (using the shortest paths possible). Without
sufficient bypass capacitance to counteract the
inductance, the VPP and VPN pins may incur a voltage
spike beyond the voltage that the device can withstand.
This issue applies to all programming configurations.

The solution prevents spikes from damaging the
ProASICPLUS devices. Bypass capacitors are required for
the VPP and VPN pads. Use a 0.01 µF to 0.1 µF ceramic
capacitor with a 25 V or greater rating. To filter low-
frequency noise (decoupling), use a 4.7 µF (low ESR, <1
<Ω, tantalum, 25 V or greater rating) capacitor. The
capacitors should be located as close to the device pins as
possible (within 2.5 cm is desirable). The smaller, high-
frequency capacitor should be placed closer to the device
pins than the larger low-frequency capacitor. The same
dual-capacitor circuit should be used on both the VPP and
VPN pins (Figure 1-49).

ProASICPLUS Devices – APA075, APA150, 
APA300
These devices do not require bypass capacitors on the VPP
and VPN pins as long as the total combined distance of
the programming cable and the trace length on the
board is less than or equal to 30 inches. Note: For trace
lengths greater than 30 inches, use the bypass capacitor
recommendations in the previous section.

2. There is a nominal 40 kΩ pull-up resistor on VPP.

3. There is a nominal 40 kΩ pull-down resistor on VPN.

Figure 1-49 • ProASICPLUS VPP and VPN Capacitor Requirements
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