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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Core Processor ARM® Cortex®-M3

Core Size 32-Bit Single-Core

Speed 67MHz

Connectivity I²C, LINbus, SPI, UART/USART, USB

Peripherals CapSense, DMA, LCD, POR, PWM, WDT

Number of I/O 38

Program Memory Size 128KB (128K x 8)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 32K x 8

Voltage - Supply (Vcc/Vdd) 1.71V ~ 5.5V

Data Converters A/D 1x20b, 1x12b; D/A 4x8b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 68-VFQFN Exposed Pad

Supplier Device Package 68-QFN (8x8)
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More Information
Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you
to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article
KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 5LP:

Overview: PSoC Portfolio, PSoC Roadmap

 Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP
In addition, PSoC Creator includes a device selection tool.

 Application notes: Cypress offers a large number of PSoC 
application notes and code examples covering a broad range 
of topics, from basic to advanced level. Recommended appli-
cation notes for getting started with PSoC 5LP are:
 AN77759: Getting Started With PSoC 5LP
 AN77835: PSoC 3 to PSoC 5LP Migration Guide
 AN61290: Hardware Design Considerations
 AN57821: Mixed Signal Circuit Board Layout
 AN58304: Pin Selection for Analog Designs
 AN81623: Digital Design Best Practices
 AN73854: Introduction To Bootloaders

 Development Kits:
 CY8CKIT-059 is a low-cost platform for prototyping, with a 

unique snap-away programmer and debugger on the USB 
connector.

 CY8CKIT-050 is designed for analog performance, for devel-
oping high-precision analog, low-power, and low-voltage ap-
plications.

 CY8CKIT-001 provides a common development platform for 
any one of the PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP 
families of devices.

 The MiniProg3 device provides an interface for flash pro-
gramming and debug.

 Technical Reference Manuals (TRM)
 Architecture TRM
 Registers TRM

 Programming Specification

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design 
of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 
pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:
1. Drag and drop component icons to build your hardware 

system design in the main design workspace
2. Codesign your application firmware with the PSoC hardware, 

using the PSoC Creator IDE C compiler

3. Configure components using the configuration tools
4. Explore the library of 100+ components
5. Review component datasheets

Figure 1.  Multiple-Sensor Example Project in PSoC Creator
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Figure 2-4. 100-pin TQFP Part Pinout

Table 2-1.  VDDIO and Port Pin Associations

VDDIO Port Pins

VDDIO0 P0[7:0], P4[7:0], P12[3:2]

VDDIO1 P1[7:0], P5[7:0], P12[7:6]

VDDIO2 P2[7:0], P6[7:0], P12[5:4], P15[5:4]

VDDIO3 P3[7:0], P12[1:0], P15[3:0]

VDDD P15[7:6] (USB D+, D-)

TQFP

(TRACEDATA[1], GPIO) P2[5]
(TRACEDATA[2], GPIO) P2[6]
(TRACEDATA[3], GPIO) P2[7]

(I2C0: SCL, SIO) P12[4]

(I2C0: SDA, SIO) P12[5]
(GPIO) P6[4]

(GPIO) P6[5]
(GPIO) P6[6]

(GPIO) P6[7]
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IND

VBOOST
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VSSD
XRES

(GPIO) P5[0]
(GPIO) P5[1]

(GPIO) P5[2]

(GPIO) P5[3]
(TMS, SWDIO, GPIO) P1[0]

(TCK, SWDCK, GPIO) P1[1]

(Configurable XRES, GPIO) P1[2]
(TDO, SWV, GPIO) P1[3]

(TDI, GPIO) P1[4]
(NTRST, GPIO) P1[5]

V
D

D
IO

1

(G
P

IO
) 

P
5[

7
]

N
C

(O
P

A
M

P
3-

, E
X

T
R

E
F

1,
 G

P
IO

) 
P

3[
2

]

(G
P

IO
) 

P
1[

6
]

(G
P

IO
) 

P
1[

7
]

(S
IO

) 
P

12
[6

]
(S

IO
) 

P
12

[7
]

(G
P

IO
) 

P
5[

4
]

(G
P

IO
) 

P
5[

5
]

(G
P

IO
) 

P
5[

6
]

(U
S

B
IO

, D
+

, S
W

D
IO

) 
P

15
[6

]

(U
S

B
IO

, D
-,

 S
W

D
C

K
) 

P
15

[7
]

V
D

D
D

V
S

S
D

V
C

C
D

N
C

(M
H

Z
 X

T
A

L:
 X

O
, G

P
IO

) 
P

15
[0

]
(M

H
Z

 X
T

A
L:

 X
I, 

G
P

IO
) 

P
15

[1
]

(I
D

A
C

1,
 G

P
IO

) 
P

3[
0

]
(I

D
A

C
3,

 G
P

IO
) 

P
3[

1
]

(O
P

A
M

P
3+

, G
P

IO
) 

P
3[

3
]

(O
P

A
M

P
1-

, G
P

IO
) 

P
3[

4
]

(O
P

A
M

P
1+

, G
P

IO
) 

P
3[

5
]

V
D

D
IO

3

VDDIO0

P0[3] (GPIO, OPAMP0-, EXTREF0)

P0[2] (GPIO, OPAMP0+, SAR1 EXTREF)

P0[1] (GPIO, OPAMP0OUT)

P0[0] (GPIO, OPAMP2OUT)
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Note
5. Pins are Do Not Use (DNU) on devices without USB. The pin must be left floating.
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3.  Pin Descriptions

IDAC0, IDAC1, IDAC2, IDAC3. Low-resistance output pin for
high-current DACs (IDAC).

Opamp0out, Opamp1out, Opamp2out, Opamp3out. High
current output of uncommitted opamp.[7]

Extref0, Extref1. External reference input to the analog system.

SAR0 EXTREF, SAR1 EXTREF. External references for SAR
ADCs

Opamp0-, Opamp1-, Opamp2-, Opamp3-. Inverting input to
uncommitted opamp.

Opamp0+, Opamp1+, Opamp2+, Opamp3+. Noninverting
input to uncommitted opamp.

GPIO. Provides interfaces to the CPU, digital peripherals,
analog peripherals, interrupts, LCD segment drive, and
CapSense.[7]

I2C0: SCL, I2C1: SCL. I2C SCL line providing wake from sleep
on an address match. Any I/O pin can be used for I2C SCL if
wake from sleep is not required.

I2C0: SDA, I2C1: SDA. I2C SDA line providing wake from sleep
on an address match. Any I/O pin can be used for I2C SDA if
wake from sleep is not required.

Ind. Inductor connection to boost pump.

kHz XTAL: Xo, kHz XTAL: Xi. 32.768-kHz crystal oscillator pin.

MHz XTAL: Xo, MHz XTAL: Xi. 4 to 25-MHz crystal oscillator
pin.

nTRST. Optional JTAG Test Reset programming and debug port
connection to reset the JTAG connection.

SIO. Provides interfaces to the CPU, digital peripherals and
interrupts with a programmable high threshold voltage, analog
comparator, high sink current, and high impedance state when
the device is unpowered.

SWDCK. SWD Clock programming and debug port connection.

SWDIO. SWD Input and Output programming and debug port
connection.

TCK. JTAG Test Clock programming and debug port connection.

TDI. JTAG Test Data In programming and debug port
connection.

TDO. JTAG Test Data Out programming and debug port
connection.

TMS. JTAG Test Mode Select programming and debug port
connection.

TRACECLK. Cortex-M3 TRACEPORT connection, clocks
TRACEDATA pins.

TRACEDATA[3:0]. Cortex-M3 TRACEPORT connections,
output data.

SWV. SWV output.

USBIO, D+. Provides D+ connection directly to a USB 2.0 bus.
May be used as a digital I/O pin; it is powered from VDDD instead
of from a VDDIO. Pins are Do Not Use (DNU) on devices without
USB.

USBIO, D-. Provides D- connection directly to a USB 2.0 bus.
May be used as a digital I/O pin; it is powered from VDDD instead
of from a VDDIO. Pins are Do Not Use (DNU) on devices without
USB.

VBOOST. Power sense connection to boost pump.

VBAT. Battery supply to boost pump.

VCCA. Output of the analog core regulator or the input to
the analog core. Requires a 1uF capacitor to VSSA. The
regulator output is not designed to drive external circuits. Note
that if you use the device with an external core regulator
(externally regulated mode), the voltage applied to this pin
must not exceed the allowable range of 1.71 V to 1.89 V.
When using the internal core regulator, (internally regulated
mode, the default), do not tie any power to this pin. For details
see Power System  on page 26.

VCCD. Output of the digital core regulator or the input to the
digital core. The two VCCD pins must be shorted together, with
the trace between them as short as possible, and a 1uF capacitor
to VSSD. The regulator output is not designed to drive external
circuits. Note that if you use the device with an external core
regulator (externally regulated mode), the voltage applied to
this pin must not exceed the allowable range of 1.71 V to
1.89 V. When using the internal core regulator (internally
regulated mode, the default), do not tie any power to this pin. For
details see Power System  on page 26.

VDDA. Supply for all analog peripherals and analog core
regulator. VDDA must be the highest voltage present on the
device. All other supply pins must be less than or equal to
VDDA.

VDDD. Supply for all digital peripherals and digital core
regulator. VDDD must be less than or equal to VDDA.

VSSA. Ground for all analog peripherals.

VSSB. Ground connection for boost pump.

VSSD. Ground for all digital logic and I/O pins.

VDDIO0, VDDIO1, VDDIO2, VDDIO3. Supply for I/O pins. Each
VDDIO must be tied to a valid operating voltage (1.71 V to 5.5 V),
and must be less than or equal to VDDA. 

XRES. External reset pin. Active low with internal pull-up.

Note
7. GPIOs with opamp outputs are not recommended for use with CapSense.
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The Cortex-M3 does not support ARM instructions for SRAM
addresses.

 Bit-band support for the SRAM region. Atomic bit-level write 
and read operations for SRAM addresses.

 Unaligned data storage and access. Contiguous storage of 
data of different byte lengths.

Operation at two privilege levels (privileged and user) and in 
two modes (thread and handler). Some instructions can only 
be executed at the privileged level. There are also two stack 
pointers: Main (MSP) and Process (PSP). These features 
support a multitasking operating system running one or more 
user-level processes.

 Extensive interrupt and system exception support.

4.1.2  Cortex-M3 Operating Modes

The Cortex-M3 operates at either the privileged level or the user
level, and in either the thread mode or the handler mode.
Because the handler mode is only enabled at the privileged level,
there are actually only three states, as shown in Table 4-1. 

At the user level, access to certain instructions, special registers,
configuration registers, and debugging components is blocked.
Attempts to access them cause a fault exception. At the
privileged level, access to all instructions and registers is
allowed.

The processor runs in the handler mode (always at the privileged
level) when handling an exception, and in the thread mode when
not.

4.1.3  CPU Registers

The Cortex-M3 CPU registers are listed in Table 4-2. Registers
R0-R15 are all 32 bits wide. 4.2  Cache Controller

The CY8C58LP family has a 1 KB, 4-way set-associative
instruction cache between the CPU and the flash memory. This
improves instruction execution rate and reduces system power
consumption by requiring less frequent flash access. 

4.3  DMA and PHUB

The PHUB and the DMA controller are responsible for data
transfer between the CPU and peripherals, and also data
transfers between peripherals. The PHUB and DMA also control
device configuration during boot. The PHUB consists of:

 A central hub that includes the DMA controller, arbiter, and 
router

Multiple spokes that radiate outward from the hub to most 
peripherals

There are two PHUB masters: the CPU and the DMA controller.
Both masters may initiate transactions on the bus. The DMA
channels can handle peripheral communication without CPU
intervention. The arbiter in the central hub determines which
DMA channel is the highest priority if there are multiple requests. 

Table 4-1.  Operational Level

Condition Privileged User

Running an exception Handler mode Not used

Running main program Thread mode Thread mode

Table 4-2.  Cortex M3 CPU Registers 

Register Description
R0-R12 General purpose registers R0-R12 have no special 

architecturally defined uses. Most instructions that 
specify a general purpose register specify R0-R12.

 Low registers: Registers R0-R7 are accessible by 
all instructions that specify a general purpose 
register.

 High registers: Registers R8-R12 are accessible 
by all 32-bit instructions that specify a general 
purpose register; they are not accessible by all 
16-bit instructions.

R13 R13 is the stack pointer register. It is a banked 
register that switches between two 32-bit stack 
pointers: the main stack pointer (MSP) and the 
process stack pointer (PSP). The PSP is used only 
when the CPU operates at the user level in thread 
mode. The MSP is used in all other privilege levels 
and modes. Bits[0:1] of the SP are ignored and 
considered to be 0, so the SP is always aligned to a 
word (4 byte) boundary.

R14 R14 is the link register (LR). The LR stores the return 
address when a subroutine is called.

R15 R15 is the program counter (PC). Bit 0 of the PC is 
ignored and considered to be 0, so instructions are 
always aligned to a half word (2 byte) boundary.

xPSR The program status registers are divided into three 
status registers, which are accessed either together 
or separately:

 Application program status register (APSR) holds 
program execution status bits such as zero, carry, 
negative, in bits[27:31].

 Interrupt program status register (IPSR) holds the 
current exception number in bits[0:8].

 Execution program status register (EPSR) holds 
control bits for interrupt continuable and IF-THEN 
instructions in bits[10:15] and [25:26]. Bit 24 is 
always set to 1 to indicate Thumb mode. Trying to 
clear it causes a fault exception.

PRIMASK A 1-bit interrupt mask register. When set, it allows 
only the nonmaskable interrupt (NMI) and hard fault 
exception. All other exceptions and interrupts are 
masked.

FAULTMASK A 1-bit interrupt mask register. When set, it allows 
only the NMI. All other exceptions and interrupts are 
masked.

BASEPRI A register of up to nine bits that define the masking 
priority level. When set, it disables all interrupts of 
the same or higher priority value. If set to 0 then the 
masking function is disabled.

CONTROL A 2-bit register for controlling the operating mode.
Bit 0: 0 = privileged level in thread mode, 
1 = user level in thread mode.
Bit 1: 0 = default stack (MSP) is used, 
1 = alternate stack is used. If in thread mode or user 
level then the alternate stack is the PSP. There is no 
alternate stack for handler mode; the bit must be 0 
while in handler mode.

Table 4-2.  Cortex M3 CPU Registers  (continued)

Register Description
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Figure 6-1. Clocking Subsystem
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6.1.1  Internal Oscillators 

Figure 6-1 shows that there are two internal oscillators. They can
be routed directly or divided. The direct routes may not have a
50% duty cycle. Divided clocks have a 50% duty cycle.

6.1.1.1 Internal Main Oscillator

In most designs the IMO is the only clock source required, due
to its ±1% accuracy. The IMO operates with no external
components and outputs a stable clock. A factory trim for each
frequency range is stored in the device. With the factory trim,
tolerance varies from ±1% at 3 MHz, up to ±7% at 74 MHz. The
IMO, in conjunction with the PLL, allows generation of CPU and
system clocks up to the device's maximum frequency (see USB
Clock Domain  on page 26). The IMO provides clock outputs at
3, 6, 12, 24, 48, and 74 MHz.

6.1.1.2 Clock Doubler

The clock doubler outputs a clock at twice the frequency of the
input clock. The doubler works at input frequency of 24 MHz,
providing 48 MHz for the USB. It can be configured to use a clock
from the IMO, MHzECO, or the DSI (external pin). 

6.1.1.3 Phase-Locked Loop

The PLL allows low frequency, high accuracy clocks to be
multiplied to higher frequencies. This is a tradeoff between
higher clock frequency and accuracy and, higher power
consumption and increased startup time. 

The PLL block provides a mechanism for generating clock
frequencies based upon a variety of input sources. The PLL
outputs clock frequencies in the range of 24 to 80 MHz. Its input
and feedback dividers supply 4032 discrete ratios to create
almost any desired system clock frequency. The accuracy of the
PLL output depends on the accuracy of the PLL input source.
The most common PLL use is to multiply the IMO clock at 3 MHz,
where it is most accurate, to generate the CPU and system
clocks up to the device’s maximum frequency.

The PLL achieves phase lock within 250 µs (verified by bit
setting). It can be configured to use a clock from the IMO,
MHzECO, or DSI (external pin). The PLL clock source can be
used until lock is complete and signaled with a lock bit. The lock
signal can be routed through the DSI to generate an interrupt.
Disable the PLL before entering low power modes.

6.1.1.4 Internal Low-Speed Oscillator

The ILO provides clock frequencies for low power consumption,
including the watchdog timer, and sleep timer. The ILO
generates up to three different clocks: 1 kHz, 33 kHz, and
100 kHz. 

The 1-kHz clock (CLK1K) is typically used for a background
‘heartbeat’ timer. This clock inherently lends itself to low power
supervisory operations such as the watchdog timer and long
sleep intervals using the central timewheel (CTW). 

The central timewheel is a 1 kHz, free running, 13-bit counter
clocked by the ILO. The central timewheel is always enabled
except in hibernate mode and when the CPU is stopped during
debug on chip mode. It can be used to generate periodic
interrupts for timing purposes or to wake the system from a low
power mode. Firmware can reset the central timewheel. 

The central timewheel can be programmed to wake the system
periodically and optionally issue an interrupt. This enables
flexible, periodic wakeups from low power modes or coarse
timing applications. Systems that require accurate timing should
use the RTC capability instead of the central timewheel.

The 100-kHz clock (CLK100K) can be used as a low power
system clock to run the CPU. It can also generate time intervals
using the fast timewheel.

The fast timewheel is a 5-bit counter, clocked by the 100-kHz
clock. It features programmable settings and automatically
resets when the terminal count is reached. An optional interrupt
can be generated each time the terminal count is reached. This
enables flexible, periodic interrupts of the CPU at a higher rate
than is allowed using the central timewheel.

The 33-kHz clock (CLK33K) comes from a divide-by-3 operation
on CLK100K. This output can be used as a reduced accuracy
version of the 32.768-kHz ECO clock with no need for a crystal. 

6.1.2  External Oscillators 

Figure 6-1 shows that there are two external oscillators. They
can be routed directly or divided. The direct routes may not have
a 50% duty cycle. Divided clocks have a 50% duty cycle.

6.1.2.1 MHz External Crystal Oscillator 

The MHzECO provides high frequency, high precision clocking
using an external crystal (see Figure 6-2). It supports a wide
variety of crystal types, in the range of 4 to 25 MHz. When used
in conjunction with the PLL, it can generate CPU and system
clocks up to the device's maximum frequency (see
Phase-Locked Loop  on page 25). The GPIO pins connecting to
the external crystal and capacitors are fixed. MHzECO accuracy
depends on the crystal chosen.

Figure 6-2. MHzECO Block Diagram
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6.1.2.2 32.768 kHz ECO

The 32.768-kHz external crystal oscillator (32kHzECO) provides
precision timing with minimal power consumption using an
external 32.768-kHz watch crystal (see Figure 6-3). The
32kHzECO also connects directly to the sleep timer and provides
the source for the RTC. The RTC uses a 1 second interrupt to
implement the RTC functionality in firmware. 

The oscillator works in two distinct power modes. This allows
users to trade off power consumption with noise immunity from
neighboring circuits. The GPIO pins connected to the external
crystal and capacitors are fixed. 

Figure 6-3. 32kHzECO Block Diagram

It is recommended that the external 32.768-kHz watch crystal
have a load capacitance (CL) of 6 pF or 12.5 pF. Check the
crystal manufacturer's datasheet. The two external capacitors,
CL1 and CL2, are typically of the same value, and their total
capacitance, CL1CL2 / (CL1 + CL2), including pin and trace
capacitance, should equal the crystal CL value. For more infor-
mation, refer to application note AN54439: PSoC 3 and PSoC 5
External Oscillators. See also pin capacitance specifications in
the “GPIO” section on page 76.

6.1.2.3 Digital System Interconnect

The DSI provides routing for clocks taken from external clock
oscillators connected to I/O. The oscillators can also be
generated within the device in the digital system and UDBs. 

While the primary DSI clock input provides access to all clocking
resources, up to eight other DSI clocks (internally or externally
generated) may be routed directly to the eight digital clock
dividers. This is only possible if there are multiple precision clock
sources.

6.1.3  Clock Distribution

All seven clock sources are inputs to the central clock distribution
system. The distribution system is designed to create multiple
high precision clocks. These clocks are customized for the
design’s requirements and eliminate the common problems
found with limited resolution prescalers attached to peripherals.
The clock distribution system generates several types of clock
trees.

 The system clock is used to select and supply the fastest clock 
in the system for general system clock requirements and clock 
synchronization of the PSoC device. 

 Bus clock 16-bit divider uses the system clock to generate the 
system’s bus clock used for data transfers and the CPU. The 
CPU clock is directly derived from the bus clock.

 Eight fully programmable 16-bit clock dividers generate digital 
system clocks for general use in the digital system, as 
configured by the design’s requirements. Digital system clocks 
can generate custom clocks derived from any of the seven 
clock sources for any purpose. Examples include baud rate 
generators, accurate PWM periods, and timer clocks, and 
many others. If more than eight digital clock dividers are 
required, the UDBs and fixed function timer/counter/PWMs can 
also generate clocks. 

 Four 16-bit clock dividers generate clocks for the analog system 
components that require clocking, such as ADCs and mixers. 
The analog clock dividers include skew control to ensure that 
critical analog events do not occur simultaneously with digital 
switching events. This is done to reduce analog system noise.

Each clock divider consists of an 8-input multiplexer, a 16-bit
clock divider (divide by 2 and higher) that generates ~50% duty
cycle clocks, system clock resynchronization logic, and deglitch
logic. The outputs from each digital clock tree can be routed into
the digital system interconnect and then brought back into the
clock system as an input, allowing clock chaining of up to 32 bits. 

6.1.4  USB Clock Domain

The USB clock domain is unique in that it operates largely
asynchronously from the main clock network. The USB logic
contains a synchronous bus interface to the chip, while running
on an asynchronous clock to process USB data. The USB logic
requires a 48-MHz frequency. This frequency can be generated
from different sources, including DSI clock at 48 MHz or doubled
value of 24 MHz from internal oscillator, DSI signal, or crystal
oscillator.

6.2  Power System

The power system consists of separate analog, digital, and I/O
supply pins, labeled VDDA, VDDD, and VDDIOX, respectively. It
also includes two internal 1.8 V regulators that provide the digital
(VCCD) and analog (VCCA) supplies for the internal core logic.
The output pins of the regulators (VCCD and VCCA) and the
VDDIO pins must have capacitors connected as shown in
Figure 6-4. The two VCCD pins must be shorted together, with as
short a trace as possible, and connected to a 1 µF ±10% X5R
capacitor. The power system also contains a sleep regulator, an
I2C regulator, and a hibernate regulator.
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Figure 6-5. Power Mode Transitions 

6.2.1.1 Active Mode

Active mode is the primary operating mode of the device. When
in active mode, the active configuration template bits control
which available resources are enabled or disabled. When a
resource is disabled, the digital clocks are gated, analog bias
currents are disabled, and leakage currents are reduced as
appropriate. User firmware can dynamically control subsystem
power by setting and clearing bits in the active configuration
template. The CPU can disable itself, in which case the CPU is
automatically reenabled at the next wakeup event.

When a wakeup event occurs, the global mode is always
returned to active, and the CPU is automatically enabled,
regardless of its template settings. Active mode is the default
global power mode upon boot.

6.2.1.2 Alternate Active Mode

Alternate Active mode is very similar to Active mode. In alternate
active mode, fewer subsystems are enabled, to reduce power
consumption. One possible configuration is to turn off the CPU
and flash, and run peripherals at full speed.

6.2.1.3 Sleep Mode

Sleep mode reduces power consumption when a resume time of
15 µs is acceptable. The wake time is used to ensure that the
regulator outputs are stable enough to directly enter active
mode.

6.2.1.4 Hibernate Mode

In hibernate mode nearly all of the internal functions are
disabled. Internal voltages are reduced to the minimal level to
keep vital systems alive. Configuration state is preserved in
hibernate mode and SRAM memory is retained. GPIOs
configured as digital outputs maintain their previous values and
external GPIO pin interrupt settings are preserved. The device
can only return from hibernate mode in response to an external
I/O interrupt. The resume time from hibernate mode is less than
100 µs.

To achieve an extremely low current, the hibernate regulator has
limited capacity. This limits the frequency of any signal present
on the input pins; no GPIO should toggle at a rate greater than
10 kHz while in hibernate mode. If pins must be toggled at a high
rate while in a low power mode, use sleep mode instead.

6.2.1.5 Wakeup Events

Wakeup events are configurable and can come from an interrupt
or device reset. A wakeup event restores the system to active
mode. Firmware enabled interrupt sources include internally
generated interrupts, power supervisor, central timewheel, and
I/O interrupts. Internal interrupt sources can come from a variety
of peripherals, such as analog comparators and UDBs. The
central timewheel provides periodic interrupts to allow the
system to wake up, poll peripherals, or perform real-time
functions. Reset event sources include the external reset pin
(XRES), WDT, and Precision Reset (PRES). 

6.2.2  Boost Converter

Applications that use a supply voltage of less than 1.71 V, such
as solar panels or single cell battery supplies, may use the
on-chip boost converter to generate a minimum of 1.8 V supply
voltage. The boost converter may also be used in any system
that requires a higher operating voltage than the supply provides
such as driving 5.0 V LCD glass in a 3.3 V system. With the
addition of an inductor, Schottky diode, and capacitors, it
produces a selectable output voltage sourcing enough current to
operate the PSoC and other on-board components. 

The boost converter accepts an input voltage VBAT from 0.5 V to
3.6 V, and can start up with VBAT as low as 0.5 V. The converter
provides a user configurable output voltage of 1.8 to 5.0 V (VOUT)
in 100 mV increments. VBAT is typically less than VOUT; if VBAT is
greater than or equal to VOUT, then VOUT will be slightly less than
VBAT due to resistive losses in the boost converter. The block can
deliver up to 50 mA (IBOOST) depending on configuration to both
the PSoC device and external components. The sum of all
current sinks in the design including the PSoC device, PSoC I/O
pin loads, and external component loads must be less than the
IBOOST specified maximum current.

Four pins are associated with the boost converter: VBAT, VSSB,
VBOOST, and IND. The boosted output voltage is sensed at the
VBOOST pin and must be connected directly to the chip’s supply
inputs; VDDA, VDDD, and VDDIO if used to power the PSoC
device. 

The boost converter requires four components in addition to
those required in a non-boost design, as shown in Figure 6-6 on
page 30. A 22 µF capacitor (CBAT) is required close to the VBAT
pin to provide local bulk storage of the battery voltage and
provide regulator stability. A diode between the battery and VBAT
pin should not be used for reverse polarity protection because
the diodes forward voltage drop reduces the VBAT voltage.
Between the VBAT and IND pins, an inductor of 4.7 µH, 10 µH, or
22 µH is required. The inductor value can be optimized to
increase the boost converter efficiency based on input voltage,
output voltage, temperature, and current. Inductor size is
determined by following the design guidance in this chapter and
electrical specifications. The inductor must be placed within 1 cm
of the VBAT and IND pins and have a minimum saturation current
of 750 mA. Between the IND and VBOOST pins a Schottky diode
must be placed within 1 cm of the pins. The Schottky diode shall
have a forward current rating of at least 1.0 A and a reverse
voltage of at least 20 V. A 22 µF bulk capacitor (CBOOST) must
be connected close to VBOOST to provide regulator output
stability. It is important to sum the total capacitance connected to
the VBOOST pin and ensure the maximum CBOOST specification
is not exceeded. All capacitors must be rated for a minimum of
10 V to minimize capacitive losses due to voltage de-rating.
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Figure 6-8. GPIO Block Diagram
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The USBIO pins (P15[7] and P15[6]), when enabled for I/O mode, have limited drive mode control. The drive mode is set using the
PRT15.DM0[7, 6] register. A resistive pull option is also available at the USBIO pins, which can be enabled using the PRT15.DM1[7,
6] register. When enabled for USB mode, the drive mode control has no impact on the configuration of the USB pins. Unlike the GPIO
and SIO configurations, the port wide configuration registers do not configure the USB drive mode bits. Table 6-7 shows the drive
mode configuration for the USBIO pins.

 High impedance analog

The default reset state with both the output driver and digital
input buffer turned off. This prevents any current from flowing
in the I/O’s digital input buffer due to a floating voltage. This
state is recommended for pins that are floating or that support
an analog voltage. High impedance analog pins do not provide
digital input functionality. 

To achieve the lowest chip current in sleep modes, all I/Os
must either be configured to the high impedance analog mode,
or have their pins driven to a power supply rail by the PSoC
device or by external circuitry.

 High impedance digital

The input buffer is enabled for digital signal input. This is the
standard high impedance (HiZ) state recommended for digital
inputs.

 Resistive pull-up or resistive pull-down
Resistive pull-up or pull-down, respectively, provides a series
resistance in one of the data states and strong drive in the
other. Pins can be used for digital input and output in these
modes. Interfacing to mechanical switches is a common
application for these modes. Resistive pull-up and pull-down
are not available with SIO in regulated output mode.

Open drain, drives high and open drain, drives low 
Open drain modes provide high impedance in one of the data
states and strong drive in the other. Pins can be used for digital
input and output in these modes. A common application for
these modes is driving the I2C bus signal lines.

 Strong drive
Provides a strong CMOS output drive in either high or low
state. This is the standard output mode for pins. Strong Drive
mode pins must not be used as inputs under normal
circumstances. This mode is often used to drive digital output
signals or external FETs.

 Resistive pull-up and pull-down
Similar to the resistive pull-up and resistive pull-down modes
except the pin is always in series with a resistor. The high data

state is pull-up while the low data state is pull-down. This mode
is most often used when other signals that may cause shorts
can drive the bus. Resistive pull-up and pull-down are not
available with SIO in regulated output mode.

6.4.2  Pin Registers
Registers to configure and interact with pins come in two forms
that may be used interchangeably. 
All I/O registers are available in the standard port form, where
each bit of the register corresponds to one of the port pins. This
register form is efficient for quickly reconfiguring multiple port
pins at the same time.

I/O registers are also available in pin form, which combines the
eight most commonly used port register bits into a single register
for each pin. This enables very fast configuration changes to
individual pins with a single register write.

6.4.3  Bidirectional Mode

High speed bidirectional capability allows pins to provide both
the high impedance digital drive mode for input signals and a
second user selected drive mode such as strong drive (set using
PRTxDM[2:0] registers) for output signals on the same pin,
based on the state of an auxiliary control bus signal. The
bidirectional capability is useful for processor busses and
communications interfaces such as the SPI Slave MISO pin that
requires dynamic hardware control of the output buffer. 

The auxiliary control bus routes up to 16 UDB or digital peripheral
generated output enable signals to one or more pins. 

6.4.4  Slew Rate Limited Mode

GPIO and SIO pins have fast and slow output slew rate options
for strong and open drain drive modes, not resistive drive modes.
Because it results in reduced EMI, the slow edge rate option is
recommended for signals that are not speed critical, generally
less than 1 MHz. The fast slew rate is for signals between 1 MHz
and 33 MHz. The slew rate is individually configurable for each
pin, and is set by the PRTxSLW registers.

Table 6-7.  USBIO Drive Modes (P15[7] and P15[6])

PRT15.DM1[7,6]
Pull up enable

PRT15.DM0[7,6] 
Drive Mode enable PRT15.DR[7,6] = 1 PRT15.DR[7,6] = 0 Description

0 0 High Z Strong Low Open Drain, Strong Low

0 1 Strong High Strong Low Strong Outputs

1 0 Res High (5k) Strong Low Resistive Pull Up, Strong Low

1 1 Strong High Strong Low Strong Outputs
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6.4.5  Pin Interrupts
All GPIO and SIO pins are able to generate interrupts to the
system. All eight pins in each port interface to their own Port
Interrupt Control Unit (PICU) and associated interrupt vector.
Each pin of the port is independently configurable to detect rising
edge, falling edge, both edge interrupts, or to not generate an
interrupt. 

Depending on the configured mode for each pin, each time an
interrupt event occurs on a pin, its corresponding status bit of the
interrupt status register is set to “1” and an interrupt request is
sent to the interrupt controller. Each PICU has its own interrupt
vector in the interrupt controller and the pin status register
providing easy determination of the interrupt source down to the
pin level.

Port pin interrupts remain active in all sleep modes allowing the
PSoC device to wake from an externally generated interrupt.
While level sensitive interrupts are not directly supported;
Universal Digital Blocks (UDB) provide this functionality to the
system when needed.

6.4.6  Input Buffer Mode
GPIO and SIO input buffers can be configured at the port level
for the default CMOS input thresholds or the optional LVTTL
input thresholds. All input buffers incorporate Schmitt triggers for
input hysteresis. Additionally, individual pin input buffers can be
disabled in any drive mode.

6.4.7  I/O Power Supplies
Up to four I/O pin power supplies are provided depending on the
device and package. Each I/O supply must be less than or equal
to the voltage on the chip’s analog (VDDA) pin. This feature
allows users to provide different I/O voltage levels for different
pins on the device. Refer to the specific device package pinout
to determine VDDIO capability for a given port and pin. The SIO
port pins support an additional regulated high output capability,
as described in Adjustable Output Level.

6.4.8  Analog Connections
These connections apply only to GPIO pins. All GPIO pins may
be used as analog inputs or outputs. The analog voltage present
on the pin must not exceed the VDDIO supply voltage to which
the GPIO belongs. Each GPIO may connect to one of the analog
global busses or to one of the analog mux buses to connect any
pin to any internal analog resource such as ADC or comparators.
In addition, select pins provide direct connections to specific
analog features such as the high current DACs or uncommitted
opamps. 

6.4.9  CapSense
This section applies only to GPIO pins. All GPIO pins may be
used to create CapSense buttons and sliders[11]. See the
“CapSense” section on page 59 for more information.

6.4.10  LCD Segment Drive
This section applies only to GPIO pins. All GPIO pins may be
used to generate Segment and Common drive signals for direct
glass drive of LCD glass. See the “LCD Direct Drive” section on
page 58 for details. 

6.4.11  Adjustable Output Level

This section applies only to SIO pins. SIO port pins support the
ability to provide a regulated high output level for interface to
external signals that are lower in voltage than the SIO’s
respective VDDIO. SIO pins are individually configurable to
output either the standard VDDIO level or the regulated output,
which is based on an internally generated reference. Typically a
voltage DAC (VDAC) is used to generate the reference (see
Figure 6-12). The “DAC” section on page 59 has more details on
VDAC use and reference routing to the SIO pins. Resistive
pull-up and pull-down drive modes are not available with SIO in
regulated output mode.

6.4.12  Adjustable Input Level

This section applies only to SIO pins. SIO pins by default support
the standard CMOS and LVTTL input levels but also support a
differential mode with programmable levels. SIO pins are
grouped into pairs. Each pair shares a reference generator block
which, is used to set the digital input buffer reference level for
interface to external signals that differ in voltage from VDDIO.
The reference sets the pins voltage threshold for a high logic
level (see Figure 6-12). Available input thresholds are:
 0.5 VDDIO
 0.4 VDDIO
 0.5 VREF
 VREF

Typically a voltage DAC (VDAC) generates the VREF reference.
DAC  on page 59 has more details on VDAC use and reference
routing to the SIO pins.

Figure 6-12. SIO Reference for Input and Output

PIN

Drive
Logic

Driver
Vhigh

Reference 
Generator

SIO_Ref

Digital 
Input

Digital 
Output 

Input Path

Output Path

Vinref

Voutref

Note
11. GPIOs with opamp outputs are not recommended for use with CapSense.
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7.2.2.3 Conditionals

Each datapath has two compares, with bit masking options.
Compare operands include the two accumulators and the two
data registers in a variety of configurations. Other conditions
include zero detect, all ones detect, and overflow. These
conditions are the primary datapath outputs, a selection of which
can be driven out to the UDB routing matrix. Conditional
computation can use the built in chaining to neighboring UDBs
to operate on wider data widths without the need to use routing
resources.

7.2.2.4 Variable MSB

The most significant bit of an arithmetic and shift function can be
programmatically specified. This supports variable width CRC
and PRS functions, and in conjunction with ALU output masking,
can implement arbitrary width timers, counters and shift blocks.

7.2.2.5 Built-in CRC/PRS

The datapath has built in support for single cycle Cyclic
Redundancy Check (CRC) computation and Pseudo Random
Sequence (PRS) generation of arbitrary width and arbitrary
polynomial. CRC/PRS functions longer than 8 bits may be
implemented in conjunction with PLD logic, or built in chaining
may be use to extend the function into neighboring UDBs.

7.2.2.6 Input/Output FIFOs

Each datapath contains two four-byte deep FIFOs, which can be
independently configured as an input buffer (system bus writes
to the FIFO, datapath internal reads the FIFO), or an output
buffer (datapath internal writes to the FIFO, the system bus reads
from the FIFO). The FIFOs generate status that are selectable
as datapath outputs and can therefore be driven to the routing,
to interact with sequencers, interrupts, or DMA.

Figure 7-5. Example FIFO Configurations

7.2.2.7 Chaining

The datapath can be configured to chain conditions and signals
such as carries and shift data with neighboring datapaths to
create higher precision arithmetic, shift, CRC/PRS functions.

7.2.2.8 Time Multiplexing

In applications that are over sampled, or do not need high clock
rates, the single ALU block in the datapath can be efficiently
shared with two sets of registers and condition generators. Carry
and shift out data from the ALU are registered and can be
selected as inputs in subsequent cycles. This provides support
for 16-bit functions in one (8-bit) datapath.

7.2.2.9 Datapath I/O

There are six inputs and six outputs that connect the datapath to
the routing matrix. Inputs from the routing provide the
configuration for the datapath operation to perform in each cycle,
and the serial data inputs. Inputs can be routed from other UDB
blocks, other device peripherals, device I/O pins, and so on. The
outputs to the routing can be selected from the generated
conditions, and the serial data outputs. Outputs can be routed to
other UDB blocks, device peripherals, interrupt and DMA
controller, I/O pins, and so on.

7.2.3  Status and Control Module

The primary purpose of this circuitry is to coordinate CPU
firmware interaction with internal UDB operation.

Figure 7-6. Status and Control Registers

The bits of the control register, which may be written to by the
system bus, are used to drive into the routing matrix, and thus
provide firmware with the opportunity to control the state of UDB
processing. The status register is read-only and it allows internal
UDB state to be read out onto the system bus directly from
internal routing. This allows firmware to monitor the state of UDB
processing. Each bit of these registers has programmable
connections to the routing matrix and routing connections are
made depending on the requirements of the application.

7.2.3.1 Usage Examples

As an example of control input, a bit in the control register can
be allocated as a function enable bit. There are multiple ways to
enable a function. In one method the control bit output would be
routed to the clock control block in one or more UDBs and serve
as a clock enable for the selected UDB blocks. A status example
is a case where a PLD or datapath block generated a condition,
such as a “compare true” condition that is captured and latched
by the status register and then read (and cleared) by CPU
firmware. 

7.2.3.2 Clock Generation

Each subcomponent block of a UDB including the two PLDs, the
datapath, and Status and Control, has a clock selection and
control block. This promotes a fine granularity with respect to
allocating clocking resources to UDB component blocks and
allows unused UDB resources to be used by other functions for
maximum system efficiency.
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Figure 7-15. CAN Controller Block Diagram

7.6  USB

PSoC includes a dedicated Full-Speed (12 Mbps) USB 2.0
transceiver supporting all four USB transfer types: control,
interrupt, bulk, and isochronous. PSoC Creator provides full
configuration support. USB interfaces to hosts through two
dedicated USBIO pins, which are detailed in the I/O System and
Routing  on page 33.

USB includes the following features:

 Eight unidirectional data endpoints

One bidirectional control endpoint 0 (EP0)

 Shared 512-byte buffer for the eight data endpoints

 Dedicated 8-byte buffer for EP0

 Three memory modes
 Manual Memory Management with No DMA Access
 Manual Memory Management with Manual DMA Access
 Automatic Memory Management with Automatic DMA 

Access

 Internal 3.3 V regulator for transceiver

 Internal 48 MHz oscillator that auto locks to USB bus clock, 
requiring no external crystal for USB (USB equipped parts only)

 Interrupts on bus and each endpoint event, with device wakeup

 USB Reset, Suspend, and Resume operations

 Bus powered and self powered modes

Figure 7-16. USB
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7.7  Timers, Counters, and PWMs

The Timer/Counter/PWM peripheral is a 16-bit dedicated
peripheral providing three of the most common embedded
peripheral features. As almost all embedded systems use some
combination of timers, counters, and PWMs. Four of them have
been included on this PSoC device family. Additional and more
advanced functionality timers, counters, and PWMs can also be
instantiated in Universal Digital Blocks (UDBs) as required.
PSoC Creator allows you to choose the timer, counter, and PWM
features that you need. The tool set utilizes the most optimal
resources available. 

The Timer/Counter/PWM peripheral can select from multiple
clock sources, with input and output signals connected through
the DSI routing. DSI routing allows input and output connections
to any device pin and any internal digital signal accessible
through the DSI. Each of the four instances has a compare
output, terminal count output (optional complementary compare
output), and programmable interrupt request line. The
Timer/Counter/PWMs are configurable as free running, one shot,
or Enable input controlled. The peripheral has timer reset and
capture inputs, and a kill input for control of the comparator
outputs. The peripheral supports full 16-bit capture.

Timer/Counter/PWM features include:

 16-bit timer/counter/PWM (down count only)

 Selectable clock source

 PWM comparator (configurable for LT, LTE, EQ, GTE, GT)

 Period reload on start, reset, and terminal count

 Interrupt on terminal count, compare true, or capture

 Dynamic counter reads 

 Timer capture mode

 Count while enable signal is asserted mode

 Free run mode

One-shot mode (stop at end of period)

 Complementary PWM outputs with deadband

 PWM output kill

Figure 7-17. Timer/Counter/PWM

7.8  I2C

PSoC includes a single fixed-function I2C peripheral. Additional
I2C interfaces can be instantiated using Universal Digital Blocks
(UDBs) in PSoC Creator, as required.

The I2C peripheral provides a synchronous two-wire interface
designed to interface the PSoC device with a two-wire I2C serial
communication bus. It is compatible[13] with I2C Standard-mode,
Fast-mode, and Fast-mode Plus devices as defined in the NXP
I2C-bus specification and user manual (UM10204). The I2C bus
I/O may be implemented with GPIO or SIO in open-drain modes.

To eliminate the need for excessive CPU intervention and
overhead, I2C specific support is provided for status detection
and generation of framing bits. I2C operates as a slave, a master,
or multimaster (Slave and Master)[13]. In slave mode, the unit
always listens for a start condition to begin sending or receiving
data. Master mode supplies the ability to generate the Start and
Stop conditions and initiate transactions. Multimaster mode
provides clock synchronization and arbitration to allow multiple
masters on the same bus. If Master mode is enabled and Slave
mode is not enabled, the block does not generate interrupts on
externally generated Start conditions. I2C interfaces through the
DSI routing and allows direct connections to any GPIO or SIO
pins.

I2C provides hardware address detect of a 7-bit address without
CPU intervention. Additionally the device can wake from low
power modes on a 7-bit hardware address match. If wakeup
functionality is required, I2C pin connections are limited to one of
two specific pairs of SIO pins. See descriptions of SCL and SDA
pins in Pin Descriptions  on page 12.

I2C features include:

 Slave and master, transmitter, and receiver operation

 Byte processing for low CPU overhead

 Interrupt or polling CPU interface

 Support for bus speeds up to 1 Mbps

 7 or 10-bit addressing (10-bit addressing requires firmware 
support)

 SMBus operation (through firmware support - SMBus 
supported in hardware in UDBs)

 7-bit hardware address compare

Wake from low power modes on address match 

Glitch filtering (active and alternate-active modes only)

Data transfers follow the format shown in Figure 7-18. After the
START condition (S), a slave address is sent. This address is 7
bits long followed by an eighth bit which is a data direction bit
(R/W) - a 'zero' indicates a transmission (WRITE), a 'one'
indicates a request for data (READ). A data transfer is always
terminated by a STOP condition (P) generated by the master. 

Timer / Counter / 
PWM 16-bit

Clock
Reset
Enable
Capture
Kill

IRQ

Compare

TC / Compare!

Notes
12. The I2C peripheral is non-compliant with the NXP I2C specification in the following areas: analog glitch filter, I/O VOL/IOL, I/O hysteresis. The I2C Block has a digital 

glitch filter (not available in sleep mode). The Fast-mode minimum fall-time specification can be met by setting the I/Os to slow speed mode. See the I/O Electrical 
Specifications in Inputs and Outputs  on page 76 for details.

13. Fixed-block I2C does not support undefined bus conditions, nor does it support Repeated Start in Slave mode. These conditions should be avoided, or the UDB-based 
I2C component should be used instead.
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8.2  Delta-sigma ADC

The CY8C58LP device contains one delta-sigma ADC. This
ADC offers differential input, high resolution and excellent
linearity, making it a good ADC choice for both audio signal
processing and measurement applications. The converter's
nominal operation is 16 bits at 48 ksps. The ADC can be
configured to output 20-bit resolution at data rates of up to 187
sps. At a fixed clock rate, resolution can be traded for faster data
rates as shown in Table 8-1 and Figure 8-3.

Figure 8-3. Delta-sigma ADC Sample Rates, Range = ±1.024 V

8.2.1  Functional Description

The ADC connects and configures three basic components,
input buffer, delta-sigma modulator, and decimator. The basic
block diagram is shown in Figure 8-4. The signal from the input
muxes is delivered to the delta-sigma modulator either directly or
through the input buffer. The delta-sigma modulator performs the
actual analog to digital conversion. The modulator over-samples
the input and generates a serial data stream output. This high
speed data stream is not useful for most applications without
some type of post processing, and so is passed to the decimator
through the Analog Interface block. The decimator converts the
high speed serial data stream into parallel ADC results. The
modulator/decimator frequency response is [(sin x)/x]4. 

Figure 8-4. Delta-sigma ADC Block Diagram

Resolution and sample rate are controlled by the Decimator.
Data is pipelined in the decimator; the output is a function of the
last four samples. When the input multiplexer is switched, the
output data is not valid until after the fourth sample after the
switch.

8.2.2  Operational Modes

The ADC can be configured by the user to operate in one of four
modes: Single Sample, Multi Sample, Continuous, or Multi
Sample (Turbo). All four modes are started by either a write to
the start bit in a control register or an assertion of the Start of
Conversion (SoC) signal. When the conversion is complete, a
status bit is set and the output signal End of Conversion (EoC)
asserts high and remains high until the value is read by either the
DMA controller or the CPU.

8.2.2.1 Single Sample

In Single Sample mode, the ADC performs one sample
conversion on a trigger. In this mode, the ADC stays in standby
state waiting for the SoC signal to be asserted. When SoC is
signaled the ADC performs four successive conversions. The
first three conversions prime the decimator. The ADC result is
valid and available after the fourth conversion, at which time the
EoC signal is generated. To detect the end of conversion, the
system may poll a control register for status or configure the
external EoC signal to generate an interrupt or invoke a DMA
request. When the transfer is done the ADC reenters the standby
state where it stays until another SoC event.

8.2.2.2 Continuous

Continuous sample mode is used to take multiple successive
samples of a single input signal. Multiplexing multiple inputs
should not be done with this mode. There is a latency of three
conversion times before the first conversion result is available.
This is the time required to prime the decimator. After the first
result, successive conversions are available at the selected
sample rate.

8.2.2.3 Multi Sample

Multi sample mode is similar to continuous mode except that the
ADC is reset between samples. This mode is useful when the
input is switched between multiple signals. The decimator is
re-primed between each sample so that previous samples do not
affect the current conversion. Upon completion of a sample, the
next sample is automatically initiated. The results can be
transferred using either firmware polling, interrupt, or DMA.

Table 8-1.  Delta-sigma ADC Performance

Bits Maximum Sample Rate 
(sps) SINAD (dB)

20 187 –

16 48 k 84
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Figure 9-1. JTAG Interface Connections between PSoC 5LP and Programmer 

TCK (P1[1]

TMS (P1[0])  5

GND

GND

TCK

TMS  5

XRES

Host Programmer  PSoC 5

TDO TDI (P1[4])

TDI TDO (P1[3])

nTRST 6 nTRST (P1[5]) 6

 
1 The voltage levels of Host Programmer and the PSoC 5  voltage domains involved in Programming should be same.   
  The Port 1 JTAG  pins  and XRES pin are powered by VDDIO1. So, VDDIO1 of PSoC 5  should be at same  
   voltage level as host VDD. Rest of PSoC 5  voltage domains ( VDDD, VDDA, VDDIO0, VDDIO2, VDDIO3) need not be at the same  
   voltage level as host Programmer.

2  Vdda must be greater than or equal to all other power supplies (Vddd, Vddio’s) in PSoC 5.

3  For Power cycle mode Programming, XRES pin is not required. But the Host programmer must have  
   the capability to toggle power (Vddd, Vdda, All Vddio’s) to PSoC 5. This may typically require external   
   interface circuitry to toggle power which will depend on the programming setup. The power supplies can  
   be brought up in any sequence, however, once stable, VDDA must be greater than or equal to all other   
   supplies.

4  For JTAG Programming, Device reset can also be done without connecting to the XRES pin or Power cycle mode by  
   using the TMS,TCK,TDI, TDO pins of PSoC 5, and writing to a specific register. But this requires that the DPS setting  
   in NVL is not equal to “Debug Ports Disabled”.

5  By default, PSoC 5 is configured for 4-wire JTAG mode unless user changes the DPS setting. So the TMS pin is  
   unidirectional. But if the  DPS setting is changed to non-JTAG mode, the TMS pin in JTAG is bi-directional as the SWD  
   Protocol has to be used for acquiring the  PSoC 5 device initially. After switching from SWD to JTAG mode, the TMS 
   pin will be uni-directional. In such a case, unidirectional buffer should not be used on TMS line.

6  nTRST JTAG pin (P1[5]) cannot be used to reset the JTAG TAP controlller during first time programming of PSoC 5  
   as the default setting is 4-wire JTAG (nTRST disabled). Use the TMS, TCK pins to do a reset of JTAG TAP controller.

VDDD, VDDA, VDDIO0, VDDIO1, VDDIO2, VDDIO3 
1, 2, 3, 4

VSSD, VSSA

XRES 4

VDD

VDD
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Table 11-11  SIO AC Specifications[39]

Parameter Description Conditions Min Typ Max Units

TriseF Rise time in fast strong mode 
(90/10%)

Cload = 25 pF, VDDIO = 3.3 V – – 12 ns

TfallF Fall time in fast strong mode 
(90/10%)

Cload = 25 pF, VDDIO = 3.3 V – – 12 ns

TriseS Rise time in slow strong mode 
(90/10%)

Cload = 25 pF, VDDIO = 3.0 V – – 75 ns

TfallS Fall time in slow strong mode 
(90/10%)

Cload = 25 pF, VDDIO = 3.0 V – – 60 ns

Fsioout

SIO output operating frequency

2.7 V < VDDIO < 5.5 V, Unregu-
lated output (GPIO) mode, fast 
strong drive mode

90/10% VDDIO into 25 pF – – 33 MHz

1.71 V < VDDIO < 2.7 V, Unregu-
lated output (GPIO) mode, fast 
strong drive mode

90/10% VDDIO into 25 pF – – 16 MHz

3.3 V < VDDIO < 5.5 V, Unregu-
lated output (GPIO) mode, slow 
strong drive mode

90/10% VDDIO into 25 pF – – 5 MHz

1.71 V < VDDIO < 3.3 V, Unregu-
lated output (GPIO) mode, slow 
strong drive mode

90/10% VDDIO into 25 pF – – 4 MHz

2.7 V < VDDIO < 5.5 V, Regulated 
output mode, fast strong drive 
mode

Output continuously switching into 
25 pF

– – 20 MHz

1.71 V < VDDIO < 2.7 V, Regulated 
output mode, fast strong drive 
mode

Output continuously switching into 
25 pF

– – 10 MHz

1.71 V < VDDIO < 5.5 V, Regulated 
output mode, slow strong drive 
mode

Output continuously switching into 
25 pF

– – 2.5 MHz

Fsioin
SIO input operating frequency

1.71 V < VDDIO < 5.5 V 90/10% VDDIO – – 33 MHz

Note
39. Based on device characterization (Not production tested).
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Figure 11-22. USBIO Output High Voltage and Current, 
GPIO Mode

Figure 11-23. USBIO Output Rise and Fall Times, GPIO Mode, 
VDDD = 3.3 V, 25 pF Load

Table 11-14.  USBIO AC Specifications[41]

Parameter Description Conditions Min Typ Max Units

Tdrate Full-speed data rate average bit rate  12 – 0.25% 12 12 + 
0.25%

 MHz

Tjr1 Receiver data jitter tolerance to next 
transition

–8 – 8 ns

Tjr2 Receiver data jitter tolerance to pair 
transition

–5 – 5 ns

Tdj1 Driver differential jitter to next transition –3.5 – 3.5 ns

Tdj2 Driver differential jitter to pair transition –4 – 4 ns

Tfdeop Source jitter for differential transition to 
SE0 transition

–2 – 5 ns

Tfeopt Source SE0 interval of EOP 160 – 175 ns

Tfeopr Receiver SE0 interval of EOP 82 – – ns

Tfst Width of SE0 interval during differential 
transition

– – 14 ns

Fgpio_out GPIO mode output operating frequency 3 V  VDDD  5.5 V – – 20 MHz

VDDD = 1.71 V – – 6 MHz

Tr_gpio Rise time, GPIO mode, 10%/90% VDDD VDDD > 3 V, 25 pF load – – 12 ns

VDDD = 1.71 V, 25 pF load – – 40 ns

Tf_gpio Fall time, GPIO mode, 90%/10% VDDD VDDD > 3 V, 25 pF load – – 12 ns

VDDD = 1.71 V, 25 pF load – – 40 ns

Note
41. Based on device characterization (Not production tested).
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11.5.7  Current Digital-to-analog Converter (IDAC)

All specifications are based on use of the low-resistance IDAC output pins (see Pin Descriptions  on page 12 for details). See the
IDAC component data sheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, all charts and graphs show typical values. 

Table 11-34.  IDAC DC Specifications

Parameter Description Conditions Min Typ Max Units

Resolution – – 8 bits

IOUT Output current at code = 255 Range = 2.04 mA, code = 255, 
VDDA  2.7 V, Rload = 600 

– 2.04 – mA

Range = 2.04 mA, High mode, 
code = 255, VDDA  2.7 V, 
Rload = 300 

– 2.04 – mA

Range = 255 µA, code = 255, 
Rload = 600 

– 255 – µA

Range = 31.875 µA, code = 255, 
Rload = 600 

– 31.875 – µA

Monotonicity – – Yes

Ezs Zero scale error – 0 ±1 LSB

Eg Gain error Range = 2.04 mA – – ±2.5 %

Range = 255 µA – – ±2.5 %

Range = 31.875 µA – – ±3.5 %

TC_Eg Temperature coefficient of gain 
error

Range = 2.04 mA – – 0.045 % / °C

Range = 255 µA – – 0.045 % / °C

Range = 31.875 µA – – 0.05 % / °C

INL Integral nonlinearity Sink mode, range = 255 µA, Codes 
8–255, Rload = 2.4 k, 
Cload = 15 pF

– ±0.9 ±1 LSB

Source mode, range = 255 µA, 
Codes 8–255, Rload = 2.4 k, 
Cload = 15 pF

– ±1.2 ±1.6 LSB

Source mode, range = 31.875 µA, 
Codes 8–255, Rload = 20 kΩ, 
Cload = 15 pF[60]

– ±0.9 ±2 LSB

Sink mode, range = 31.875 µA, 
Codes 8–255, Rload = 20 kΩ, 
Cload = 15 pF[60]

– ±0.9 ±2 LSB

Source mode, range = 2.04 mA, 
Codes 8–255, Rload = 600 Ω, 
Cload = 15 pF[60]

– ±0.9 ±2 LSB

Sink mode, range = 2.04 mA, 
Codes 8–255, Rload = 600 Ω, 
Cload = 15 pF[60]

– ±0.6 ±1 LSB

Notes
60. Based on device characterization (Not production tested).
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11.8  PSoC System Resources

Specifications are valid for –40 °C  TA  105 °C and TJ  120 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V,
except where noted.

11.8.1  POR with Brown Out

For brown out detect in regulated mode, VDDD and VDDA must be  2.0 V. Brown out detect is not available in externally regulated
mode.

11.8.2  Voltage Monitors

Table 11-71.  Precise Low-Voltage Reset (PRES) with Brown Out DC Specifications

Parameter Description Conditions Min Typ Max Units

PRESR Rising trip voltage Factory trim 1.64 – 1.68 V

PRESF Falling trip voltage 1.62 – 1.66 V

Table 11-72.  Power-On-Reset (POR) with Brown Out AC Specifications[90]

Parameter Description Conditions Min Typ Max Units

PRES_TR[91] Response time – – 0.5 µs

VDDD/VDDA droop rate Sleep mode – 5 – V/sec

Table 11-73.  Voltage Monitors DC Specifications

Parameter Description Conditions Min Typ Max Units

LVI Trip voltage 

    LVI_A/D_SEL[3:0] = 0000b 1.68 1.73 1.77 V

    LVI_A/D_SEL[3:0] = 0001b 1.89 1.95 2.01 V

    LVI_A/D_SEL[3:0] = 0010b 2.14 2.20 2.27 V

    LVI_A/D_SEL[3:0] = 0011b 2.38 2.45 2.53 V

    LVI_A/D_SEL[3:0] = 0100b 2.62 2.71 2.79 V

    LVI_A/D_SEL[3:0] = 0101b 2.87 2.95 3.04 V

    LVI_A/D_SEL[3:0] = 0110b 3.11 3.21 3.31 V

    LVI_A/D_SEL[3:0] = 0111b 3.35 3.46 3.56 V

    LVI_A/D_SEL[3:0] = 1000b 3.59 3.70 3.81 V

    LVI_A/D_SEL[3:0] = 1001b 3.84 3.95 4.07 V

    LVI_A/D_SEL[3:0] = 1010b 4.08 4.20 4.33 V

    LVI_A/D_SEL[3:0] = 1011b 4.32 4.45 4.59 V

    LVI_A/D_SEL[3:0] = 1100b 4.56 4.70 4.84 V

    LVI_A/D_SEL[3:0] = 1101b 4.83 4.98 5.13 V

    LVI_A/D_SEL[3:0] = 1110b 5.05 5.21 5.37 V

    LVI_A/D_SEL[3:0] = 1111b 5.30 5.47 5.63 V

HVI Trip voltage 5.57 5.75 5.92 V

Table 11-74.  Voltage Monitors AC Specifications

Parameter Description Conditions Min Typ Max Units

LVI_tr[91] Response time – – 1 µs

Notes
90. Based on device characterization (Not production tested).
91. This value is calculated, not measured.


