

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	73728
Number of I/O	186
Number of Gates	300000
Voltage - Supply	2.3V ~ 2.7V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/apa300-fgg256m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

Package	APA075	APA150	APA300	APA450	APA600	APA750	APA1000
TQ100	С, І	С, І					
TQ144	С, І						
PQ208	С, І	С, І	C, I, M	С, І	C, I, M	С, І	C, I, M
BG456		С, І	C, I, M	С, І	C, I, M	С, І	C, I, M
FG144	С, І	С, І	C, I, M	С, І			
FG256		С, І	C, I, M	С, І	C, I, M		
FG484				С, І	C, I, M		
FG676					C, I, M	С, І	
FG896						С, І	C, I, M
FG1152							С, І
CQ208			M, B		M, B		M, B
CQ352			M, B		M, B		M, B
CG624					M, B		M, B

Note: C = Commercial I = Industrial M = MilitaryB = MIL-STD-883

Speed Grade and Temperature Matrix

	-F	Std.
С	✓	✓
I		✓
M, B		√

Note: C = Commercial I = Industrial M = MilitaryB = MIL-STD-883

iv v5.8

General Description

The ProASIC PLUS family of devices, Actel's second-generation Flash FPGAs, offers enhanced performance over Actel's ProASIC family. It combines the advantages of ASICs with the benefits of programmable devices through nonvolatile Flash technology. This enables engineers to create high-density systems using existing ASIC or FPGA design flows and tools. In addition, the ProASIC family offers a unique clock conditioning circuit based on two on-board phase-locked loops (PLLs). The family offers up to one million system gates, supported with up to 198 kbits of two-port SRAM and up to 712 user I/Os, all providing 50 MHz PCI performance.

Advantages to the designer extend beyond performance. Unlike SRAM-based FPGAs, four levels of routing hierarchy simplify routing, while the use of Flash technology allows all functionality to be live at powerup. No external boot PROM is required to support device programming. While on-board security mechanisms prevent access to the program information. reprogramming can be performed in-system to support future design iterations and field upgrades. The device's architecture mitigates the complexity of ASIC migration at higher user volume. This makes ProASICPLUS a costeffective solution for applications in the networking, communications, computing, and avionics markets.

The ProASIC family achieves its nonvolatility and reprogrammability through an advanced Flash-based 0.22 μm LVCMOS process with four layers of metal. Standard CMOS design techniques are used to implement logic and control functions, including the PLLs and LVPECL inputs. This results in predictable performance compatible with gate arrays.

The ProASICPLUS architecture provides granularity comparable to gate arrays. The device core consists of a Sea-of-Tiles™. Each tile can be configured as a flip-flop, latch, or three-input/one-output logic function by programming the appropriate Flash switches. The

combination of fine granularity, flexible routing resources, and abundant Flash switches allow 100% utilization and over 95% routability for highly congested designs. Tiles and larger functions are interconnected through a four-level routing hierarchy.

Embedded two-port SRAM blocks with built-in FIFO/RAM control logic can have user-defined depths and widths. Users can also select programming for synchronous or asynchronous operation, as well as parity generations or checking.

The unique clock conditioning circuitry in each device includes two clock conditioning blocks. Each block provides a PLL core, delay lines, phase shifts (0° and 180°), and clock multipliers/dividers, as well as the circuitry needed to provide bidirectional access to the PLL. The PLL block contains four programmable frequency dividers which allow the incoming clock signal to be divided by a wide range of factors from 1 to 64. The clock conditioning circuit also delays or advances the incoming reference clock up to 8 ns (in increments of 0.25 ns). The PLL can be configured internally or externally during operation without redesigning or reprogramming the part. In addition to the PLL, there are two LVPECL differential input pairs to accommodate high-speed clock and data inputs.

To support customer needs for more comprehensive, lower-cost, board-level testing, Actel's ProASICPLUS devices are fully compatible with IEEE Standard 1149.1 for test access port and boundary-scan test architecture. For more information concerning the Flash FPGA implementation, please refer to the "Boundary Scan (JTAG)" section on page 1-11.

ProASICPLUS devices are available in a variety of high-performance plastic packages. Those packages and the performance features discussed above are described in more detail in the following sections.

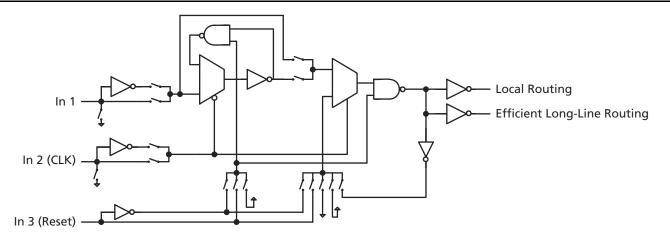


Figure 1-3 • Core Logic Tile

Live at Power-Up

The Actel Flash-based ProASICPLUS devices support Level 0 of the live at power-up (LAPU) classification standard. This feature helps in system component initialization, executing critical tasks before the processor wakes up, setting up and configuring memory blocks, clock generation, and bus activity management. The LAPU feature of Flash-based ProASICPLUS devices greatly simplifies total system design and reduces total system cost, often eliminating the need for Complex Programmable Logic Device (CPLD) and clock generation PLLs that are used for this purpose in a system. In addition, glitches and brownouts in system power will not corrupt the ProASICPLUS device's Flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based ProASICPLUS devices simplify total system design, and reduce cost and design risk. while increasing system reliability and improving system initialization time.

Flash Switch

Unlike SRAM FPGAs, ProASICPLUS uses a live-on-power-up ISP Flash switch as its programming element.

In the ProASICPLUS Flash switch, two transistors share the floating gate, which stores the programming information. One is the sensing transistor, which is only used for writing and verification of the floating gate voltage. The other is the switching transistor. It can be used in the architecture to connect/separate routing nets or to configure logic. It is also used to erase the floating gate (Figure 1-2 on page 1-2).

Logic Tile

The logic tile cell (Figure 1-3) has three inputs (any or all of which can be inverted) and one output (which can connect to both ultra-fast local and efficient long-line routing resources). Any three-input, one-output logic function (except a three-input XOR) can be configured as one tile. The tile can be configured as a latch with clear or set or as a flip-flop with clear or set. Thus, the tiles can flexibly map logic and sequential gates of a design.

Routing Resources

The routing structure of ProASICPLUS devices is designed to provide high performance through a flexible four-level hierarchy of routing resources: ultra-fast local resources, efficient long-line resources, high-speed, very long-line resources, and high performance global networks.

The ultra-fast local resources are dedicated lines that allow the output of each tile to connect directly to every input of the eight surrounding tiles (Figure 1-4).

The efficient long-line resources provide routing for longer distances and higher fanout connections. These resources vary in length (spanning 1, 2, or 4 tiles), run both vertically and horizontally, and cover the entire ProASIC PLUS device (Figure 1-5 on page 1-5). Each tile can drive signals onto the efficient long-line resources, which

can in turn access every input of every tile. Active buffers are inserted automatically by routing software to limit the loading effects due to distance and fanout.

The high-speed, very long-line resources, which span the entire device with minimal delay, are used to route very long or very high fanout nets. (Figure 1-6 on page 1-6).

The high-performance global networks are low-skew, high fanout nets that are accessible from external pins or from internal logic (Figure 1-7 on page 1-7). These nets are typically used to distribute clocks, resets, and other high fanout nets requiring a minimum skew. The global networks are implemented as clock trees, and signals can be introduced at any junction. These can be employed hierarchically with signals accessing every input on all tiles

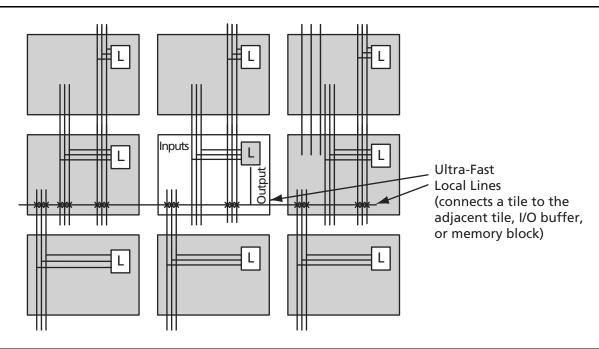


Figure 1-4 • Ultra-Fast Local Resources

1-4 v5.8

Power-Up Sequencing

While ProASIC PLUS devices are live at power-up, the order of V_{DD} and V_{DDP} power-up is important during system start-up. V_{DD} should be powered up simultaneously with V_{DDP} on ProASIC devices. Failure to follow these guidelines may result in undesirable pin behavior during system start-up. For more information, refer to Actel's Power-Up Behavior of ProASIC Devices application note.

LVPECL Input Pads

In addition to standard I/O pads and power pads, ProASICPLUS devices have a single LVPECL input pad on both the east and west sides of the device, along with AVDD and AGND pins to power the PLL block. The LVPECL pad cell consists of an input buffer (containing a

low voltage differential amplifier) and a signal and its complement, PPECL (I/P) (PECLN) and NPECL (PECLREF). The LVPECL input pad cell differs from the standard I/O cell in that it is operated from $V_{\rm DD}$ only.

Since it is exclusively an input, it requires no output signal, output enable signal, or output configuration bits. As a special high-speed differential input, it also does not require pull ups. Recommended termination for LVPECL inputs is shown in Figure 1-10. The LVPECL pad cell compares voltages on the PPECL (I/P) pad (as illustrated in Figure 1-11) and the NPECL pad and sends the results to the global MUX (Figure 1-14 on page 1-14). This high-speed, low-skew output essentially controls the clock conditioning circuit.

LVPECLs are designed to meet LVPECL JEDEC receiver standard levels (Table 1-5).

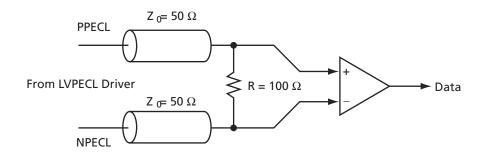
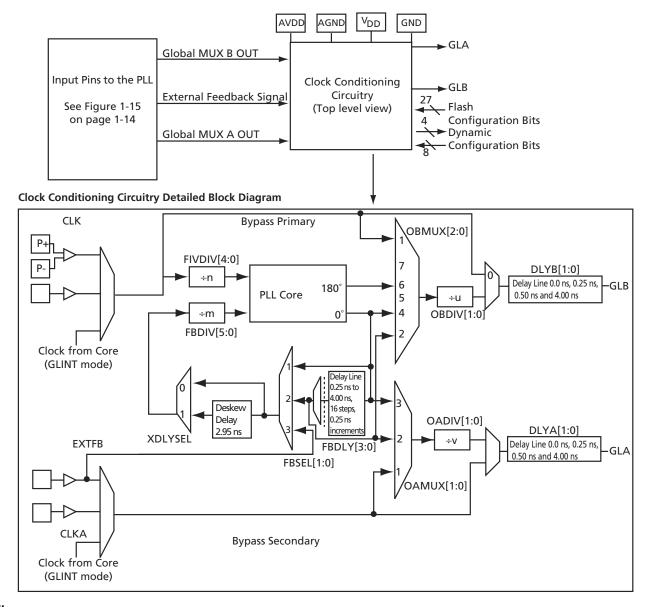


Figure 1-10 • Recommended Termination for LVPECL Inputs

Figure 1-11 • LVPECL High and Low Threshold Values

Table 1-5 • LVPECL Receiver Specifications


Symbol	Parameter	Min.	Min. Max	
V _{IH}	Input High Voltage	1.49	2.72	V
V _{IL}	Input Low Voltage	0.86	2.125	V
V_{ID}	Differential Input Voltage	0.3	V_{DD}	V

1-10 v5.8

enable the user to define a wide range of frequency multipliers and divisors. The clock conditioning circuit can advance or delay the clock up to 8 ns (in increments of 0.25 ns) relative to the positive edge of the incoming reference clock. The system also allows for the selection of output frequency clock phases of 0° and 180°.

Prior to the application of signals to the rib drivers, they pass through programmable delay units, one per global network. These units permit the delaying of global

signals relative to other signals to assist in the control of input set-up times. Not all possible combinations of input and output modes can be used. The degrees of freedom available in the bidirectional global pad system and in the clock conditioning circuit have been restricted. This avoids unnecessary and unwieldy design kit and software work.

Notes:

- 1. FBDLY is a programmable delay line from 0 to 4 ns in 250 ps increments.
- 2. DLYA and DLYB are programmable delay lines, each with selectable values 0 ps, 250 ps, 500 ps, and 4 ns.
- 3. OBDIV will also divide the phase-shift since it takes place after the PLL Core.

Figure 1-14 • PLL Block – Top-Level View and Detailed PLL Block Diagram

1-14 v5.8

Table 1-8 • Clock-Conditioning Circuitry Delay-Line Settings

Delay Line	Delay Value (ns)
DLYB	
0	0
1	+0.25
2	+0.50
3	+4.0
DLYA	
0	0
1	+0.25
2	+0.50
3	+4.0

Lock Signal

An active-high Lock signal (added via the SmartGen PLL development tool) indicates that the PLL has locked to the incoming clock signal. The PLL will acquire and maintain lock even when there is jitter on the incoming clock signal. The PLL will maintain lock with an input jitter up to 5% of the input period, with a maximum of 5 ns. Users can employ the Lock signal as a soft reset of the logic driven by GLB and/or GLA. Note if F_{IN} is not within specified frequencies, then both the F_{OUT} and lock signal are indeterminate.

PLL Configuration Options

The PLL can be configured during design (via Flash-configuration bits set in the programming bitstream) or dynamically during device operation, thus eliminating the need to reprogram the device. The dynamic configuration bits are loaded into a serial-in/parallel-out shift register provided in the clock conditioning circuit. The shift register can be accessed either from user logic within the device or via the JTAG port. Another option is internal dynamic configuration via user-designed hardware. Refer to Actel's *ProASIC* PLL Dynamic Reconfiguration Using JTAG application note for more information

For information on the clock conditioning circuit, refer to Actel's *Using ProASICPLUS* Clock Conditioning Circuits application note.

Sample Implementations

Frequency Synthesis

Figure 1-16 on page 1-17 illustrates an example where the PLL is used to multiply a 33 MHz external clock up to 133 MHz. Figure 1-17 on page 1-17 uses two dividers to synthesize a 50 MHz output clock from a 40 MHz input reference clock. The input frequency of 40 MHz is multiplied by five and divided by four, giving an output clock (GLB) frequency of 50 MHz. When dividers are used, a given ratio can be generated in multiple ways, allowing the user to stay within the operating frequency ranges of the PLL. For example, in this case the input divider could have been two and the output divider also two, giving us a division of the input frequency by four to go with the feedback loop division (effective multiplication) by five.

Adjustable Clock Delay

Figure 1-18 on page 1-18 illustrates the delay of the input clock by employing one of the adjustable delay lines. This is easily done in ProASICPLUS by bypassing the PLL core entirely and using the output delay line. Notice also that the output clock can be effectively advanced relative to the input clock by using the delay line in the feedback path. This is shown in Figure 1-19 on page 1-18.

Clock Skew Minimization

Figure 1-20 on page 1-19 indicates how feedback from the clock network can be used to create minimal skew between the distributed clock network and the input clock. The input clock is fed to the reference clock input of the PLL. The output clock (GLA) feeds a clock network. The feedback input to the PLL uses a clock input delayed by a routing network. The PLL then adjusts the phase of the input clock to match the delayed clock, thus providing nearly zero effective skew between the two clocks. Refer to Actel's *Using ProASICPLUS Clock Conditioning Circuits* application note for more information.

1-16 v5.8

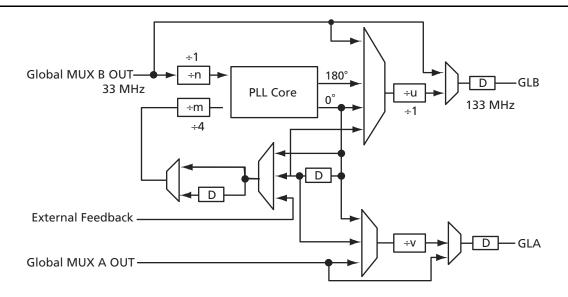


Figure 1-16 • Using the PLL 33 MHz In, 133 MHz Out

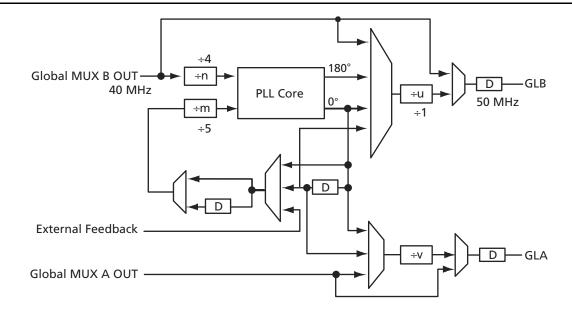


Figure 1-17 • Using the PLL 40 MHz In, 50 MHz Out

l®User Security

ProASICPLUS devices have FlashLock protection bits that, FlashLockonce programmed, block the entire programmed contents from being read externally. Please refer to Table 1-11 for details on the number of bits in the key for each device. If locked, the user can only reprogram the device employing the user-defined security key. This protects the device from being read back and duplicated. Since programmed data is stored in nonvolatile memory cells (actually very small capacitors) rather than in the wiring, physical deconstruction cannot be used to compromise data. This type of security breach is further discouraged by the placement of the memory cells beneath the four metal layers (whose removal cannot be accomplished without disturbing the charge in the capacitor). This is the highest security provided in the industry. For more information, refer to Actel's Design Security in Nonvolatile Flash and Antifuse FPGAs white paper.

Table 1-11 • Flashlock Key Size by Device

Device	Key Size
APA075	79 bits
APA150	79 bits
APA300	79 bits
APA450	119 bits
APA600	167 bits
APA750	191 bits
APA1000	263 bits

Embedded Memory Floorplan

The embedded memory is located across the top and bottom of the device in 256x9 blocks (Figure 1-1 on page 1-2). Depending on the device, up to 88 blocks are available to support a variety of memory configurations. Each block can be programmed as an independent memory array or combined (using dedicated memory routing resources) to form larger, more complex memory configurations. A single memory configuration could include blocks from both the top and bottom memory locations.

Table 1-12 ◆ ProASICPLUS Memory Configurations by Device

Embedded Memory Configurations

The embedded memory in the ProASICPLUS family provides great configuration flexibility (Table 1-12). Each ProASICPLUS block is designed and optimized as a two-port memory (one read, one write). This provides 198 kbits of two-port and/or single port memory in the APA1000 device.

Each memory block can be configured as FIFO or SRAM, with independent selection of synchronous or asynchronous read and write ports (Table 1-13). Additional characteristics include programmable flags as well as parity checking and generation. Figure 1-21 on page 1-25 and Figure 1-22 on page 1-26 show the block diagrams of the basic SRAM and FIFO blocks. Table 1-14 on page 1-25 and Table 1-15 on page 1-26 describe memory block SRAM and FIFO interface signals, respectively. A single memory block is designed to operate at up to 150 MHz (standard speed grade typical conditions). Each block is comprised of 256 9-bit words (one read port, one write port). The memory blocks may be cascaded in width and/or depth to create the desired memory organization. (Figure 1-23 on page 1-27). This provides optimal bit widths of 9 (one block), 18, 36, and 72, and optimal depths of 256, 512, 768, and 1,024. Refer to Actel's SmartGen User's Guide for more information.

Figure 1-24 on page 1-27 gives an example of optimal memory usage. Ten blocks with 23,040 bits have been used to generate three arrays of various widths and depths. Figure 1-25 on page 1-27 shows how RAM blocks can be used in parallel to create extra read ports. In this example, using only 10 of the 88 available blocks of the APA1000 yields an effective 6,912 bits of multiple port RAM. The Actel SmartGen software facilitates building wider and deeper memory configurations for optimal memory usage.

			Maximu	m Width	Maximu	m Depth
Device	Bottom	Тор	D	W	D	W
APA075	0	12	256	108	1,536	9
APA150	0	16	256	144	2,048	9
APA300	16	16	256	144	2,048	9
APA450	24	24	256	216	3,072	9
APA600	28	28	256	252	3,584	9

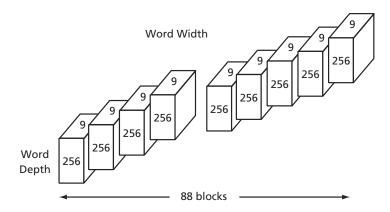
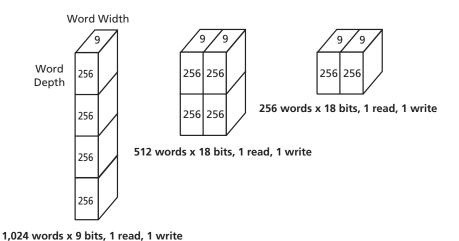



Figure 1-23 • APA1000 Memory Block Architecture

Total Memory Blocks Used = 10 Total Memory Bits = 23,040

Figure 1-24 • Example Showing Memory Arrays with Different Widths and Depths

Figure 1-25 • Multi-Port Memory Usage

Table 1-25 • DC Specifications (3.3 V PCI Operation)¹

					nercial/ trial ^{2,3}	Military/MII		
Symbol	Parameter	Condition		Min.	Max.	Min.	Max.	Units
V_{DD}	Supply Voltage for Core			2.3	2.7	2.3	2.7	V
V_{DDP}	Supply Voltage for I/O Ring			3.0	3.6	3.0	3.6	V
V _{IH}	Input High Voltage			0.5V _{DDP}	V _{DDP} + 0.5	0.5V _{DDP}	V _{DDP} + 0.5	V
V _{IL}	Input Low Voltage			-0.5	0.3V _{DDP}	-0.5	0.3V _{DDP}	V
I _{IPU}	Input Pull-up Voltage ⁴			0.7V _{DDP}		0.7V _{DDP}		V
I _{IL}	Input Leakage Current ⁵	$0 < V_{IN} < V_{DDP}$	Std.	-10	10	-50	50	μА
			−F ^{3, 6}	-10	100			μΑ
V _{OH}	Output High Voltage	I _{OUT} = -500 μA	•	0.9V _{DDP}		0.9V _{DDP}		V
V _{OL}	Output Low Voltage	I _{OUT} = 1500 μA			0.1V _{DDP}		0.1V _{DDP}	V
C _{IN}	Input Pin Capacitance (except CLK)				10		10	pF
C _{CLK}	CLK Pin Capacitance			5	12	5	12	pF

Notes:

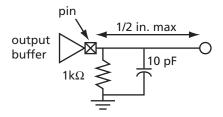

- 1. For PCI operation, use GL33, OTB33PH, OB33PH, IOB33PH, IB33, or IB33S macro library cell only.
- 2. All process conditions. Junction Temperature: -40 to +110°C for Commercial and Industrial devices and -55 to +125°C for Military.
- 3. All –F parts are available as commercial only.
- 4. This specification is guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Designers with applications sensitive to static power utilization should ensure that the input buffer is conducting minimum current at this input voltage.
- 5. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
- 6. The sum of the leakage currents for all inputs shall not exceed 2mA per device.

Table 1-26 • AC Specifications (3.3 V PCI Revision 2.2 Operation)

			Commercial/Industria	al/Military/MIL-STD- 883	
Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	0 < V _{OUT} ≤ 0.3V _{DDP} *	−12V _{DDP}		mA
		$0.3V_{DDP} \le V_{OUT} < 0.9V_{DDP}^*$	(-17.1 + (V _{DDP} - V _{OUT}))		mA
		$0.7V_{DDP} < V_{OUT} < V_{DDP}^*$		See equation C – page 124 of the PCI Specification document rev. 2.2	
	(Test Point)	$V_{OUT} = 0.7 V_{DDP}^*$		-32V _{DDP}	mA
I _{OL(AC)}	Switching Current Low	$V_{DDP} > V_{OUT} \ge 0.6 V_{DDP}^*$	16V _{DDP}		mA
		$0.6V_{DDP} > V_{OUT} > 0.1V_{DDP}^{-1}$	(26.7V _{OUT})		mA
		0.18V _{DDP} > V _{OUT} > 0*		See equation D – page 124 of the PCI Specification document rev. 2.2	
	(Test Point)	$V_{OUT} = 0.18V_{DDP}$		38V _{DDP}	mA
I _{CL}	Low Clamp Current	$-3 < V_{IN} \le -1$	−25 + (V _{IN} + 1)/0.015		mA
I _{CH}	High Clamp Current	$V_{DDP} + 4 > V_{IN} \ge V_{DDP} + 1$	25 + (V _{IN} – V _{DDP} – 1)/0.015		mA
slew _R	Output Rise Slew Rate	0.2V _{DDP} to 0.6V _{DDP} load*	1	4	V/ns
slew _F	Output Fall Slew Rate	0.6V _{DDP} to 0.2V _{DDP} load*	1	4	V/ns

Note: * Refer to the PCI Specification document rev. 2.2.

Pad Loading Applicable to the Rising Edge PCI

Pad Loading Applicable to the Falling Edge PCI

1-44 v5.8

Tristate Buffer Delays

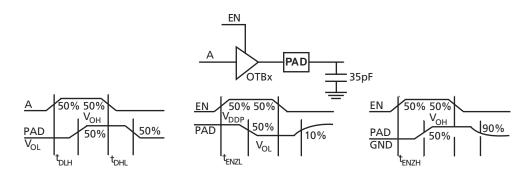


Figure 1-26 • Tristate Buffer Delays

Table 1-27 • Worst-Case Commercial Conditions $V_{DDP} = 3.0 \text{ V}, V_{DD} = 2.3 \text{ V}, 35 \text{ pF load}, T_J = 70^{\circ}\text{C}$

		Max t _{DLH} 1		4		4 3		3		. 3 . 4 .		
Macro Type	Description S		-F	Std.	-F	Std.	-F	Std.	-F	Units		
OTB33PH	3.3 V, PCI Output Current, High Slew Rate	2.0	2.4	2.2	2.6	2.2	2.6	2.0	2.4	ns		
OTB33PN	3.3 V, High Output Current, Nominal Slew Rate	2.2	2.6	2.9	3.5	2.4	2.9	2.1	2.5	ns		
OTB33PL	3.3 V, High Output Current, Low Slew Rate	2.5	3.0	3.2	3.9	2.7	3.3	2.8	3.4	ns		
OTB33LH	3.3 V, Low Output Current, High Slew Rate	2.6	3.1	4.0	4.8	2.8	3.4	3.0	3.6	ns		
OTB33LN	3.3 V, Low Output Current, Nominal Slew Rate	2.9	3.5	4.3	5.2	3.2	3.8	4.1	4.9	ns		
OTB33LL	3.3 V, Low Output Current, Low Slew Rate	3.0	3.6	5.6	6.7	3.3	3.9	5.5	6.6	ns		

Notes:

- 1. t_{DLH}=Data-to-Pad High
- 2. t_{DHL}=Data-to-Pad Low
- 3. t_{ENZH}=Enable-to-Pad, Z to High
- 4. t_{ENZL} = Enable-to-Pad, Z to Low
- 5. All –F parts are only available as commercial.

Table 1-28 • Worst-Case Commercial Conditions V_{DDP} = 2.3 V, V_{DD} = 2.3 V, 35 pF load, T_J = 70°C

		Max t _{DLH} 1		Max t _{DHL} ²				Max t _{ENZL} ⁴		
Macro Type	Description	Std.	-F	Std.	-F	Std.	-F	Std.	-F	Units
OTB25LPHH	2.5 V, Low Power, High Output Current, High Slew Rate ⁵	2.0	2.4	2.1	2.5	2.3	2.7	2.0	2.4	ns
OTB25LPHN	2.5 V, Low Power, High Output Current, Nominal Slew Rate ⁵	2.4	2.9	3.0	3.6	2.7	3.2	2.1	2.5	ns
OTB25LPHL	2.5 V, Low Power, High Output Current, Low Slew Rate ⁵	2.9	3.5	3.2	3.8	3.1	3.8	2.7	3.2	ns
OTB25LPLH	2.5 V, Low Power, Low Output Current, High Slew Rate ⁵	2.7	3.3	4.6	5.5	3.0	3.6	2.6	3.1	ns

Notes:

- 1. t_{DLH}=Data-to-Pad High
- 2. t_{DHL}=Data-to-Pad Low
- 3. t_{ENZH}=Enable-to-Pad, Z to High
- 4. t_{ENZL} = Enable-to-Pad, Z to Low
- 5. Low power I/O work with V_{DDP} =2.5 V ±10% only. V_{DDP} =2.3 V for delays.
- 6. All -F parts are only available as commercial.

Table 1-28 • Worst-Case Commercial Conditions $V_{DDP} = 2.3 \text{ V}, V_{DD} = 2.3 \text{ V}, 35 \text{ pF load}, T_J = 70^{\circ}\text{C}$

		Max t _{DLH} 1		Ma t _{DH}	•			Max t _{ENZL} ⁴		
Macro Type	Description	Std.	-F	Std.	-F	Std.	-F	Std.	-F	Units
OTB25LPLN	2.5 V, Low Power, Low Output Current, Nominal Slew Rate ⁵	3.5	4.2	4.2	5.1	3.8	4.5	3.8	4.6	ns
OTB25LPLL	2.5 V, Low Power, Low Output Current, Low Slew Rate ⁵	4.0	4.8	5.3	6.4	4.2	5.1	5.1	6.1	ns

Notes:

- 1. t_{DLH}=Data-to-Pad High
- 2. t_{DHL}=Data-to-Pad Low
- 3. t_{ENZH}=Enable-to-Pad, Z to High
- 4. t_{ENZL} = Enable-to-Pad, Z to Low
- 5. Low power I/O work with V_{DDP} =2.5 V ±10% only. V_{DDP} =2.3 V for delays.
- 6. All –F parts are only available as commercial.

Table 1-29 • Worst-Case Military Conditions V_{DDP} = 3.0 V, V_{DD} = 2.3 V, 35 pF load, T_J = 125°C for Military/MIL-STD-883

		Max t _{DLH} 1	Max t _{DHL} ²	Max t _{ENZH} ³	Max t _{ENZL} 4	
Macro Type	Description	Std.	Std.	Std.	Std.	Units
ОТВ33РН	3.3 V, PCI Output Current, High Slew Rate	2.2	2.4	2.3	2.1	ns
OTB33PN	3.3 V, High Output Current, Nominal Slew Rate	2.4	3.2	2.7	2.3	ns
OTB33PL	3.3 V, High Output Current, Low Slew Rate	2.7	3.5	2.9	3.0	ns
OTB33LH	3.3 V, Low Output Current, High Slew Rate	2.7	4.3	3.0	3.1	ns
OTB33LN	3.3 V, Low Output Current, Nominal Slew Rate	3.3	4.7	3.4	4.4	ns
OTB33LL	3.3 V, Low Output Current, Low Slew Rate	3.2	6.0	3.5	5.9	ns

Notes:

- 1. t_{DLH}=Data-to-Pad High
- 2. t_{DHL}=Data-to-Pad Low
- 3. t_{FNZH} =Enable-to-Pad, Z to High
- 4. t_{ENZL} = Enable-to-Pad, Z to Low

Table 1-30 • Worst-Case Military Conditions V_{DDP} = 2.3 V, V_{DD} = 2.3 V, 35 pF load, T_J = 125°C for Military/MIL-STD-883

		Max t _{DLH} 1	Max t _{DHL} ²	Max t _{ENZH} ³	Max t _{ENZL} ⁴	
Macro Type	Description	Std.	Std.	Std.	Std.	Units
OTB25LPHH	2.5 V, Low Power, High Output Current, High Slew Rate ⁵	2.3	2.3	2.4	2.1	ns
OTB25LPHN	2.5 V, Low Power, High Output Current, Nominal Slew Rate ⁵	2.7	3.2	2.8	2.1	ns
OTB25LPHL	2.5 V, Low Power, High Output Current, Low Slew Rate ⁵	3.2	3.5	3.3	2.8	ns
OTB25LPLH	2.5 V, Low Power, Low Output Current, High Slew Rate ⁵	3.0	5.0	3.2	2.8	ns
OTB25LPLN	2.5 V, Low Power, Low Output Current, Nominal Slew Rate ⁵	3.7	4.5	4.1	4.1	ns
OTB25LPLL	2.5 V, Low Power, Low Output Current, Low Slew Rate ⁵	4.4	5.8	4.4	5.4	ns

Notes:

- 1. t_{DLH}=Data-to-Pad High
- 2. t_{DHL}=Data-to-Pad Low
- 3. t_{ENZH}=Enable-to-Pad, Z to High
- 4. t_{ENZL} = Enable-to-Pad, Z to Low
- 5. Low power I/O work with V_{DDP} =2.5V ±10% only. V_{DDP} =2.3V for delays.

1-46 v5.8

Output Buffer Delays

Figure 1-27 • Output Buffer Delays

Table 1-31 • Worst-Case Commercial Conditions V_{DDP} = 3.0 V, V_{DD} = 2.3 V, 35 pF load, T_J = 70°C

		Max t _{DLH} 1		Max t _{DHL} ²		
Macro Type	Description	Std.	-F	Std.	- F	Units
OB33PH	3.3 V, PCI Output Current, High Slew Rate	2.0	2.4	2.2	2.6	ns
OB33PN	3.3 V, High Output Current, Nominal Slew Rate	2.2	2.6	2.9	3.5	ns
OB33PL	3.3 V, High Output Current, Low Slew Rate	2.5	3.0	3.2	3.9	ns
OB33LH	3.3 V, Low Output Current, High Slew Rate	2.6	3.1	4.0	4.8	ns
OB33LN	3.3 V, Low Output Current, Nominal Slew Rate	2.9	3.5	4.3	5.2	ns
OB33LL	3.3 V, Low Output Current, Low Slew Rate	3.0	3.6	5.6	6.7	ns

Notes:

- 1. $t_{DLH} = Data-to-Pad\ High$
- 2. $t_{DHL} = Data-to-Pad\ Low$
- 3. All -F parts are only available as commercial.

Table 1-32 • Worst-Case Commercial Conditions $V_{DDP} = 2.3 \text{ V}, V_{DD} = 2.3 \text{ V}, 35 \text{ pF load}, T_J = 70^{\circ}\text{C}$

		Max t _{DLH} 1		Max t _{DHL} ²		
Macro Type	Description	Std.	-F	Std.	-F	Units
OB25LPHH	2.5 V, Low Power, High Output Current, High Slew Rate ³	2.0	2.4	2.1	2.6	ns
OB25LPHN	2.5 V, Low Power, High Output Current, Nominal Slew Rate ³	2.4	2.9	3.0	3.6	ns
OB25LPHL	2.5 V, Low Power, High Output Current, Low Slew Rate ³	2.9	3.5	3.2	3.8	ns
OB25LPLH	2.5 V, Low Power, Low Output Current, High Slew Rate ³	2.7	3.3	4.6	5.5	ns
OB25LPLN	2.5 V, Low Power, Low Output Current, Nominal Slew Rate ³	3.5	4.2	4.2	5.1	ns
OB25LPLL	2.5 V, Low Power, Low Output Current, Low Slew Rate ³	4.0	4.8	5.3	6.4	ns

Notes:

- 1. $t_{DLH} = Data-to-Pad\ High$
- 2. t_{DHL} = Data-to-Pad Low
- 3. Low-power I/Os work with V_{DDP} =2.5 V ±10% only. V_{DDP} =2.3 V for delays.
- 4. All -F parts are only available as commercial.

Table 1-41 • Worst-Case Military Conditions V_{DDP} = 3.0V, V_{DD} = 2.3V, T_J = 125°C for Military/MIL-STD-883

		Max. t _{INYH} 1	Max. t _{INYL} ²
Macro Type	Description	Std.	Std.
GL33	3.3V, CMOS Input Levels ³ , No Pull-up Resistor	1.1	1.1
GL33S	3.3V, CMOS Input Levels ³ , No Pull-up Resistor, Schmitt Trigger	1.1	1.1
PECL	PPECL Input Levels	1.1	1.1

Notes:

- 1. $t_{INYH} = Input Pad-to-Y High$
- 2. $t_{INYL} = Input Pad-to-Y Low$
- 3. LVTTL delays are the same as CMOS delays.
- 4. For LP Macros, V_{DDP} =2.3V for delays.

Table 1-42 • Worst-Case Military Conditions $V_{DDP} = 2.3V, V_{DD} = 2.3V, T_J = 125^{\circ}C$ for Military/MIL-STD-883

		Max. t _{INYH} 1	Max. t _{INYL} ²
Macro Type	Description	Std.	Std.
GL25LP	2.5V, CMOS Input Levels ³ , Low Power	1.0	1.1
GL25LPS	2.5V, CMOS Input Levels ³ , Low Power, Schmitt Trigger	1.4	1.0

Notes:

- 1. $t_{INYH} = Input Pad-to-Y High$
- 2. $t_{INYL} = Input Pad-to-Y Low$
- 3. LVTTL delays are the same as CMOS delays.
- 4. For LP Macros, V_{DDP}=2.3V for delays.

1-52 v5.8

Asynchronous FIFO Full and Empty Transitions

The asynchronous FIFO accepts writes and reads while not full or not empty. When the FIFO is full, all writes are inhibited. Conversely, when the FIFO is empty, all reads are inhibited. A problem is created if the FIFO is written to during the transition from full to not full, or read during the transition from empty to not empty. The exact time at which the write or read operation changes from inhibited to accepted after the read (write) signal which causes the transition from full or empty to not full or not empty is indeterminate. For slow cycles, this indeterminate period starts 1 ns after the RB (WB) transition, which deactivates full or not empty and ends 3 ns after the RB (WB) transition. For fast cycles, the indeterminate period ends 3 ns (7.5 ns – RDL (WRL)) after the RB (WB) transition, whichever is later (Table 1-1 on page 1-7).

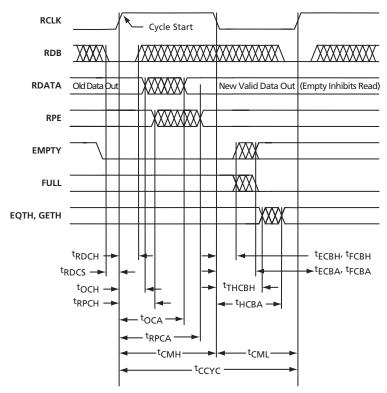
The timing diagram for write is shown in Figure 1-38 on page 1-65. The timing diagram for read is shown in Figure 1-39 on page 1-66. For basic SRAM configurations, see Table 1-14 on page 1-25. When reset is asserted, the

empty flag will be asserted, the counters will reset, the outputs go to zero, but the internal RAM is not erased.

Enclosed Timing Diagrams – FIFO Mode:

The following timing diagrams apply only to single cell; they are not applicable to cascaded cells. For more information, refer to the *ProASIC*^{PLUS} *RAMIFIFO Blocks* application note.

- "Asynchronous FIFO Read" section on page 1-70
- "Asynchronous FIFO Write" section on page 1-71
- "Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)" section on page 1-72
- "Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)" section on page 1-73
- "Synchronous FIFO Write" section on page 1-74
- "FIFO Reset" section on page 1-75


Table 1-62 • Memory Block FIFO Interface Signals

FIFO Signal	Bits	In/Out	Description
WCLKS	1	In	Write clock used for synchronization on write side
RCLKS	1	In	Read clock used for synchronization on read side
LEVEL <0:7>*	8	In	Direct configuration implements static flag logic
RBLKB	1	In	Read block select (active Low)
RDB	1	In	Read pulse (active Low)
RESET	1	In	Reset for FIFO pointers (active Low)
WBLKB	1	In	Write block select (active Low)
DI<0:8>	9	In	Input data bits <0:8>, <8> will be generated if PARGEN is true
WRB	1	In	Write pulse (active Low)
FULL, EMPTY	2	Out	FIFO flags. FULL prevents write and EMPTY prevents read
EQTH, GEQTH*	2	Out	EQTH is true when the FIFO holds the number of words specified by the LEVEL signal. GEQTH is true when the FIFO holds (LEVEL) words or more
DO<0:8>	9	Out	Output data bits <0:8>
RPE	1	Out	Read parity error (active High)
WPE	1	Out	Write parity error (active High)
LGDEP <0:2>	3	In	Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD	1	ln	Selects Odd parity generation/detect when high, Even when low

Note: *LEVEL is always eight bits (0000.0000, 0000.0001). That means for values of DEPTH greater than 256, not all values will be possible, e.g. for DEPTH=512, the LEVEL can only have the values 2, 4, . . . , 512. The LEVEL signal circuit will generate signals that indicate whether the FIFO is exactly filled to the value of LEVEL (EQTH) or filled equal or higher (GEQTH) than the specified LEVEL. Since counting starts at 0, EQTH will become true when the FIFO holds (LEVEL+1) words for 512-bit FIFOs.

1-68 v5.8

Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)

Note: The plot shows the normal operation status.

Figure 1-45 • Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)

Table 1-65 • $T_J = 0^{\circ}\text{C}$ to 110°C; $V_{DD} = 2.3 \text{ V}$ to 2.7 V for Commercial/industrial $T_J = -55^{\circ}\text{C}$ to 150°C, $V_{DD} = 2.3 \text{ V}$ to 2.7 V for Military/MIL-STD-883

Symbol t _{xxx}	Description	Min.	Мах.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
ECBA	New EMPTY access from RCLKS ↓	3.0 ¹		ns	
FCBA	FULL ↓ access from RCLKS ↓	3.0 ¹		ns	
ECBH, FCBH, THCBH	Old EMPTY, FULL, EQTH, & GETH valid hold time from RCLKS \downarrow		1.0	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete
OCA	New DO access from RCLKS ↑	7.5		ns	
OCH	Old DO valid from RCLKS ↑		3.0	ns	
RDCH	RDB hold from RCLKS ↑	0.5		ns	
RDCS	RDB setup to RCLKS ↑	1.0		ns	
RPCA	New RPE access from RCLKS ↑	9.5		ns	
RPCH	Old RPE valid from RCLKS ↑		3.0	ns	
НСВА	EQTH or GETH access from RCLKS ↓	4.5		ns	

Notes:

- 1. At fast cycles, ECBA and FCBA = MAX (7.5 ns CMH), 3.0 ns.
- 2. All –F speed grade devices are 20% slower than the standard numbers.

1-72 v5.8

V_{PP} Programming Supply Pin

This pin may be connected to any voltage between GND and 16.5 V during normal operation, or it can be left unconnected.² For information on using this pin during programming, see the *In-System Programming ProASIC* Devices application note. Actel recommends floating the pin or connecting it to V_{DDP}

V_{PN} Programming Supply Pin

This pin may be connected to any voltage between 0.5V and -13.8 V during normal operation, or it can be left unconnected.³ For information on using this pin during programming, see the *In-System Programming ProASIC* Devices application note. Actel recommends floating the pin or connecting it to GND.

Recommended Design Practice for V_{PN}/V_{PP}

ProASIC^{PLUS} Devices – APA450, APA600, APA750, APA1000

Bypass capacitors are required from V_{PP} to GND and V_{PN} to GND for all ProASIC devices during programming. During the erase cycle, ProASIC devices may have current surges on the V_{PP} and V_{PN} power supplies. The only way to maintain the integrity of the power distribution to the ProASIC device during these current surges is to counteract the inductance of the

finite length conductors that distribute the power to the device. This can be accomplished by providing sufficient bypass capacitance between the V_{PP} and V_{PN} pins and GND (using the shortest paths possible). Without sufficient bypass capacitance to counteract the inductance, the V_{PP} and V_{PN} pins may incur a voltage spike beyond the voltage that the device can withstand. This issue applies to all programming configurations.

The solution prevents spikes from damaging the ProASIC^{PLUS} devices. Bypass capacitors are required for the V_{PP} and V_{PN} pads. Use a 0.01 μF to 0.1 μF ceramic capacitor with a 25 V or greater rating. To filter low-frequency noise (decoupling), use a 4.7 μF (low ESR, <1 < Ω , tantalum, 25 V or greater rating) capacitor. The capacitors should be located as close to the device pins as possible (within 2.5 cm is desirable). The smaller, high-frequency capacitor should be placed closer to the device pins than the larger low-frequency capacitor. The same dual-capacitor circuit should be used on both the V_{PP} and V_{PN} pins (Figure 1-49).

ProASIC^{PLUS} Devices – APA075, APA150, APA300

These devices do not require bypass capacitors on the V_{PP} and V_{PN} pins as long as the total combined distance of the programming cable and the trace length on the board is less than or equal to 30 inches. Note: For trace lengths greater than 30 inches, use the bypass capacitor recommendations in the previous section.

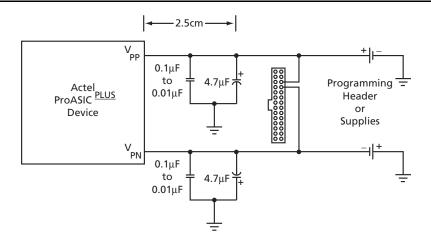


Figure 1-49 • ProASICPLUS V_{PP} and V_{PN} Capacitor Requirements

- 2. There is a nominal 40 $k\Omega$ pull-up resistor on V_{PP}
- 3. There is a nominal 40 k Ω pull-down resistor on V_{PN}