E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	547
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	69
Number of Gates	2000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Through Hole
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	84-BCPGA
Supplier Device Package	84-CPGA (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1020b-pg84m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Plan

	Speed	Speed Grade		Application		
3200DX Family	Std	-1*	С	М	В	Е
A32100DX Device						
84-pin Ceramic Quad Flat Pack (CQFP)	~	~	~	~	~	
A32200DX Device						
208-pin Ceramic Quad Flat Pack (CQFP)	v	~	~	~	~	_
256-pin Ceramic Quad Flat Pack (CQFP)	~	~	~	~	~	_
ACT 3 Family						
A1425A Device						
132-pin Ceramic Quad Flat Pack (CQFP)	~	~	~	~	~	~
133-pin Ceramic Pin Grid Array (CPGA)	~	~	~	~	~	~
A1460A Device						
196-pin Ceramic Quad Flat Pack (CQFP)	~	~	~	~	~	~
207-pin Ceramic Pin Grid Array (CPGA)	~	~	~	~	~	V
A14100A Device						
256-pin Ceramic Quad Flat Pack (CQFP)	~	~	~	~	~	~
257-pin Ceramic Pin Grid Array (CPGA)	~	~	~	~	~	~
1200XL Family						
A1280XL Device						
172-pin Ceramic Quad Flat Pack (CQFP)	~	~	~	~	~	
176-pin Ceramic Pin Grid Array (CPGA)	~	~	~	~	~	
ACT 2 Family						
A1240A Device						
132-pin Ceramic Pin Grid Array (CPGA)	✓	~	~	~	~	_
A1280A Device						
172-pin Ceramic Quad Flat Pack (CQFP)	~	~	~	~	~	~
176-pin Ceramic Pin Grid Array (CPGA)	~	~	~	~	~	~
ACT 1 Family						
A1010B Device						
84-pin Ceramic Pin Grid Array (CPGA)	~	~	~	~	~	
A1020B Device						
84-pin Ceramic Quad Flat Pack (CQFP)	~	~	~	~	~	~
84-pin Ceramic Pin Grid Array (CPGA)	~	~	~	~	~	~

B = MIL-STD-883E = Extended Flow

Actel Extended Flow¹

Step	Screen	Method	Require- ment
1.	Wafer Lot Acceptance ²	5007 with Step Coverage Waiver	All Lots
2.	Destructive In-Line Bond Pull ³	2011, Condition D	Sample
3.	Internal Visual	2010, Condition A	100%
4.	Serialization		100%
5.	Temperature Cycling	1010, Condition C	100%
6.	Constant Acceleration	2001, Condition D or E, Y ₁ Orientation Only	100%
7.	Particle Impact Noise Detection	2020, Condition A	100%
8.	Radiographic	2012 (one view only)	100%
9.	Pre-Burn-In Test	In accordance with applicable Actel device specification	100%
10.	Burn-in Test	1015, Condition D, 240 hours @ 125°C minimum	100%
11.	Interim (Post-Burn-In) Electrical Parameters	In accordance with applicable Actel device specification	100%
12.	Reverse Bias Burn-In	1015, Condition C, 72 hours @ 150°C minimum	100%
13.	Interim (Post-Burn-In) Electrical Parameters	In accordance with applicable Actel device specification	100%
14.	Percent Defective Allowable (PDA) Calculation	5%, 3% Functional Parameters @ 25°C	All Lots
15.	Final Electrical Test	In accordance with Actel applicable device specification which includes a, b, and c:	100%
	 a. Static Tests (1) 25°C (Subgroup 1, Table1) (2) -55°C and +125°C (2) Curb manual 0, 0, 2, Table 1) 	5005 5005	100%
	(Subgroups 2, 3, Table 1) b. Functional Tests (1) 25°C (Subgroup 7, Table 15) (2) -55°C and +125°C (Subgroups 8A and B, Table 1)	5005 5005	100%
	c. Switching Tests at 25°C (Subgroup 9, Table 1)	5005	100%
16.	Seal	1014	100%
	a. Fine		
	b. Gross		
17.	External Visual	2009	100%

Notes:

1. Actel offers the extended flow for customers who require additional screening beyond the requirements of the MIL-STD-833, Class B. Actel is compliant to the requirements of MIL-STD-883, Paragraph 1.2.1, and MIL-I-38535, Appendix A. Actel is offering this extended flow incorporating the majority of the screening procedures as outlined in Method 5004 of MIL-STD-883, Class S. The exceptions to Method 5004 are shown in notes 2 and 3 below.

2. Wafer lot acceptance is performed to Method 5007; however, the step coverage requirement as specified in Method 2018 must be waived.

3. MIL-STD-883, Method 5004 requires 100 percent Radiation latch-up testing (Method 1020). Actel will not be performing any radiation testing, and this requirement must be waived in its entirety.

Absolute Maximum Ratings¹

Free air temperature range

Symbol	Parameter	Limits	Units
V _{CC}	DC Supply Voltage ^{2, 3, 4}	-0.5 to +7.0	V
VI	Input Voltage	–0.5 to V _{CC} +0.5	V
V _O	Output Voltage	–0.5 to V _{CC} +0.5	V
I _{IO}	I/O Source Sink Current ⁵	±20	mA
T _{STG}	Storage Temperature	-65 to +150	°C

Notes:

- 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions.
- 2. $V_{PP} = V_{CC}$, except during device programming.
- 3. $V_{SV} = V_{CC}$, except during device programming.
- 4. $V_{KS} = GND$, except during device programming.
- 5. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than V_{CC} + 0.5V or less than GND – 0.5V, the internal protection diode will be forward biased and can draw excessive current.

Recommended Operating Conditions

Parameter	Commercial	Military	Units
Temperature Range ¹	0 to +70	-55 to +125	°C
Power Supply Tolerance ²	±5	±10	%V _{CC}

Notes:

1. Ambient temperature (T_A) is used for commercial and industrial; case temperature (T_C) is used for military.

 All power supplies must be in the recommended operating range. For more information, refer to the Power-Up Design Considerations application note at http://www.actel.com/appnotes.

			Con	nmercial	М	ilitary	
Symbol	Parameter	Test Condition	Min.	Max.	Min.	Max.	Units
V _{OH} ^{1, 2}	HIGH Level Output	I _{OH} = -4 mA (CMOS)		11	3.7		V
		I _{OH} = -6 mA (CMOS)	3.84				V
V _{OL} ^{1, 2}	LOW Level Output	I _{OL} = +6 mA (CMOS)		0.33		0.4	V
V _{IH}	HIGH Level Input	TTL Inputs	2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	V
V _{IL}	LOW Level Input	TTL Inputs	-0.3	0.8	-0.3	0.8	V
I _{IN}	Input Leakage	$V_{I} = V_{CC}$ or GND	-10	+10	-10	+10	μA
I _{OZ}	3-state Output Leakage	$V_{O} = V_{CC}$ or GND	-10	+10	-10	+10	μA
C _{IO}	I/O Capacitance ^{3, 4}			10		10	pF
I _{CC(S)}	Standby V _{CC} Supply Current	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$ mA					
		ACT 1		3		20	mA
		ACT 2/3/1200XL/3200DX		2		20	mA
I _{CC(D)}	Dynamic V_{CC} Supply Current	See the "Po	wer Dissi	pation" section	n on page	e 11.	

Electrical Specifications

Notes:

1. Actel devices can drive and receive either CMOS or TTL signal levels. No assignment of I/Os as TTL or CMOS is required.

2. Tested one output at a time, $V_{CC} = min$.

3. Not tested; for information only.

4. $V_{OUT} = 0V, f = 1 MHz$

can be combined with frequency and voltage to represent active power dissipation.

Equivalent Capacitance

The power dissipated by a CMOS circuit can be expressed by Equation 1:

$$Power (uW) = C_{EQ} * V_{CC}^{2} * F$$
(1)

where:

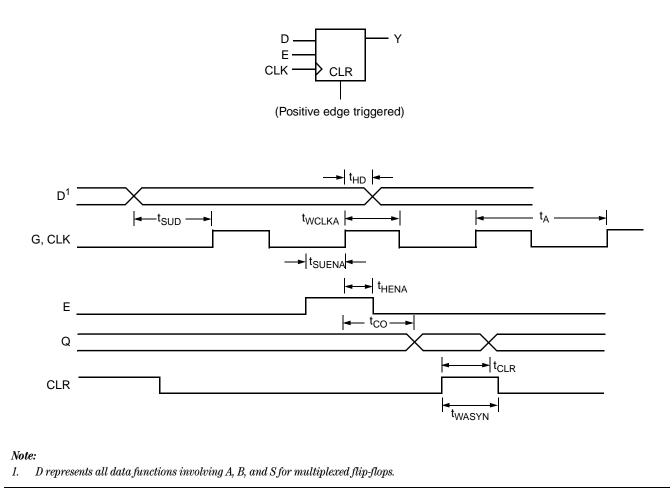
C_{EQ} = Equivalent capacitance in pF = Power supply in volts (V) V_{CC} F = Switching frequency in MHz

Equivalent capacitance is calculated by measuring I_{CC} active at a specified frequency and voltage for each circuit component of interest. Measurements are made over a range of frequencies at a fixed value of V_{CC}. Equivalent capacitance is frequency independent so that the results can be used over a wide range of operating conditions. Equivalent capacitance values are shown below.

CEQ Values for Actel FPGAs

	ACT 3	1200XL 3200DX	ACT 2	ACT 1	
Modules (C _{EQM})	6.7	5.2	5.8	3.7	
Input Buffers (C _{EQI})	7.2	11.6	12.9	22.1	
Output Buffers (C_{EQO})	10.4	23.8	23.8	31.2	
Routed Array Clock Buffer Loads (C _{EQCR})	1.6	3.5	3.9	4.6	
Dedicated Clock Buffer Loads (C _{EQCD})	0.7	N/A	N/A	N/A	
I/O Clock Buffer Loads (C _{EQCI})	0.9	N/A	N/A	N/A	

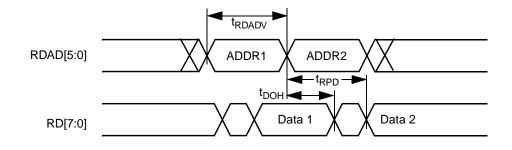
To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. Equation 2 shows a piecewise linear summation over all components that applies to all ACT 1, 1200XL, 3200DX, ACT 2, and ACT 3 devices. Since the ACT 1 family has only one routed array clock, the terms labeled routed_Clk2, dedicated Clk, and IO Clk do not apply. Similarly, the ACT 2 family has two routed array clocks, and the dedicated Clk and IO_Clk terms do not apply. For ACT 3 devices, all terms will apply.

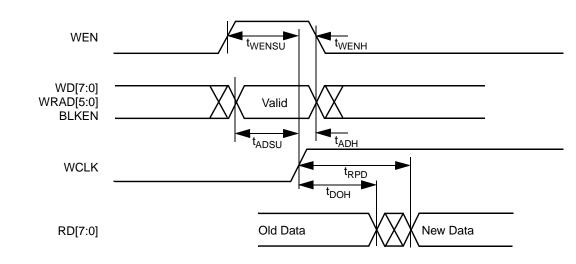

 $Power = V_{CC}^{2} * [(m * C_{EQM} * f_m)_{modules} + (n * C_{EQI} * f_n)_{inputs} +$ $(p*(C_{EQO}+C_L)*f_p)_{outputs} + 0.5*(q_1*C_{EQCR}*f_{q1})_{routed_Clk1}$ + $(r_1 * f_{q1})_{routed_Clk1} + 0.5 * (q_2 * C_{EQCR} * f_{q2})_{routed_Clk2} + (r_2 * f_{q2})_{routed_Clk2} + 0.5 * (s_1 * C_{EQCD} * f_{s1})_{dedicated_Clk} + (r_2 * f_{q2})_{routed_Clk2} + 0.5 * (s_1 * C_{EQCD} * f_{s1})_{dedicated_Clk} + (r_2 * f_{q2})_{routed_Clk2} + 0.5 * (s_1 * C_{EQCD} * f_{s1})_{dedicated_Clk} + (r_2 * f_{q2})_{routed_Clk2} + 0.5 * (s_1 * C_{EQCD} * f_{s1})_{dedicated_Clk2} + (r_2 * f_{q2})_{routed_Clk2} + 0.5 * (s_1 * C_{EQCD} * f_{s1})_{dedicated_Clk2} + (r_2 * f_{q2})_{routed_Clk2} + (r_2 *$ $(s_2 * C_{EQCI} * f_{s2})_{IO CIk}]$ (2)

where:

witter of		
m	=	Number of logic modules switching at \mathbf{f}_{m}
n	=	Number of input buffers switching at $\mathbf{f}_{\mathbf{n}}$
р	=	Number of output buffers switching at $\mathbf{f}_{\mathbf{p}}$
q_1	=	Number of clock loads on the first routed array clock (all families)
\mathbf{q}_2	=	Number of clock loads on the second routed array clock (ACT 2, 1200XL, 3200DX, ACT 3 only)
\mathbf{r}_1	=	Fixed capacitance due to first routed array clock (all families)
\mathbf{r}_2	=	Fixed capacitance due to second routed array clock (ACT 2, 1200XL, 3200DX, ACT 3 only)
s_1	=	Fixed number of clock loads on the dedicated array clock (ACT 3 only)
\mathbf{s}_2	=	Fixed number of clock loads on the dedicated I/O clock (ACT 3 only)
C _{EQM}	=	Equivalent capacitance of logic modules in pF
C_{EQI}	=	Equivalent capacitance of input buffers in pF
C _{EQO}	=	Equivalent capacitance of output buffers in pF
C _{EQCR}	=	Equivalent capacitance of routed array clock in pF
C _{EQCD}	=	Equivalent capacitance of dedicated array clock in pF
C _{EQCI}	=	Equivalent capacitance of dedicated I/O clock in pF
C_L	=	Output lead capacitance in pF
$\mathbf{f}_{\mathbf{m}}$	=	Average logic module switching rate in MHz
$\mathbf{f}_{\mathbf{n}}$	=	Average input buffer switching rate in MHz
$\mathbf{f}_{\mathbf{p}}$	=	Average output buffer switching rate in MHz
\mathbf{f}_{q1}	=	Average first routed array clock rate in MHz (all families)
\mathbf{f}_{q2}	=	Average second routed array clock rate in MHz (ACT 2, 1200XL, 3200DX, ACT 3 only)
\mathbf{f}_{s1}	=	Average dedicated array clock rate in MHz (ACT 3 only)
\mathbf{f}_{s2}	=	Average dedicated I/O clock rate in MHz (ACT 3 only)

Sequential Timing Characteristics


Flip-Flops and Latches (ACT 3)



3200DX SRAM Asynchronous Read Operation—Type 1

(Read Address Controlled)

3200DX SRAM Asynchronous Read Operation—Type 2

(Write Address Controlled)

ACT 1 Timing Characteristics (continued)

(Worst-Case Military Conditions, V_{CC} = 4.5V, T_J = 125°C)

			'–1' \$	Speed	'Std'	Speed	
Parameter	Description		Min.	Max.	Min.	Max.	Units
Global Cloci	k Network						
t _{СКН}	Input Low to High	FO = 16 FO = 128		7.8 8.9		9.2 10.5	ns
^t CKL	Input High to Low	FO = 16 FO = 128		10.3 11.2		12.1 13.2	ns
t _{PWH}	Minimum Pulse Width High	FO = 16 FO = 128	10.4 10.9		12.2 12.9		ns
t _{PWL}	Minimum Pulse Width Low	FO = 16 FO = 128	10.4 10.9		12.2 12.9		ns
t _{CKSW}	Maximum Skew	FO = 16 FO = 128		1.9 2.9		2.2 3.4	ns
t _P	Minimum Period	FO = 16 FO = 128	21.7 23.2		25.6 27.3		ns
f _{MAX}	Maximum Frequency	FO = 16 FO = 128		46 44		40 37	MHz
TTL Output	Module Timing ¹						
t _{DLH}	Data to Pad High			12.1		14.2	ns
t _{DHL}	Data to Pad Low			13.8		16.3	ns
t _{ENZH}	Enable Pad Z to High			12.0		14.1	ns
t _{ENZL}	Enable Pad Z to Low			14.6		17.1	ns
t _{ENHZ}	Enable Pad High to Z			16.0		18.8	ns
t _{ENLZ}	Enable Pad Low to Z			14.5		17.0	ns
d _{TLH}	Delta Low to High			0.09		0.11	ns/pF
d _{THL}	Delta High to Low			0.12		0.15	ns/pF
CMOS Outp	ut Module Timing ¹						
t _{DLH}	Data to Pad High			15.1		17.7	ns
t _{DHL}	Data to Pad Low			11.5		13.6	ns
t _{ENZH}	Enable Pad Z to High			12.0		14.1	ns
t _{ENZL}	Enable Pad Z to Low			14.6		17.1	ns
t _{ENHZ}	Enable Pad High to Z			16.0		18.8	ns
t _{ENLZ}	Enable Pad Low to Z			14.5		17.0	ns
d _{TLH}	Delta Low to High			0.16		0.18	ns/pF
d _{THL}	Delta High to Low			0.09		0.11	ns/pF

Notes:

1. Delays based on 50 pF loading.

2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note at http://www.actel.com/appnotes.

A1240A Timing Characteristics (continued)

		' -1' :	Speed	'Std'		
Parameter	Description	Min.	Max.	Min.	Max.	Units
TTL Output	Module Timing ¹					
t _{DLH}	Data to Pad High		11.0		13.0	ns
t _{DHL}	Data to Pad Low		13.9		16.4	ns
t _{ENZH}	Enable Pad Z to High		12.3		14.4	ns
t _{ENZL}	Enable Pad Z to Low		16.1		19.0	ns
t _{ENHZ}	Enable Pad High to Z		9.8		11.5	ns
t _{ENLZ}	Enable Pad Low to Z		11.5		13.6	ns
t _{GLH}	G to Pad High		12.4		14.6	ns
t _{GHL}	G to Pad Low		15.5		18.2	ns
d_{TLH}	Delta Low to High		0.09		0.11	ns/pF
d _{THL}	Delta High to Low		0.17		0.20	ns/pF
CMOS Outp	ut Module Timing ¹					
t _{DLH}	Data to Pad High		14.0		16.5	ns
t _{DHL}	Data to Pad Low		11.7		13.7	ns
t _{ENZH}	Enable Pad Z to High		12.3		14.4	ns
t _{ENZL}	Enable Pad Z to Low		16.1		19.0	ns
t _{ENHZ}	Enable Pad High to Z		9.8		11.5	ns
t _{ENLZ}	Enable Pad Low to Z		11.5		13.6	ns
t _{GLH}	G to Pad High		12.4		14.6	ns
t _{GHL}	G to Pad Low		15.5		18.2	ns
d _{TLH}	Delta Low to High		0.17		0.20	ns/pF
d _{THL}	Delta High to Low		0.12		0.15	ns/pF

Notes:

1. Delays based on 50 pF loading.

2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note at http://www.actel.com/appnotes.

A1425A Timing Characteristics (continued)

		'–1' \$	Speed	'Std'	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Units
Routed Array	Clock Networks					
t _{RCKH}	Input Low to High (FO=64)		5.5		6.4	ns
t _{RCKL}	Input High to Low (FO=64)		6.0		7.0	ns
t _{RPWH}	Min. Pulse Width High (FO=64)	4.9		5.7		ns
t _{RPWL}	Min. Pulse Width Low (FO=64)	4.9		5.7		ns
t _{RCKSW}	Maximum Skew (FO=128)		1.1		1.2	ns
t _{RP}	Minimum Period (FO=64)	10.1		11.6		ns
f _{RMAX}	Maximum Frequency (FO=64)		100		85	MHz
Clock-to-Clock	Skews					
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	3.0	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew	0.0	3.0	0.0	3.0	ns
^t HRCKSW	H-Clock to R-Clock Skew (FO = 64) (FO = 50% max.)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns ns

(Worst-Case Military Conditions, V_{CC} = 4.5V, T_{J} = 125°C)

A14100A Timing Characteristics

(Worst-Case Military Conditions, V_{CC} = 4.5V, T_{J} = 125°C)

		'–1' \$	'-1' Speed		'Std' Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Units
Logic Module	Propagation Delays ¹					
t _{PD}	Internal Array Module		3.0		3.5	ns
t _{CO}	Sequential Clock to Q		3.0		3.5	ns
t _{CLR}	Asynchronous Clear to Q		3.0		3.5	ns
Logic Module	Predicted Routing Delays ²					
t _{RD1}	FO=1 Routing Delay		1.3		1.5	ns
t _{RD2}	FO=2 Routing Delay		1.9		2.1	ns
t _{RD3}	FO=3 Routing Delay		2.1		2.5	ns
t _{RD4}	FO=4 Routing Delay		2.6		2.9	ns
t _{RD8}	FO=8 Routing Delay		4.2		4.9	ns
Logic Module	Sequential Timing					
t _{SUD}	Flip-Flop (Latch) Data Input Setup	1.0		1.0		ns
t _{HD}	Flip-Flop (Latch) Data Input Hold	0.6		0.6		ns
t _{SUENA}	Flip-Flop (Latch) Enable Setup	1.0		1.0		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.6		0.6		ns
t _{WASYN}	Asynchronous Pulse Width	4.8		5.6		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	4.8		5.6		ns
t _A	Flip-Flop Clock Input Period	9.9		11.6		ns
f _{MAX}	Flip-Flop Clock Frequency		100		85	MHz
Input Module I	Propagation Delays					
t _{INY}	Input Data Pad to Y		4.2		4.9	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		7.0		8.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		7.0		8.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		7.0		8.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		7.0		8.2	ns
Input Module I	Predicted Routing Delays ^{2, 3}					
t _{IRD1}	FO=1 Routing Delay		1.3		1.5	ns
t _{IRD2}	FO=2 Routing Delay		1.9		2.1	ns
t _{IRD3}	FO=3 Routing Delay		2.1		2.5	ns
t _{IRD4}	FO=4 Routing Delay		2.6		2.9	ns
t _{IRD8}	FO=8 Routing Delay		4.2		4.9	ns

Notes:

 $1. \quad For \ dual-module \ macros, \ use \ t_{PD} + t_{RD1} + t_{PDn} \ , \ t_{CO} + t_{RD1} + t_{PDn} \ , \ or \ t_{PD1} + t_{RD1} + t_{SUD} \ , \ which ever \ is \ appropriate.$

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Optimization techniques may further reduce delays by 0 to 4 ns.

A32100DX Timing Characteristics (continued)

	'−1' Spe		Speed	peed 'Std' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
TTL Output	Module Timing ¹					
t _{DLH}	Data to Pad High		5.1		6.8	ns
t _{DHL}	Data to Pad Low		6.3		8.3	ns
t _{ENZH}	Enable Pad Z to High		6.6		8.8	ns
t _{ENZL}	Enable Pad Z to Low		7.1		9.4	ns
t _{ENHZ}	Enable Pad High to Z		11.5		15.3	ns
t _{ENLZ}	Enable Pad Low to Z		11.5		15.3	ns
t _{GLH}	G to Pad High		11.5		15.3	ns
t _{GHL}	G to Pad Low		12.4		16.6	ns
t _{LSU}	I/O Latch Output Setup	0.4		0.5		ns
t _{LH}	I/O Latch Output Hold	0.0		0.0		ns
t _{LCO}	I/O Latch Clock-Out (Pad-to-Pad) 32 I/O		11.5		15.4	ns
t _{ACO}	Array Latch Clock-Out (Pad-to-Pad) 32 I/O		16.3		21.7	ns
d _{TLH}	Capacitive Loading, Low to High		0.04		0.06	ns/pF
d _{THL}	Capacitive Loading, High to Low		0.06		0.08	ns/pF
t _{WDO}	Hard-Wired Wide Decode Output		0.05		0.07	ns
CMOS Outp	ut Module Timing ¹					
t _{DLH}	Data to Pad High		6.3		8.3	ns
t _{DHL}	Data to Pad Low		5.1		6.8	ns
t _{ENZH}	Enable Pad Z to High		6.6		8.8	ns
t _{ENZL}	Enable Pad Z to Low		7.1		9.4	ns
t _{ENHZ}	Enable Pad High to Z		11.5		15.3	ns
t _{ENLZ}	Enable Pad Low to Z		11.5		15.3	ns
t _{GLH}	G to Pad High		11.5		15.3	ns
t _{GHL}	G to Pad Low		12.4		16.6	ns
t _{LSU}	I/O Latch Setup	0.4		0.5		ns
t _{LH}	I/O Latch Hold	0.0		0.0		ns
t _{LCO}	I/O Latch Clock-Out (Pad-to-Pad) 32 I/O		13.7		18.2	ns
t _{ACO}	Array Latch Clock-Out (Pad-to-Pad) 32 I/O		19.2		25.6	ns
d _{TLH}	Capacitive Loading, Low to High		0.06		0.08	ns/pF
d _{THL}	Capacitive Loading, High to Low		0.05		0.07	ns/pF
t _{WDO}	Hard-Wired Wide Decode Output		0.05		0.07	ns

(Worst-Case Military Conditions, V_{CC} = 4.5V, T_{J} = 125°C)

Notes:

1. Delays based on 35 pF loading.

2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note at http://www.actel.com/appnotes.

A32200DX Timing Characteristics

(Worst-Case Military Conditions, V_{CC} = 4.5V, T_{J} = 125°C)

		'–1' \$	Speed	'Std'	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Units
Logic Modu	le Combinatorial Functions					
t _{PD}	Internal Array Module Delay		2.8		3.8	ns
t _{PDD}	Internal Decode Module Delay		3.4		4.6	ns
Logic Modu	le Predicted Routing Delays ¹					
t _{RD1}	FO=1 Routing Delay		1.6		2.1	ns
t _{RD2}	FO=2 Routing Delay		2.3		3.1	ns
t _{RD3}	FO=3 Routing Delay		2.9		3.9	ns
t _{RD4}	FO=4 Routing Delay		3.5		4.7	ns
t _{RD5}	FO=8 Routing Delay		6.2		8.2	ns
t _{RDD}	Decode-to-Output Routing Delay		0.8		1.1	ns
Logic Modu	le Sequential Timing Characteristics					
t _{CO}	Flip-Flop Clock-to-Output		3.2		4.2	ns
t _{GO}	Latch Gate-to-Output		2.8		3.8	ns
t _{SU}	Flip-Flop (Latch) Setup Time	0.5		0.6		ns
t _H	Flip-Flop (Latch) Hold Time	0.0		0.0		ns
t _{RO}	Flip-Flop (Latch) Reset to Output		3.2		4.2	ns
t _{SUENA}	Flip-Flop (Latch) Enable Setup	0.9		1.2		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	4.3		5.8		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	5.7		7.6		ns

Note:

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A32200DX Timing Characteristics (continued)

	'–1' Speed		Speed	'Std' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
TTL Output	Module Timing ¹					
t _{DLH}	Data to Pad High		5.1		6.8	ns
t _{DHL}	Data to Pad Low		6.3		8.3	ns
t _{ENZH}	Enable Pad Z to High		6.6		8.8	ns
t _{ENZL}	Enable Pad Z to Low		7.1		9.5	ns
t _{ENHZ}	Enable Pad High to Z		11.5		15.3	ns
t _{ENLZ}	Enable Pad Low to Z		11.5		15.3	ns
t _{GLH}	G to Pad High		11.5		15.3	ns
t _{GHL}	G to Pad Low		12.3		16.5	ns
t _{LSU}	I/O Latch Output Setup	0.4		0.5		ns
t _{LH}	I/O Latch Output Hold	0.0		0.0		ns
t _{LCO}	I/O Latch Clock-Out (Pad-to-Pad) 32 I/O		11.5		15.4	ns
t _{ACO}	Array Latch Clock-Out (Pad-to-Pad) 32 I/O		16.3		21.7	ns
d _{TLH}	Capacitive Loading, Low to High		0.04		0.06	ns/pF
d _{THL}	Capacitive Loading, High to Low		0.06		0.08	ns/pF
t _{WDO}	Hard-Wired Wide Decode Output		0.05		0.07	ns
CMOS Outp	ut Module Timing ¹					
t _{DLH}	Data to Pad High		5.1		6.8	ns
t _{DHL}	Data to Pad Low		6.3		8.3	ns
t _{ENZH}	Enable Pad Z to High		6.6		8.8	ns
t _{ENZL}	Enable Pad Z to Low		7.1		9.5	ns
t _{ENHZ}	Enable Pad High to Z		11.5		15.3	ns
t _{ENLZ}	Enable Pad Low to Z		11.5		15.3	ns
t _{GLH}	G to Pad High		11.5		15.3	ns
t _{GHL}	G to Pad Low		12.3		16.5	ns
t _{LSU}	I/O Latch Setup	0.4		0.5		ns
t _{LH}	I/O Latch Hold	0.0		0.0		ns
t _{LCO}	I/O Latch Clock-Out (Pad-to-Pad) 32 I/O		13.7		18.2	ns
t _{ACO}	Array Latch Clock-Out (Pad-to-Pad) 32 I/O		19.2		25.6	ns
d _{TLH}	Capacitive Loading, Low to High		0.06		0.08	ns/pF
d _{THL}	Capacitive Loading, High to Low		0.05		0.07	ns/pF
t _{WDO}	Hard-Wired Wide Decode Output		0.05		0.07	ns

(Worst-Case Military Conditions, V_{CC} = 4.5V, T_{J} = 125°C)

Notes:

1. Delays based on 35 pF loading.

2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note at http://www.actel.com/appnotes.

Pin Description

CLK Clock (Input)

ACT 1 only. TTL Clock input for global clock distribution network. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

CLKA Clock A (Input)

ACT 2, 1200XL, 3200DX, and ACT 3 only. TTL Clock input for global clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

CLKB Clock B (Input)

ACT 2, 1200XL, 3200DX, and ACT 3 only. TTL Clock input for global clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

DCLK Diagnostic Clock (Input)

TTL Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

GND Ground

LOW supply voltage.

HCLK Dedicated (Hard-wired) Array Clock (Input)

ACT 3 only. TTL Clock input for sequential modules. This input is directly wired to each S-module and offers clock speeds independent of the number of S-modules being driven. This pin can also be used as an I/O.

I/O Input/Output (Input, Output)

I/O pin functions as an input, output, tristate, or bi-directional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. In the ACT 3 and 3200DX families, unused I/Os are automatically tri-stated. With this configuration, the input buffer internal to the I/O module is disabled. In the ACT 1, ACT 2 and 1200XL families, unused I/Os are automatically configured as bi-directional buffers where each buffer is configured as a LOW driver.

IOCLK Dedicated (Hard-wired) I/O Clock (Input)

ACT 3 only. TTL Clock input for I/O modules. This input is directly wired to each I/O module and offers clock speeds independent of the number of I/O modules being driven. This pin can also be used as an I/O.

IOPCL Dedicated (Hard-wired) I/O Preset/Clear (Input)

ACT 3 only. TTL input for I/O preset or clear. This global input is directly wired to the preset and clear inputs of all I/O registers. This pin functions as an I/O when no I/O preset or clear macros are used.

MODE Mode (Input)

The MODE pin controls the use of diagnostic pins (DCLK, PRA, PRB, SDI). When the MODE pin is HIGH, the special functions are active. When the MODE pin is LOW, the pins function as I/Os. To provide debugging capability, the MODE pin should be terminated to GND through a 10 k Ω resistor so that the MODE pin can be pulled high when required.

NC No Connection

This pin is not connected to circuitry within the device.

PRA, I/O Probe A (Output)

The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

PRB, I/O Probe B (Output)

The Probe B pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

SDI Serial Data Input (Input)

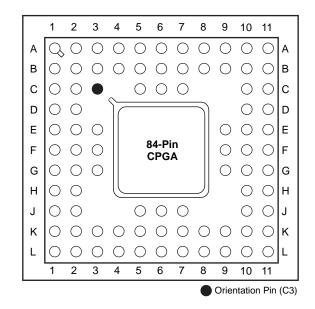
Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

V_{CC} 5.0V Supply Voltage

HIGH supply voltage.

QCLKA/B,C,D Quadrant Clock (Input/Output)

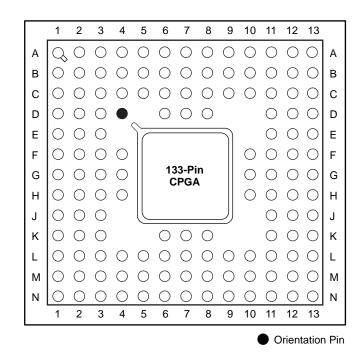
3200DX only. These four pins are the quadrant clock inputs. When not used as a register control signal, these pins can function as general purpose I/O.


TCK Test Clock

Clock signal to shift the JTAG data into the device. This pin functions as an I/O when the JTAG fuse is not programmed. JTAG pins are only available in the 3200DX device.

Package Pin Assignments

84-Pin CPGA (Top View)


132-Pin CPGA

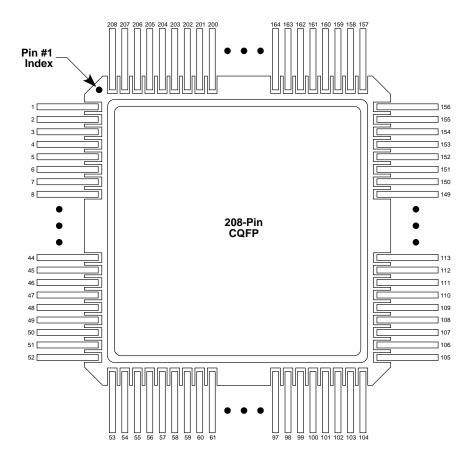
Pin Number	A1240A Function	Pin Number	A1240A Function	Pin Number	A1240A Function
A1	MODE	D8	I/O	K7	V _{CC}
A2	I/O	D11	I/O	K8	I/O
A3	I/O	D12	I/O	K11	I/O
A4	I/O	D13	I/O	K12	GND
A5	I/O	E1	I/O	K13	I/O
A6	I/O	E2	I/O	L1	I/O
A7	I/O	E3	GND	L2	I/O
A8	I/O	E11	GND	L3	I/O
A9	I/O	E12	GND	L4	I/O
A10	I/O	E13	I/O	L5	GND
A11	I/O	F1	I/O	L6	I/O
A12	I/O	F2	I/O	L7	V _{CC}
A13	I/O	F3	I/O	L8	I/O
B1	I/O	F4	GND	L9	GND
B2	I/O	F10	I/O	L10	I/O
B3	I/O	F11	I/O	L11	I/O
B4	I/O	F12	I/O	L12	I/O
B5	GND	F13	I/O	L13	I/O
B6	CLKB, I/O	G1	I/O	M1	I/O
B7	CLKA, I/O	G2	V _{CC}	M2	I/O
B8	PRA, I/O	G3	V _{CC}	M3	I/O
B9	GND	G4	V _{CC}	M4	I/O
B10	I/O	G10	V _{CC}	M5	I/O
B11	I/O	G11	V _{cc}	M6	I/O
B12	SDI, I/O	G12	V _{CC}	M7	I/O
B13	I/O	G13	V _{CC}	M8	I/O
C1	I/O	H1	I/O	M9	GND
C2	I/O	H2	1/O	M10	I/O
C3	DCLK, I/O	H3	I/O	M10	I/O
C4	I/O	H4	I/O	M12	I/O
C5	GND	H10	I/O	M13	I/O
C6	PRB, I/O	H11	I/O	N1	I/O
C7	V _{CC}	H12	I/O	N2	I/O
C8	I/O	H13	GND	N3	I/O
C9	GND	J1	I/O	N4	I/O
C10	I/O	J2	GND	N5	1/O
C10	I/O	J3	GND	N6	1/O
C12	I/O	J11	GND	N7	1/O
C12 C13	I/O	J12	I/O	N8	1/O
D1	I/O	J12 J13	1/O	N9	1/O
D1 D2	I/O I/O	K1	1/O 1/O	N9 N10	1/O 1/O
D2 D3	I/O I/O	K1 K2	1/O 1/O	N10	1/O 1/O
D6 D7	I/O	K3	I/O	N12	I/O
D7	V _{CC}	K6	I/O	N13	I/O

Package Pin Assignments (continued)

133-Pin CPGA (Top View)

133-Pin CPGA

Pin Number	A1425A Function	Pin Number	A1425A Function	Pin Number	A1425A Function
A1	NC	D8	I/O	K8	I/O
A2	GND	D11	I/O	K11	I/O
A3	I/O	D12	I/O	K12	I/O
A4	I/O	D13	I/O	K13	I/O
A5	I/O	E1	I/O	L1	I/O
A6	PRA, I/O	E2	I/O	L2	I/O
A7	NC	E3	MODE	L3	GND
A8	I/O	E11	V _{CC}	L4	I/O
A9	I/O	E12	I/O	L5	I/O
A10	I/O	E13	I/O	L6	PRB, I/O
A11	I/O	F1	I/O	L7	GND
A12	I/O	F2	I/O	L8	I/O
A13	NC	F3	I/O	L9	I/O
B1	I/O	F4	I/O	L10	IOPCL, I/O
B2	V _{CC}	F10	GND	L11	GND
B3	I/O	F11	I/O	L12	I/O
B4	1/O	F12	I/O	L13	I/O
B5	I/O	F13	I/O	M1	I/O
B6	CLKB, I/O	G1	NC	M2	V _{CC}
B7	V _{CC}	G2	V _{CC}	M3	GND
B8	I/O	G3	GND	M3 M4	I/O
B9	I/O	G4	I/O	M5	I/O
B10	I/O	G10	I/O	M6	I/O
B10 B11	I/O	G10 G11	GND	M7	
B11 B12		G12		M7 M8	V _{CC} I/O
B12 B13	V _{CC}	G12 G13	V _{CC} NC	M9	I/O I/O
C1	I/O I/O	H1	I/O		I/O I/O
C1 C2		H1 H2	1/O 1/O	M10	1/O 1/O
	SDI, I/O			M11	
C3	GND	H3	I/O	M12	V _{CC}
C4	I/O	H4	I/O	M13	I/O
C5	I/O	H10	I/O	N1	NC
C6	1/0	H11	I/O	N2	I/O
C7	GND	H12	I/O	N3	I/O
C8	I/O	H13	I/O	N4	I/O
C9	I/O	J1	I/O	N5	I/O
C10	IOCLK, I/O	J2	V _{CC}	N6	I/O
C11	GND	J3	I/O	N7	NC
C12	GND	J11	I/O	N8	I/O
C13	I/O	J12	V _{CC}	N9	I/O
D1	I/O	J13	I/O	N10	I/O
D2	I/O	K1	I/O	N11	I/O
D3	I/O	K2	I/O	N12	GND
D4	DCLK, I/O	К3	I/O	N13	NC
D6	CLKA, I/O	K6	I/O		
D7	I/O	K7	HCLKA, I/O		


172-Pin CQFP (Continued)

Pin Number	A1280A Function	A1280XL Function
89	I/O	I/O
90	I/O	I/O
91	I/O	I/O
92	I/O	I/O
93	I/O	I/O
94	I/O	I/O
95	I/O	I/O
96	I/O	I/O
97	I/O	I/O
98	GND	GND
99	I/O	I/O
100	I/O	I/O
101	I/O	I/O
102	I/O	I/O
103	GND	GND
104	I/O	I/O
105	I/O	I/O
106	GND	GND
107	V _{CC}	V _{CC}
108	GND	GND
109	V _{CC}	V _{CC}
110	V _{CC}	V _{CC}
111	I/O	I/O
112	I/O	I/O
113	V _{CC}	V _{CC}
114	I/O	I/O
115	I/O	I/O
116	I/O	I/O
117	I/O	I/O
118	GND	GND
119	I/O	I/O
120	I/O	I/O
121	I/O	I/O
122	I/O	I/O
123	GND	GND
124	I/O	I/O
125	I/O	I/O
126	I/O	I/O
127	I/O	I/O
128	I/O	I/O
129	I/O	I/O
130	I/O	I/O

Pin Number	A1280A Function	A1280XL Function
131	SDI, I/O	SDI, I/O
132	I/O	I/O
133	I/O	I/O
134	I/O	I/O
135	I/O	I/O
136	V _{CC}	V _{CC}
137	I/O	I/O
138	I/O	I/O
139	I/O	I/O
140	I/O	I/O
141	GND	GND
142	I/O	I/O
143	I/O	I/O
144	I/O	I/O
145	I/O	I/O
146	I/O	I/O
147	I/O	I/O
148	PRA, I/O	PRA, I/O
149	I/O	I/O
150	CLKA, I/O	CLKA, I/O
151	V _{CC}	V _{CC}
152	GND	GND
153	I/O	I/O
154	CLKB, I/O	CLKB, I/O
155	I/O	I/O
156	PRB, I/O	PRB, I/O
157	I/O	I/O
158	I/O	I/O
159	I/O	I/O
160	I/O	I/O
161	GND	GND
162	I/O	I/O
163	I/O	I/O
164	I/O	I/O
165	I/O	I/O
166	V _{CC}	V _{CC}
167	I/O	I/O
168	I/O	I/O
169	I/O	I/O
170	I/O	I/O
171	DCLK, I/O	DCLK, I/O
172	I/O	I/O

Package Pin Assignments (continued)

208-Pin CQFP (Top View)

