

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	73728
Number of I/O	290
Number of Gates	300000
Voltage - Supply	2.3V ~ 2.7V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	456-BBGA
Supplier Device Package	456-PBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/apa300-bgg456m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1-3 • Core Logic Tile

Live at Power-Up

The Actel Flash-based ProASICPLUS devices support Level 0 of the live at power-up (LAPU) classification standard. This feature helps in system component initialization, executing critical tasks before the processor wakes up, setting up and configuring memory blocks, clock generation, and bus activity management. The LAPU feature of Flash-based ProASICPLUS devices greatly simplifies total system design and reduces total system cost, often eliminating the need for Complex Programmable Logic Device (CPLD) and clock generation PLLs that are used for this purpose in a system. In addition, glitches and brownouts in system power will not corrupt the ProASICPLUS device's Flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based ProASICPLUS devices simplify total system design, and reduce cost and design risk. while increasing system reliability and improving system initialization time.

Flash Switch

Unlike SRAM FPGAs, ProASIC^{PLUS} uses a live-on-power-up ISP Flash switch as its programming element.

In the ProASIC^{PLUS} Flash switch, two transistors share the floating gate, which stores the programming information. One is the sensing transistor, which is only used for writing and verification of the floating gate voltage. The other is the switching transistor. It can be used in the architecture to connect/separate routing nets or to configure logic. It is also used to erase the floating gate (Figure 1-2 on page 1-2).

Logic Tile

The logic tile cell (Figure 1-3) has three inputs (any or all of which can be inverted) and one output (which can connect to both ultra-fast local and efficient long-line routing resources). Any three-input, one-output logic function (except a three-input XOR) can be configured as one tile. The tile can be configured as a latch with clear or set or as a flip-flop with clear or set. Thus, the tiles can flexibly map logic and sequential gates of a design.

Array Coordinates

During many place-and-route operations in Actel's Designer software tool, it is possible to set constraints that require array coordinates.

Table 1-2 is provided as a reference. The array coordinates are measured from the lower left (0,0). They can be used in region constraints for specific groups of core cells, I/Os, and RAM blocks. Wild cards are also allowed.

I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed because there is not a one-to-one correspondence between I/O cells and core cells. In addition, the I/O coordinate system changes depending on the die/package combination.

Core cell coordinates start at the lower left corner (represented as (1,1)) or at (1,5) if memory blocks are present at the bottom. Memory coordinates use the same system and are indicated in Table 1-2. The memory coordinates for an APA1000 are illustrated in Figure 1-8. For more information on how to use constraints, see the *Designer User's Guide* or online help for ProASIC^{PLUS} software tools.

Table 1-2 •	Array Coordinates
-------------	-------------------

		Lo	gic Tile		Me	Memory Rows		
	м	lin.	М	ax.	Bottom	Тор	Top All	
Device	х	У	x	У	у у		Min.	Max.
APA075	1	1	96	32	-	(33,33) or (33, 35)	0,0	97, 37
APA150	1	1	128	48	-	(49,49) or (49, 51)	0,0	129, 53
APA300	1	5	128	68	(1,1) or (1,3)	(69,69) or (69, 71)	0,0	129, 73
APA450	1	5	192	68	(1,1) or (1,3)	(69,69) or (69, 71)	0,0	193, 73
APA600	1	5	224	100	(1,1) or (1,3)	(101,101) or (101, 103)	0,0	225, 105
APA750	1	5	256	132	(1,1) or (1,3)	(133,133) or (133, 135)	0,0	257, 137
APA1000	1	5	352	164	(1,1) or (1,3)	(165,165) or (165, 167)	0,0	353, 169

Figure 1-8 • Core Cell Coordinates for the APA1000

Input/Output Blocks

To meet complex system demands, the ProASIC^{PLUS} family offers devices with a large number of user I/O pins, up to 712 on the APA1000. Table 1-3 shows the available supply voltage configurations (the PLL block uses an independent 2.5 V supply on the AVDD and AGND pins). All I/Os include ESD protection circuits. Each I/O has been tested to 2000 V to the human body model (per JESD22 (HBM)).

Six or seven standard I/O pads are grouped with a GND pad and either a V_{DD} (core power) or V_{DDP} (I/O power) pad. Two reference bias signals circle the chip. One protects the cascaded output drivers, while the other creates a virtual V_{DD} supply for the I/O ring.

I/O pads are fully configurable to provide the maximum flexibility and speed. Each pad can be configured as an input, an output, a tristate driver, or a bidirectional buffer (Figure 1-9 and Table 1-4). Table 1-3 • ProASIC^{PLUS} I/O Power Supply Voltages

	VD	DP
	2.5 V	3.3 V
Input Compatibility	2.5 V	3.3 V
Output Drive	2.5 V	3.3 V

Figure 1-9 • I/O Block Schematic Representation

Function	Description
I/O pads configured as inputs	Selectable 2.5 V or 3.3 V threshold levels
	Optional pull-up resistor
	• Optionally configurable as Schmitt trigger input. The Schmitt trigger input option can be configured as an input only, not a bidirectional buffer. This input type may be slower than a standard input under certain conditions and has a typical hysteresis of 0.35 V. I/O macros with an "S" in the standard I/O library have added Schmitt capabilities.
	 3.3 V PCI Compliant (except Schmitt trigger inputs)
I/O pads configured as outputs	Selectable 2.5 V or 3.3 V compliant output signals
	• 2.5 V – JEDEC JESD 8-5
	 3.3 V – JEDEC JESD 8-A (LVTTL and LVCMOS)
	• 3.3 V PCI compliant
	Ability to drive LVTTL and LVCMOS levels
	Selectable drive strengths
	Selectable slew rates
	• Tristate
I/O pads configured as bidirectional	Selectable 2.5 V or 3.3 V compliant output signals
buffers	• 2.5 V – JEDEC JESD 8-5
	 3.3 V – JEDEC JESD 8-A (LVTTL and LVCMOS)
	• 3.3 V PCI compliant
	Optional pull-up resistor
	Selectable drive strengths
	Selectable slew rates
	• Tristate

Table 1-4 • I/O Features

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain high for five TCK cycles. The TRST pin may also be used to asynchronously place the TAP controller in the Test-Logic-Reset state.

ProASIC^{PLUS} devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register

with four fields (lowest significant byte (LSB), ID number, part number and version). The boundary-scan register observes and controls the state of each I/O pin.

Each I/O cell has three boundary-scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin. The serial pins are used to serially connect all the boundary-scan register cells in a device into a boundaryscan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are connected to the internal core logic tile and the input, output, and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O.

Figure 1-13 • TAP Controller State Diagram

enable the user to define a wide range of frequency multipliers and divisors. The clock conditioning circuit can advance or delay the clock up to 8 ns (in increments of 0.25 ns) relative to the positive edge of the incoming reference clock. The system also allows for the selection of output frequency clock phases of 0° and 180°.

Prior to the application of signals to the rib drivers, they pass through programmable delay units, one per global network. These units permit the delaying of global signals relative to other signals to assist in the control of input set-up times. Not all possible combinations of input and output modes can be used. The degrees of freedom available in the bidirectional global pad system and in the clock conditioning circuit have been restricted. This avoids unnecessary and unwieldy design kit and software work.

Notes:

- 1. FBDLY is a programmable delay line from 0 to 4 ns in 250 ps increments.
- 2. DLYA and DLYB are programmable delay lines, each with selectable values 0 ps, 250 ps, 500 ps, and 4 ns.
- 3. OBDIV will also divide the phase-shift since it takes place after the PLL Core.

Figure 1-14 • PLL Block – Top-Level View and Detailed PLL Block Diagram

Logic Tile Timing Characteristics

Timing characteristics for ProASIC^{PLUS} devices fall into three categories: family dependent, device dependent, and design dependent. The input and output buffer characteristics are common to all ProASIC^{PLUS} family members. Internal routing delays are device dependent. Design dependency means that actual delays are not determined until after placement and routing of the user's design are complete. Delay values may then be determined by using the Timer utility or by performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing-critical paths. Critical nets are determined by net property assignment prior to place-and-route. Refer to the Actel *Designer User's Guide* or online help for details on using constraints.

Timing Derating

Since ProASIC^{PLUS} devices are manufactured with a CMOS process, device performance will vary with temperature, voltage, and process. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and optimal process variations. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case process variations (within process specifications). The derating factors shown in Table 1-9 should be applied to all timing data contained within this datasheet.

All timing numbers listed in this datasheet represent sample timing characteristics of ProASIC^{PLUS} devices. Actual timing delay values are design-specific and can be derived from the Timer tool in Actel's Designer software after place-and-route.

Table 1-9 •	Temperature and Voltage Derating Factors
	(Normalized to Worst-Case Commercial, T _J = 70°C, V _{DD} = 2.3 V)

	–55°C	–40°C	0°C	25°C	70°C	85°C	110°C	125°C	135°C	150°C
2.3 V	0.84	0.86	0.91	0.94	1.00	1.02	1.05	1.13	1.18	1.27
2.5 V	0.81	0.82	0.87	0.90	0.95	0.98	1.01	1.09	1.13	1.21
2.7 V	0.77	0.79	0.83	0.86	0.91	0.93	0.96	1.04	1.08	1.16

Notes:

1. The user can set the junction temperature in Designer software to be any integer value in the range of -55°C to 175°C.

2. The user can set the core voltage in Designer software to be any value between 1.4 V and 1.6 V.

Note: Each RAM block contains a multiplexer (called DMUX) for each output signal, increasing design efficiency. These DMUX cells do not consume any core logic tiles and connect directly to high-speed routing resources between the RAM blocks. They are used when RAM blocks are cascaded and are automatically inserted by the software tools.

Figure 1-22 • Basic FIFO Block Diagrams

FIFO Signal	Bits	In/Out	Description
WCLKS	1	In	Write clock used for synchronization on write side
RCLKS	1	In	Read clock used for synchronization on read side
LEVEL <0:7>	8	In	Direct configuration implements static flag logic
RBLKB	1	In	Read block select (active Low)
RDB	1	In	Read pulse (active Low)
RESET	1	In	Reset for FIFO pointers (active Low)
WBLKB	1	In	Write block select (active Low)
DI<0:8>	9	In	Input data bits <0:8>, <8> will be generated parity if PARGEN is true
WRB	1	In	Write pulse (active Low)
FULL, EMPTY	2	Out	FIFO flags. FULL prevents write and EMPTY prevents read
EQTH, GEQTH	2	Out	EQTH is true when the FIFO holds the number of words specified by the LEVEL signal. GEQTH is true when the FIFO holds (LEVEL) words or more
DO<0:8>	9	Out	Output data bits <0:8>. <8> will be parity output if PARGEN is true.
RPE	1	Out	Read parity error (active High)
WPE	1	Out	Write parity error (active High)
LGDEP <0:2>	3	In	Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD	1	In	Parity generation/detect – Even when Low, Odd when High

Table 1-15 • Memory Block FIFO Interface Signals	Table 1-15	٠	Memory	Block	FIFO	Interface	Signals
--	------------	---	--------	-------	------	-----------	---------

The following is an APA750 example using a shift register design with 13,440 storage tiles (Register) and 0 logic tiles. This design has one clock at 10 MHz, and 24 outputs toggling at 5 MHz. We then calculate the various components as follows:

P_{clock}

$$Fs = 10 MHz$$

 $R = 13.440$

=>
$$P_{clock} = (P1 + (P2*R) - (P7*R^2)) * Fs = 121.5 mW$$

P_{storage}

ms = 13,440 (in a shift register 100% of storage tiles are toggling at each clock cycle and Fs = 10 MHz)

=> P_{storage} = P5 * ms * Fs = 147.8 mW

Plogic

mc = 0 (no logic tiles in this shift register)

 $\Rightarrow P_{logic} = 0 \text{ mW}$

Poutputs

$$C_{load} = 40 \text{ pF}$$

$$V_{DDP} = 3.3 \text{ V}$$

$$p = 24$$

$$Fp = 5 \text{ MHz}$$

=> $P_{outputs} = (P4 + (C_{load} * V_{DDP}^2)) * p * Fp = 91.4 mW$

Pinputs

q = 1 Fq = 10 MHz

=> P_{inputs} = P8 * q * Fq = 0.3 mW

P_{memory}

N_{memory} = 0 (no RAM/FIFO blocks in this shift register)

=> P_{memory} = 0 mW

Pac

=> 361 mW

P_{total}

 $P_{dc} + P_{ac} = 374 \text{ mW}$ (typical)

				Comm Militar	ercial/Ind y/MIL-STD	ustrial/ -883 ^{1, 2}	
Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
V _{OH}	Output High Voltage High Drive (OB25LPH) Low Drive (OB25LPL)	$I_{OH} = -6 \text{ mA}$ $I_{OH} = -12 \text{ mA}$ $I_{OH} = -24 \text{ mA}$ $I_{OH} = -3 \text{ mA}$ $I_{OH} = -6 \text{ mA}$		2.1 2.0 1.7 2.1 1.9			V
		$I_{OH} = -8 \text{ mA}$		1.7			
V _{OL}	Output Low Voltage High Drive (OB25LPH) Low Drive (OB25LPL)	$I_{OL} = 8 \text{ mA}$ $I_{OL} = 15 \text{ mA}$ $I_{OL} = 24 \text{ mA}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$ $I_{OL} = 15 \text{ mA}$				0.2 0.4 0.7 0.2 0.4 0.7	V
V _{IH} ⁶	Input High Voltage			1.7		V _{DDP} + 0.3	V
V _{IL} ⁷	Input Low Voltage			-0.3		0.7	V
R _{WEAKPULLUP}	Weak Pull-up Resistance (OTB25LPU)	$V_{IN} \ge 1.25 V$		6		56	kΩ
HYST	Input Hysteresis Schmitt	See Table 1-4 on page 1-9		0.3	0.35	0.45	V
I _{IN}	Input Current	with pull up ($V_{IN} = GND$)		-240		- 20	μΑ
		without pull up ($V_{IN} = GND \text{ or } V_{DD}$)		-10		10	μA
I _{DDQ}	Quiescent Supply Current (standby) Commercial	$V_{IN} = GND^4 \text{ or } V_{DD}$	Std. –F ³		5.0 5.0	15 25	mA mA
I _{DDQ}	Quiescent Supply Current (standby) Industrial	$V_{IN} = GND^4 \text{ or } V_{DD}$	Std.		5.0	20	mA
I _{DDQ}	Quiescent Supply Current (standby) Military/MIL-STD-883	$V_{IN} = GND^4 \text{ or } V_{DD}$	Std.		5.0	25	mA
I _{OZ}	Tristate Output Leakage Current	V _{OH} = GND or V _{DD}	Std.	-10		10	μA
			-F ^{3, 5}	-10		100	μA

Table 1-22 • DC Electrical Specifications (V_{DDP} = 2.5 V \pm 0.2V)

Notes:

1. All process conditions. Commercial/Industrial: Junction Temperature: -40 to +110°C.

2. All process conditions. Military: Junction Temperature: -55 to +150°C.

- 3. All –F parts are available only as commercial.
- 4. No pull-up resistor.
- 5. This will not exceed 2 mA total per device.
- 6. During transitions, the input signal may overshoot to V_{DDP} +1.0V for a limited time of no larger than 10% of the duty cycle.

7. During transitions, the input signal may undershoot to -1.0V for a limited time of no larger than 10% of the duty cycle.

		Military				
Parameter	Conditions		Min.	Тур.	Max.	Units
Output High Voltage 3.3 V I/O, High Drive, High Slew (OB33PH)	I _{OH} = –8 mA I _{OH} = –16 mA		0.9*V _{DDP} 2.4			
3.3V I/O, High Drive, Normal/ Low Slew (OB33PN/OB33PL)	I _{OH} = –3mA I _{OH} = –8mA		0.9*V _{DDP} 2.4			V
3.3 V I/O, Low Drive , High/ Normal/Low Slew (OB33LH/ OB33LN/OB33LL)	I _{OH} = -3 mA I _{OH} = -8 mA		0.9*V _{DDP} 2.4			
Output Low Voltage 3.3 V I/O, High Drive, High Slew (OB33PH)	I _{OL} = 12 mA I _{OL} = 17 mA I _{OL} = 28 mA				0.1V _{DDP} 0.4 0.7	
3.3V I/O, High Drive, Normal/ Low Slew (OB33PN/OB33PL))	I _{OL} = 4 mA I _{OL} = 6 mA I _{OL} = 13 mA				0.1V _{DDP} 0.4 0.7	V
3.3 V I/O, Low Drive, High/ Normal/Low Slew (OB33LH/ OB33LN/OB33LL)	$I_{OL} = 4 \text{ mA}$ $I_{OL} = 6 \text{ mA}$ $I_{OL} = 13 \text{ mA}$				0.1V _{DDP} 0.4 0.7	
Input High Voltage 3.3 V Schmitt Trigger Inputs 3.3 V LVTTL/LVCMOS 2.5 V Mode			1.6 2 1.7		$V_{DDP} + 0.3$ $V_{DDP} + 0.3$ $V_{DDP} + 0.3$	V
Input Low Voltage 3.3 V Schmitt Trigger Inputs 3.3 V LVTTL/LVCMOS 2.5 V Mode			-0.3 -0.3 -0.3		0.7 0.8 0.7	V
Weak Pull-up Resistance (IOB33U)	$V_{IN} \ge 1.5 V$		7		43	kΩ
Weak Pull-up Resistance (IOB25U)	$V_{IN} \ge 1.5 V$		7		43	kΩ
Input Current	with pull up ($V_{IN} = GND$)		-300		-40	μA
	without pull up (V_{IN} = GND or V_{DD})		-10		10	μA
Quiescent Supply Current (standby) Commercial	$V_{IN} = GND^2 \text{ or } V_{DD}$	Std. –F		5.0 5.0	15 25	mA mA
	ParameterOutput High Voltage3.3 V I/O, High Drive, High Slew(OB33PH)3.3V I/O, High Drive, Normal/Low Slew (OB33PN/OB33PL)3.3 V I/O, Low Drive , High/Normal/Low Slew (OB33LN/OB33LL)Output Low Voltage3.3 V I/O, High Drive, High Slew(OB33PH)3.3V I/O, High Drive, Normal/Low Slew (OB33PN/OB33LL)Output Low Voltage3.3 V I/O, High Drive, Normal/Low Slew (OB33PN/OB33PL))3.3 V I/O, Low Drive, High/Normal/Low Slew (OB33PN/OB33LL)Input High Voltage3.3 V Schmitt Trigger Inputs3.3 V LVTTL/LVCMOS2.5 V ModeInput Low Voltage3.3 V LVTTL/LVCMOS2.5 V ModeWeak Pull-up Resistance(IOB33U)Weak Pull-up Resistance(IOB25U)Input CurrentQuiescent Supply CurrentQuiescent Supply Current(standby)Commercial	ParameterConditionsOutput High Voltage 3.3 V I/O, High Drive, High Slew (DB33PH) $I_{OH} = -8 \text{ mA}$ $I_{OH} = -16 \text{ mA}$ 3.3 V I/O, Low Drive, Normal/ Low Slew (OB33PN/OB33PL) $I_{OH} = -3 \text{ mA}$ $I_{OH} = -8 \text{ mA}$ 3.3 V I/O, Low Drive, High/ Normal/Low Slew (OB33LH/ OB33LI/OB33LI) $I_{OH} = -3 \text{ mA}$ $I_{OH} = -8 \text{ mA}$ 3.3 V I/O, Low Drive, High/ Normal/Low Slew (OB33LH/ OB33PN) $I_{OL} = 12 \text{ mA}$ $I_{OL} = 17 \text{ mA}$ $I_{OL} = 28 \text{ mA}$ 3.3 V I/O, High Drive, Normal/ (DB33PH) $I_{OL} = 4 \text{ mA}$ $I_{OL} = 6 \text{ mA}$ $I_{OL} = 13 \text{ mA}$ 3.3 V I/O, Low Drive, High/ Normal/Low Slew (OB33PN/OB33PL)) $I_{OL} = 4 \text{ mA}$ $I_{OL} = 6 \text{ mA}$ $I_{OL} = 13 \text{ mA}$ 3.3 V I/O, Low Drive, High/ Normal/Low Slew (OB33LH/ OB33LN/OB33LL) $I_{OL} = 4 \text{ mA}$ $I_{OL} = 13 \text{ mA}$ 3.3 V I/O, Low Drive, High/ Normal/Low Slew (OB33H/ OB33LN/OB33LL) $I_{OL} = 4 \text{ mA}$ $I_{OL} = 13 \text{ mA}$ 3.3 V I/O, Low Drive, High/ Normal/Low Slew (OB33H/ OB33LN/OB33LL) $I_{OL} = 4 \text{ mA}$ $I_{OL} = 13 \text{ mA}$ 1.1 Input High Voltage 3.3 V Schmitt Trigger Inputs 3.3 V LVTTL/LVCMOS 2.5 V Mode $I_{OL} = 4 \text{ mA}$ $I_{OL} = 13 \text{ mA}$ 1.1 Mput Low Voltage 3.3 V Schmitt Trigger Inputs 3.3 V LVTTL/LVCMOS 2.5 V Mode $V_{IN} \ge 1.5 V$ Weak Pull-up Resistance (OB32U) $V_{IN} \ge 1.5 V$ Weak Pull-up Resistance (OB2SU) $With pull up (V_{IN} = GND or V_{DD}$ Input Current (Standby) Commercial $With pull up (V_{IN} = GND or V_{DD})$	ParameterConditionsOutput High Voltage 3.3 V VO, High Drive, High Slew (DB33PH) $I_{OH} = -8 \text{ mA}$ $I_{OH} = -16 \text{ mA}$ 3.3 V I/O, High Drive, Normal Low Slew (OB33PN/OB33PL) $I_{OH} = -3 \text{ mA}$ $I_{OH} = -8 \text{ mA}$ 3.3 V I/O, Low Drive, High' OB33LN/OB33LD $I_{OH} = -3 \text{ mA}$ $I_{OH} = -8 \text{ mA}$ 3.3 V I/O, High Drive, High Slew (DB33PN/OB33LL) $I_{OH} = -3 \text{ mA}$ $I_{OH} = -8 \text{ mA}$ Output Low Voltage 3.3 V I/O, High Drive, High Slew (DB33PN/OB33PL) $I_{OL} = 12 \text{ mA}$ $I_{OL} = 28 \text{ mA}$ 3.3 V I/O, High Drive, Normal/ Low Slew (OB33PN/OB33PL) $I_{OL} = 4 \text{ mA}$ $I_{OL} = 28 \text{ mA}$ 3.3 V I/O, Low Drive, High' Normal/Low Slew (OB33PN/OB33PL) $I_{OL} = 4 \text{ mA}$ $I_{OL} = 26 \text{ mA}$ $I_{OL} = 13 \text{ mA}$ 3.3 V I/O, Low Drive, High' Normal/Low Slew (OB33LH) $I_{OL} = 4 \text{ mA}$ $I_{OL} = 6 \text{ mA}$ $I_{OL} = 13 \text{ mA}$ 3.3 V I/O, Low Drive, High' Normal/Low Slew (OB33LH) $I_{OL} = 4 \text{ mA}$ $I_{OL} = 13 \text{ mA}$ 3.3 V VO, Low Drive, High' Normal/Low Slew (OB33LH) $I_{OL} = 4 \text{ mA}$ $I_{OL} = 13 \text{ mA}$ 3.3 V I/O, Low Drive, High' Normal/Low Slew (OB33LH) $I_{OL} = 5 \text{ mA}$ $I_{OL} = 13 \text{ mA}$ 3.3 V I/O, Low Drive, High' Normal/Low Slew (OB33LH) $I_{OL} = 5 \text{ mA}$ $I_{OL} = 5 \text{ mA}$ 0.1 (Dut Low Voltage 3.3 V Schmitt Trigger Inputs 3.3 V I/TTL/IVCMOS 2.5 V Mode $V_{IN} \ge 1.5 \text{ V}$ 1 (Made Aull-up Resistance (OB33U) $V_{IN} \ge 1.5 \text{ V}$ Weak Pull-up Resistance (OB25U) $V_{IN} = \text{ GND or V_{DD}$ 1 (Mate Aull-up Resistance (OB25U) $V_{IN} = GND or$	ParameterConditionsMilitaryOutput High Voltage 3.3 V VO, High Drive, High Slew (D833PH/) $ _{OH} = -8 \text{ mA} _{OH} = -16 \text{ mA}$ $0.9*V_{DDP} _{2.4}$ 3.3 V VO, High Drive, Normal/ Low Slew (OB33PN/0B33PL) $ _{OH} = -3mA _{OH} = -8mA$ $0.9*V_{DDP} _{2.4}$ 3.3 V VO, Low Drive , High OB33LN/OB33L1) $ _{OH} = -3mA _{OH} = -8mA _{2.4}$ $0.9*V_{DDP} _{2.4}$ 0.0tput Low Voltage 3.3 V VO, High Drive, Normal/ (D833PH/) $ _{OL} = 12 \text{ mA} _{OH} = -8 \text{ mA} _{2.4}$ $0.9*V_{DDP} _{2.4}$ 0.0tput Low Voltage 3.3 V VO, High Drive, Normal/ Low Slew (OB33PL) $ _{OL} = 12 \text{ mA} _{OI} = 28 \text{ mA} _{2.4}$ $0.9*V_{DDP} _{2.4}$ 0.0tput Low Voltage 3.3 V VO, Low Drive, High V Low Slew (OB33PL) $ _{OL} = 4 \text{ mA} _{OL} = 6 \text{ mA} _{OI} = 6 \text{ mA} _{OI} = 13 \text{ mA} _{OI} = 6 \text{ mA} _{OI} = 13 \text{ mA} _{OI} = 13 \text{ mA} _{OI} = 13 \text{ mA} _{OI} = 6 \text{ mA} _{OI} = 13 \text{ mA} _{OI} = 13 \text{ mA} _{OI} = 6 \text{ mA} _{OI} = 6 \text{ mA} _{OI} = 13 \text{ mA} _{OI} = 6 \text{ mA} _{OI} = 13 \text{ mA} _{OI} = 6 \text{ mA} _{OI} = 13 \text{ mA} _{OI} = 13 \text{ mA} _{OI} = 6 \text{ mA} _{OI} = 13 \text{ mA} _{OI} = 13 \text{ mA} _{OI} = 6 \text{ mA} _{OI} = 6 \text{ mA} _{OI} = 13 $	ParameterConditionsMilitary/ML-5Output High Voltage 3.3 V VO, High Drive, High Slew (DB33PH/ DS32LVOB33PL) $I_{OH} = -3 \text{ mA}$ $I_{OH} = -16 \text{ mA}$ $0.9 * V_{DP}$ 2.4 $0.9 * V_{DDP}$ 2.43.3 V VO, High Drive, Normal/ Low Slew (OB33PL/OB33PL) $I_{OH} = -3 \text{ mA}$ $I_{OH} = -3 \text{ mA}$ <b< td=""><td>ParameterConditionsMilitary/MIL-STD-883B1Output High Voltage (0B33PH)ConditionsMin.Typ.Max.Output High Voltage (0B33PH)$_{OH} = -8 \text{ mA} _{OH} = -16 \text{ mA}$$0.9 \text{ eV}_{DDP} 2.4$$0.9 \text{ eV}_{DD} 2.4$<t< td=""></t<></td></b<>	ParameterConditionsMilitary/MIL-STD-883B1Output High Voltage (0B33PH)ConditionsMin.Typ.Max.Output High Voltage (0B33PH) $ _{OH} = -8 \text{ mA} _{OH} = -16 \text{ mA}$ $0.9 \text{ eV}_{DDP} 2.4$ $0.9 \text{ eV}_{DD} 2.4$ <t< td=""></t<>

Table 1-24DC Electrical Specifications (VVTo

Notes:

1. All process conditions. Military Temperature / MIL-STD-883 Class B: Junction Temperature: –55 to +125°C.

2. No pull-up resistor required.

3. This will not exceed 2 mA total per device.

4. During transitions, the input signal may overshoot to V_{DDP}+1.0 V for a limited time of no larger than 10% of the duty cycle.

5. During transitions, the input signal may undershoot to -1.0 V for a limited time of no larger than 10% of the duty cycle.

Table 1-24DC Electrical Specifications (VVDE3.3 V \pm 0.3 Vand VVDE2.5 V \pm 0.2 V) (Continued)Applies to Military Temperature and MIL-STD-883B Temperature Only

				Military	/MIL-S	rd-883B ¹	
Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
I _{DDQ}	Quiescent Supply Current (standby) Industrial	$V_{IN} = GND^2 \text{ or } V_{DD}$	Std.		5.0	20	mA
I _{DDQ}	Quiescent Supply Current (standby) Military	$V_{IN} = GND^2 \text{ or } V_{DD}$	Std.		5.0	25	mA
I _{OZ}	Tristate Output Leakage	$V_{OH} = GND \text{ or } V_{DD}$	Std.	-10		10	μΑ
	Current		-F ³	-10		100	μA
I _{OSH}	Output Short Circuit Current High 3.3 V High Drive (OB33P) 3.3 V Low Drive (OB33L)	$V_{IN} = GND$ $V_{IN} = GND$		-200 -100			
I _{OSL}	Output Short Circuit Current Low 3.3 V High Drive 3.3 V Low Drive	$V_{IN} = V_{DD}$ $V_{IN} = V_{DD}$				200 100	
CI/O	I/O Pad Capacitance					10	pF
C _{CLK}	Clock Input Pad Capacitance					10	pF

Notes:

1. All process conditions. Military Temperature / MIL-STD-883 Class B: Junction Temperature: -55 to +125°C.

2. No pull-up resistor required.

3. This will not exceed 2 mA total per device.

4. During transitions, the input signal may overshoot to V_{DDP}+1.0 V for a limited time of no larger than 10% of the duty cycle.

5. During transitions, the input signal may undershoot to -1.0 V for a limited time of no larger than 10% of the duty cycle.

Tristate Buffer Delays

Figure 1-26 • Tristate Buffer Delays

Table 1-27 • Worst-Case Commercial Conditions $V_{DDP} = 3.0 \text{ V}, V_{DD} = 2.3 \text{ V}, 35 \text{ pF load}, T_1 = 70^{\circ}\text{C}$

		Max t _{DLH} 1		Max t _{DHL} 2		x Max 2 t _{ENZH} 3		Max t _{ENZL} 4		
Macro Type	Description	Std.	-F	Std.	-F	Std.	-F	Std.	-F	Units
OTB33PH	3.3 V, PCI Output Current, High Slew Rate	2.0	2.4	2.2	2.6	2.2	2.6	2.0	2.4	ns
OTB33PN	3.3 V, High Output Current, Nominal Slew Rate	2.2	2.6	2.9	3.5	2.4	2.9	2.1	2.5	ns
OTB33PL	3.3 V, High Output Current, Low Slew Rate	2.5	3.0	3.2	3.9	2.7	3.3	2.8	3.4	ns
OTB33LH	3.3 V, Low Output Current, High Slew Rate	2.6	3.1	4.0	4.8	2.8	3.4	3.0	3.6	ns
OTB33LN	3.3 V, Low Output Current, Nominal Slew Rate	2.9	3.5	4.3	5.2	3.2	3.8	4.1	4.9	ns
OTB33LL	3.3 V, Low Output Current, Low Slew Rate	3.0	3.6	5.6	6.7	3.3	3.9	5.5	6.6	ns

Notes:

- 1. t_{DLH}=Data-to-Pad High
- 2. t_{DHL}=Data-to-Pad Low
- 3. t_{ENZH}=Enable-to-Pad, Z to High
- 4. t_{ENZL} = Enable-to-Pad, Z to Low
- 5. All –F parts are only available as commercial.

Table 1-28 Worst-Case Commercial Conditions

 V_{DDP} = 2.3 V, V_{DD} = 2.3 V, 35 pF load, T_J = 70°C

		Max t _{DLH} 1		Max t _{DHL} 2		Max Max t _{DHL} ² t _{ENZH} ³		Max t _{ENZL} 4		
Macro Type	Description	Std.	-F	Std.	-F	Std.	-F	Std.	-F	Units
OTB25LPHH	2.5 V, Low Power, High Output Current, High Slew Rate ⁵	2.0	2.4	2.1	2.5	2.3	2.7	2.0	2.4	ns
OTB25LPHN	2.5 V, Low Power, High Output Current, Nominal Slew Rate ⁵	2.4	2.9	3.0	3.6	2.7	3.2	2.1	2.5	ns
OTB25LPHL	2.5 V, Low Power, High Output Current, Low Slew Rate ⁵	2.9	3.5	3.2	3.8	3.1	3.8	2.7	3.2	ns
OTB25LPLH	2.5 V, Low Power, Low Output Current, High Slew Rate ⁵	2.7	3.3	4.6	5.5	3.0	3.6	2.6	3.1	ns

Notes:

- 1. t_{DLH}=Data-to-Pad High
- 2. t_{DHL}=Data-to-Pad Low
- 3. t_{ENZH} =Enable-to-Pad, Z to High
- 4. t_{ENZL} = Enable-to-Pad, Z to Low
- 5. Low power I/O work with $V_{DDP}=2.5 V \pm 10\%$ only. $V_{DDP}=2.3 V$ for delays.
- 6. All –F parts are only available as commercial.

Global Input Buffer Delays

Table 1-39 • Worst-Case Commercial Conditions

 $V_{DDP} = 3.0 V, V_{DD} = 2.3 V, T_{J} = 70^{\circ}C$

		Max.	t _{INYH} 1	Max.	Units	
Macro Type	Description	Std. ³	-F	Std. ³	-F	
GL33	3.3 V, CMOS Input Levels ⁴ , No Pull-up Resistor	1.0	1.2	1.1	1.3	ns
GL33S	3.3 V, CMOS Input Levels ⁴ , No Pull-up Resistor, Schmitt Trigger	1.0	1.2	1.1	1.3	ns
PECL	PPECL Input Levels	1.0	1.2	1.1	1.3	ns

Notes:

- 1. $t_{INYH} = Input Pad-to-Y High$
- 2. $t_{INYL} = Input Pad-to-Y Low$
- 3. Applies to Military ProASIC^{PLUS} devices.
- 4. LVTTL delays are the same as CMOS delays.
- 5. For LP Macros, V_{DDP}=2.3 V for delays.
- 6. All –F parts are only available as commercial.

Table 1-40 • Worst-Case Commercial Conditions

 $V_{DDP} = 2.3 V, V_{DD} = 2.3 V, T_J = 70^{\circ}C$

		Max. t _{INYH} 1		Max.	Units	
Macro Type	Description	Std. ³	-F	Std. ³	-F	
GL25LP	2.5 V, CMOS Input Levels ⁴ , Low Power	1.1	1.2	1.0	1.3	ns
GL25LPS	2.5 V, CMOS Input Levels ⁴ , Low Power, Schmitt Trigger	1.3	1.6	1.0	1.1	ns

Notes:

- 1. $t_{INYH} = Input Pad-to-Y High$
- 2. $t_{INYL} = Input Pad-to-Y Low$

3. Applies to Military ProASIC^{PLUS} devices.

4. LVTTL delays are the same as CMOS delays.

5. For LP Macros, V_{DDP}=2.3 V for delays.

6. All –F parts are only available as commercial.

Table 1-48 Recommended Operating Conditions

		Lim	nits
Parameter	Symbol	Commercial/Industrial	Military/MIL-STD-883
Maximum Clock Frequency*	f _{CLOCK}	180 MHz	180 MHz
Maximum RAM Frequency*	f _{RAM}	150 MHz	150 MHz
Maximum Rise/Fall Time on Inputs*			
• Schmitt Trigger Mode (10% to 90%)	t _R /t _F	N/A	100 ns
 Non-Schmitt Trigger Mode (10% to 90%) 	t _R /t _F	100 ns	10 ns
Maximum LVPECL Frequency*		180 MHz	180 MHz
Maximum TCK Frequency (JTAG)	f _{TCK}	10 MHz	10 MHz

Note: *All –F parts will be 20% slower than standard commercial devices.

Table 1-49 • Slew Rates Measured at C = 30pF, Nominal Power Supplies and 25°C

Туре	Trig. Level	Rising Edge (ns)	Slew Rate (V/ns)	Falling Edge (ns)	Slew Rate (V/ns)	PCI Mode
OB33PH	10%-90%	1.60	1.65	1.65	1.60	Yes
OB33PN	10%-90%	1.57	1.68	3.32	0.80	No
OB33PL	10%-90%	1.57	1.68	1.99	1.32	No
OB33LH	10%-90%	3.80	0.70	4.84	0.55	No
OB33LN	10%-90%	4.19	0.63	3.37	0.78	No
OB33LL	10%-90%	5.49	0.48	2.98	0.89	No
OB25LPHH	10%-90%	1.55	1.29	1.56	1.28	No
OB25LPHN	10%-90%	1.70	1.18	2.08	0.96	No
OB25LPHL	10%-90%	1.97	1.02	2.09	0.96	No
OB25LPLH	10%-90%	3.57	0.56	3.93	0.51	No
OB25LPLN	10%-90%	4.65	0.43	3.28	0.61	No
OB25LPLL	10%-90%	5.52	0.36	3.44	0.58	No

Notes:

1. Standard and –F parts.

2. All –F only available as commercial.

Table 1-50 • JTAG Switching Characteristics

Description	Symbol	Min	Мах	Unit
Output delay from TCK falling to TDI, TMS	t _{TCKTDI}	-4	4	ns
TDO Setup time before TCK rising	t _{TDOTCK}	10		ns
TDO Hold time after TCK rising	t _{TCKTDO}	0		ns
TCK period	t _{TCK}	100 ²	1,000	ns
RCK period	t _{RCK}	100	1,000	ns

Notes:

1. For DC electrical specifications of the JTAG pins (TCK, TDI, TMS, TDO, TRST), refer to Table 1-22 on page 1-37 when $V_{DDP} = 2.5 V$ and Table 1-24 on page 1-41 when $V_{DDP} = 3.3 V$.

2. If RCK is being used, there is no minimum on the TCK period.

Figure 1-30 • JTAG Operation Timing

Embedded Memory Specifications

This section discusses ProASIC^{PLUS} SRAM/FIFO embedded memory and its interface signals, including timing diagrams that show the relationships of signals as they pertain to single embedded memory blocks (Table 1-51). Table 1-13 on page 1-24 shows basic SRAM and FIFO configurations. Simultaneous read and write to the same location must be done with care. On such accesses the DI bus is output to the DO bus. Refer to the *ProASIC*^{PLUS} *RAM and FIFO Blocks* application note for more information.

Enclosed Timing Diagrams—SRAM Mode:

- "Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)" section on page 1-58
- "Synchronous SRAM Read, Pipeline Mode Outputs (Synchronous Pipelined)" section on page 1-59
- "Asynchronous SRAM Write" section on page 1-60
- "Asynchronous SRAM Read, Address Controlled, RDB=0" section on page 1-61

- "Asynchronous SRAM Read, RDB Controlled" section on page 1-62
- "Synchronous SRAM Write"
- Embedded Memory Specifications

The difference between synchronous transparent and pipeline modes is the timing of all the output signals from the memory. In transparent mode, the outputs will change within the same clock cycle to reflect the data requested by the currently valid access to the memory. If clock cycles are short (high clock speed), the data requires most of the clock cycle to change to valid values (stable signals). Processing of this data in the same clock cycle is nearly impossible. Most designers add registers at all outputs of the memory to push the data processing into the next clock cycle. An entire clock cycle can then be used to process the data. To simplify use of this memorv setup, suitable registers have been implemented as part of the memory primitive and are available to the user in the synchronous pipeline mode. In this mode, the output signals will change shortly after the second rising edge, following the initiation of the read access.

SRAM Signal	Bits	In/Out	Description
WCLKS	1	In	Write clock used on synchronization on write side
RCLKS	1	In	Read clock used on synchronization on read side
RADDR<0:7>	8	In	Read address
RBLKB	1	In	True read block select (active Low)
RDB	1	In	True read pulse (active Low)
WADDR<0:7>	8	In	Write address
WBLKB	1	In	Write block select (active Low)
DI<0:8>	9	In	Input data bits <0:8>, <8> can be used for parity In
WRB	1	In	Negative true write pulse
DO<0:8>	9	Out	Output data bits <0:8>, <8> can be used for parity Out
RPE	1	Out	Read parity error (active High)
WPE	1	Out	Write parity error (active High)
PARODD	1	In	Selects Odd parity generation/detect when high, Even when low

Table 1-51 • Memory Block SRAM Interface Signals

Note: Not all signals shown are used in all modes.

Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)

Note: The plot shows the normal operation status.

Figure 1-31 • Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)

Table 1-52 •	$T_J = 0^{\circ}C$ to 110°C; $V_{DD} = 2.3 V$ to 2.7 V for Commercial/industrial
	$T_J = -55^{\circ}C$ to 150°C, $V_{DD} = 2.3$ V to 2.7 V for Military/MIL-STD-883

Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
СМН	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
OCA	New DO access from RCLKS \uparrow	7.5		ns	
OCH	Old DO valid from RCLKS ↑		3.0	ns	
RACH	RADDR hold from RCLKS \uparrow	0.5		ns	
RACS	RADDR setup to RCLKS ↑	1.0		ns	
RDCH	RDB hold from RCLKS ↑	0.5		ns	
RDCS	RDB setup to RCLKS ↑	1.0		ns	
RPCA	New RPE access from RCLKS \uparrow	9.5		ns	
RPCH	Old RPE valid from RCLKS \uparrow		3.0	ns	

Note: All –F speed grade devices are 20% slower than the standard numbers.

Asynchronous FIFO Read

Note: The plot shows the normal operation status.

Figure 1-43 • Asynchronous FIFO Read

Table 1-63T_J = 0°C to 110°C; V_{DD} = 2.3 V to 2.7 V for Commercial/industrialT_J = -55°C to 150°C, V_{DD} = 2.3 V to 2.7 V for Military/MIL-STD-883

Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
ERDH, FRDH, THRDH	Old EMPTY, FULL, EQTH, & GETH valid hold time from RB \uparrow		0.5	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete
ERDA	New EMPTY access from RB \uparrow	3.0 ¹		ns	
FRDA	FULL↓ access from RB ↑	3.0 ¹		ns	
ORDA	New DO access from RB \downarrow	7.5		ns	
ORDH	Old DO valid from RB \downarrow		3.0	ns	
RDCYC	Read cycle time	7.5		ns	
RDWRS	WB 1, clearing EMPTY, setup to	3.0 ²		ns	Enabling the read operation
	RB ↓		1.0	ns	Inhibiting the read operation
RDH	RB high phase	3.0		ns	Inactive
RDL	RB low phase	3.0		ns	Active
RPRDA	New RPE access from RB \downarrow	9.5		ns	
RPRDH	Old RPE valid from RB \downarrow		4.0	ns	
THRDA	EQTH or GETH access from RB [↑]	4.5		ns	

Notes:

1. At fast cycles, ERDA and FRDA = MAX (7.5 ns – RDL), 3.0 ns.

2. At fast cycles, RDWRS (for enabling read) = MAX (7.5 ns – WRL), 3.0 ns.

3. All –F speed grade devices are 20% slower than the standard numbers.

Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)

Note: The plot shows the normal operation status.

Figure 1-45 • Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)

Table 1-65 • $T_J = 0^{\circ}$ C to 110°C; $V_{DD} = 2.3$ V to 2.7 V for Commercial/industrial $T_J = -55^{\circ}$ C to 150°C, $V_{DD} = 2.3$ V to 2.7 V for Military/MIL-STD-883

Symbol t _{xxx}	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
СМН	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
ECBA	New EMPTY access from RCLKS \downarrow	3.0 ¹		ns	
FCBA	FULL \downarrow access from RCLKS \downarrow	3.0 ¹		ns	
ЕСВН, FCBH, ТНСВН	Old EMPTY, FULL, EQTH, & GETH valid hold time from RCLKS \downarrow		1.0	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete
OCA	New DO access from RCLKS \uparrow	7.5		ns	
ОСН	Old DO valid from RCLKS \uparrow		3.0	ns	
RDCH	RDB hold from RCLKS ↑	0.5		ns	
RDCS	RDB setup to RCLKS ↑	1.0		ns	
RPCA	New RPE access from RCLKS \uparrow	9.5		ns	
RPCH	Old RPE valid from RCLKS \uparrow		3.0	ns	
НСВА	EQTH or GETH access from RCLKS \downarrow	4.5		ns	

Notes:

1. At fast cycles, ECBA and FCBA = MAX (7.5 ns – CMH), 3.0 ns.

2. All –F speed grade devices are 20% slower than the standard numbers.