

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	67MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 1x20b, 2x12b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-VFQFN Exposed Pad
Supplier Device Package	68-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c5868lti-lp038

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1. Architectural Overview4
2. Pinouts
3. Pin Descriptions
4. CPU 13 4.1 ARM Cortex-M3 CPU 13 4.2 Cache Controller 14 4.3 DMA and PHUB 14 4.4 Interrupt Controller 17
5. Memory
5.1 Static RAM 19 5.2 Flash Program Memory 19 5.3 Flash Security 19 5.4 EEPROM 19 5.5 Nonvolatile Latches (NVLs) 20 5.6 External Memory Interface 21 5.7 Memory Map 22
6. System Integration
6.1 Clocking System 23 6.2 Power System 26 6.3 Reset 31 6.4 I/O System and Routing 33
7. Digital Subsystem 40
7.1 Example Peripherals 40 7.2 Universal Digital Block 42 7.3 UDB Array Description 45 7.4 DSI Routing Interface Description 45 7.5 CAN 47 7.6 USB 48 7.7 Timers, Counters, and PWMs 49 7.8 I ² C 49 7.9 Digital Filter Block 51
8. Analog Subsystem
8.1 Analog Routing 52 8.2 Delta-sigma ADC 54 8.3 Successive Approximation ADC 55 8.4 Comparators 55 8.5 Opamps 57 8.6 Programmable SC/CT Blocks 57 8.7 LCD Direct Drive 58 8.8 CapSense 59 8.10 DAC 59 8.11 Up/Down Mixer 60

4	9. Programming, Debug Interfaces, Resources	61
6	9.1 JTAG Interface	61
° 1	9.2 SWD Interface	63
2	9.3 Debug Features	64
3	9.4 Trace Features	64
3	9.5 SWV and TRACEPORT Interfaces	64
4	9.6 Programming Features	64
4	9.7 Device Security	64
1	9.8 CSP Package Bootloader	65
9	10. Development Support	66
9	10.1 Documentation	66
9	10.2 Online	66
9	10.3 Tools	66
9	11. Electrical Specifications	67
0	11.1 Absolute Maximum Ratings	67
1	11.2 Device Level Specifications	68
2	11.3 Power Regulators	71
3	11.4 Inputs and Outputs	76
3	11.5 Analog Peripherals	85
6	11.6 Digital Peripherals	111
1	11.7 Memory	116
3	11.8 PSoC System Resources	120
0	11.9 Clocking	123
0	12. Ordering Information	127
2	12.1 Part Numbering Conventions	128
5	13 Packaging	129
5		400
7	14. Acronyms	132
8	15. Document Conventions	134
9	15.1 Units of Measure	134
9	Document History Page	135
1	Sales, Solutions, and Legal Information	139
1	Worldwide Sales and Design Support	139
2	Products	139
4	PSoC®Solutions	139
5	Cypress Developer Community	139
5	Technical Support	139

1. Architectural Overview

Introducing the CY8C58LP family of ultra low power, flash Programmable System-on-Chip (PSoC) devices, part of a scalable 8-bit PSoC 3 and 32-bit PSoC 5LP platform. The CY8C58LP family provides configurable blocks of analog, digital, and interconnect circuitry around a CPU subsystem. The combination of a CPU with a flexible analog subsystem, digital subsystem, routing, and I/O enables a high level of integration in a wide variety of consumer, industrial, and medical applications.

Figure 1-1 illustrates the major components of the CY8C58LP family. They are:

- ARM Cortex-M3 CPU subsystem
- Nonvolatile subsystem
- Programming, debug, and test subsystem
- Inputs and outputs
- Clocking
- Power
- Digital subsystem
- Analog subsystem

PSoC's digital subsystem provides half of its unique configurability. It connects a digital signal from any peripheral to any pin through the digital system interconnect (DSI). It also provides functional flexibility through an array of small, fast, low power UDBs. PSoC Creator provides a library of pre-built and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, AND, OR, and so on) that are mapped to the UDB array. You can also easily create a digital circuit using boolean primitives by means of graphical design entry. Each UDB contains programmable array logic (PAL)/programmable logic device (PLD) functionality, together with a small state machine engine to support a wide variety of peripherals.

6.4.13 SIO as Comparator

This section applies only to SIO pins. The adjustable input level feature of the SIOs as explained in the Adjustable Input Level on page 38 can be used to construct a comparator. The threshold for the comparator is provided by the SIO's reference generator. The reference generator has the option to set the analog signal routed through the analog global line as threshold for the comparator. Note that a pair of SIO pins share the same threshold.

The digital input path in Figure 6-9 on page 35 illustrates this functionality. In the figure, 'Reference level' is the analog signal routed through the analog global. The hysteresis feature can also be enabled for the input buffer of the SIO, which increases noise immunity for the comparator.

6.4.14 Hot Swap

This section applies only to SIO pins. SIO pins support 'hot swap' capability to plug into an application without loading the signals that are connected to the SIO pins even when no power is applied to the PSoC device. This allows the unpowered PSoC to maintain a high impedance load to the external device while also preventing the PSoC from being powered through a SIO pin's protection diode.

Powering the device up or down while connected to an operational I2C bus may cause transient states on the SIO pins. The overall I2C bus design should take this into account.

6.4.15 Overvoltage Tolerance

All I/O pins provide an overvoltage tolerance feature at any operating VDD.

- There are no current limitations for the SIO pins as they present a high impedance load to the external circuit.
- The GPIO pins must be limited to 100 µA using a current limiting resistor. GPIO pins clamp the pin voltage to approximately one diode above the VDDIO supply.
- In case of a GPIO pin configured for analog input/output, the analog voltage on the pin must not exceed the VDDIO supply voltage to which the GPIO belongs.

A common application for this feature is connection to a bus such as I^2C where different devices are running from different supply voltages. In the I^2C case, the PSoC chip is configured into the Open Drain, Drives Low mode for the SIO pin. This allows an external pull-up to pull the I^2C bus voltage above the PSoC pin supply. For example, the PSoC chip could operate at 1.8 V, and an external device could run from 5 V. Note that the SIO pin's VIH and VIL levels are determined by the associated VDDIO supply pin.

The SIO pin must be in one of the following modes: 0 (high impedance analog), 1 (high impedance digital), or 4 (open drain drives low). See Figure 6-11 for details. Absolute maximum ratings for the device must be observed for all I/O pins.

6.4.16 Reset Configuration

While reset is active all I/Os are reset to and held in the High Impedance Analog state. After reset is released, the state can be reprogrammed on a port-by-port basis to pull-down or pull-up. To ensure correct reset operation, the port reset configuration data is stored in special nonvolatile registers. The stored reset data is automatically transferred to the port reset configuration registers at reset release.

6.4.17 Low Power Functionality

In all low power modes the I/O pins retain their state until the part is awakened and changed or reset. To awaken the part, use a pin interrupt, because the port interrupt logic continues to function in all low power modes.

6.4.18 Special Pin Functionality

Some pins on the device include additional special functionality in addition to their GPIO or SIO functionality. The specific special function pins are listed in "Pinouts" on page 6. The special features are:

Digital

- 4- to 25-MHz crystal oscillator
- 32.768-kHz crystal oscillator
- Wake from sleep on I²C address match. Any pin can be used for I²C if wake from sleep is not required.
- JTAG interface pins
- □ SWD interface pins
- BWV interface pins
- TRACEPORT interface pins
- External reset
- Analog
 - Deamp inputs and outputs
 - High current IDAC outputs
 - External reference inputs

6.4.19 JTAG Boundary Scan

The device supports standard JTAG boundary scan chains on all pins for board level test.

7.3 UDB Array Description

Figure 7-7 shows an example of a 16 UDB array. In addition to the array core, there are a DSI routing interfaces at the top and bottom of the array. Other interfaces that are not explicitly shown include the system interfaces for bus and clock distribution. The UDB array includes multiple horizontal and vertical routing channels each comprised of 96 wires. The wire connections to UDBs, at horizontal/vertical intersection and at the DSI interface are highly permutable providing efficient automatic routing in PSoC Creator. Additionally the routing allows wire by wire segmentation along the vertical and horizontal routing to further increase routing flexibility and capability.

Figure 7-7. Digital System Interface Structure

7.3.1 UDB Array Programmable Resources

Figure 7-8 shows an example of how functions are mapped into a bank of 16 UDBs. The primary programmable resources of the UDB are two PLDs, one datapath and one status/control register. These resources are allocated independently, because they have independently selectable clocks, and therefore unused blocks are allocated to other unrelated functions.

An example of this is the 8-bit Timer in the upper left corner of the array. This function only requires one datapath in the UDB, and therefore the PLD resources may be allocated to another function. A function such as a Quadrature Decoder may require more PLD logic than one UDB can supply and in this case can utilize the unused PLD blocks in the 8-bit Timer UDB. Programmable resources in the UDB array are generally homogeneous so functions can be mapped to arbitrary boundaries in the array.

Figure 7-8. Function Mapping Example in a Bank of UDBs

7.4 DSI Routing Interface Description

The DSI routing interface is a continuation of the horizontal and vertical routing channels at the top and bottom of the UDB array core. It provides general purpose programmable routing between device peripherals, including UDBs, I/Os, analog peripherals, interrupts, DMA and fixed function peripherals.

Figure 7-9 illustrates the concept of the digital system interconnect, which connects the UDB array routing matrix with other device peripherals. Any digital core or fixed function peripheral that needs programmable routing is connected to this interface.

Signals in this category include:

- Interrupt requests from all digital peripherals in the system.
- DMA requests from all digital peripherals in the system.
- Digital peripheral data signals that need flexible routing to I/Os.
- Digital peripheral data signals that need connections to UDBs.
- Connections to the interrupt and DMA controllers.
- Connection to I/O pins.
- Connection to analog system digital signals.

7.7 Timers, Counters, and PWMs

The Timer/Counter/PWM peripheral is a 16-bit dedicated peripheral providing three of the most common embedded peripheral features. As almost all embedded systems use some combination of timers, counters, and PWMs. Four of them have been included on this PSoC device family. Additional and more advanced functionality timers, counters, and PWMs can also be instantiated in Universal Digital Blocks (UDBs) as required. PSoC Creator allows you to choose the timer, counter, and PWM features that you need. The tool set utilizes the most optimal resources available.

The Timer/Counter/PWM peripheral can select from multiple clock sources, with input and output signals connected through the DSI routing. DSI routing allows input and output connections to any device pin and any internal digital signal accessible through the DSI. Each of the four instances has a compare output, terminal count output (optional complementary compare output), and programmable interrupt request line. The Timer/Counter/PWMs are configurable as free running, one shot, or Enable input controlled. The peripheral has timer reset and capture inputs, and a kill input for control of the comparator outputs. The peripheral supports full 16-bit capture.

Timer/Counter/PWM features include:

- 16-bit timer/counter/PWM (down count only)
- Selectable clock source
- PWM comparator (configurable for LT, LTE, EQ, GTE, GT)
- Period reload on start, reset, and terminal count
- Interrupt on terminal count, compare true, or capture
- Dynamic counter reads
- Timer capture mode
- Count while enable signal is asserted mode
- Free run mode
- One-shot mode (stop at end of period)
- Complementary PWM outputs with deadband
- PWM output kill

Figure 7-17. Timer/Counter/PWM

7.8 I²C

PSoC includes a single fixed-function I^2C peripheral. Additional I^2C interfaces can be instantiated using Universal Digital Blocks (UDBs) in PSoC Creator, as required.

The I²C peripheral provides a synchronous two-wire interface designed to interface the PSoC device with a two-wire I²C serial communication bus. It is compatible^[13] with I²C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O may be implemented with GPIO or SIO in open-drain modes.

To eliminate the need for excessive CPU intervention and overhead, I^2C specific support is provided for status detection and generation of framing bits. I^2C operates as a slave, a master, or multimaster (Slave and Master) $I^{[13]}$. In slave mode, the unit always listens for a start condition to begin sending or receiving data. Master mode supplies the ability to generate the Start and Stop conditions and initiate transactions. Multimaster mode provides clock synchronization and arbitration to allow multiple masters on the same bus. If Master mode is enabled and Slave mode is not enabled, the block does not generate interrupts on externally generated Start conditions. I^2C interfaces through the DSI routing and allows direct connections to any GPIO or SIO pins.

I²C provides hardware address detect of a 7-bit address without CPU intervention. Additionally the device can wake from low power modes on a 7-bit hardware address match. If wakeup functionality is required, I²C pin connections are limited to one of two specific pairs of SIO pins. See descriptions of SCL and SDA pins in Pin Descriptions on page 12.

I²C features include:

- Slave and master, transmitter, and receiver operation
- Byte processing for low CPU overhead
- Interrupt or polling CPU interface
- Support for bus speeds up to 1 Mbps
- 7 or 10-bit addressing (10-bit addressing requires firmware support)
- SMBus operation (through firmware support SMBus supported in hardware in UDBs)
- 7-bit hardware address compare
- Wake from low power modes on address match
- Glitch filtering (active and alternate-active modes only)

Data transfers follow the format shown in Figure 7-18. After the START condition (S), a slave address is sent. This address is 7 bits long followed by an eighth bit which is a data direction bit (R/W) - a 'zero' indicates a transmission (WRITE), a 'one' indicates a request for data (READ). A data transfer is always terminated by a STOP condition (P) generated by the master.

Notes

^{12.} The I²C peripheral is non-compliant with the NXP I²C specification in the following areas: analog glitch filter, I/O V_{OL}/I_{OL}, I/O hysteresis. The I²C Block has a digital glitch filter (not available in sleep mode). The Fast-mode minimum fall-time specification can be met by setting the I/Os to slow speed mode. See the I/O Electrical Specifications in Inputs and Outputs on page 76 for details.

^{13.} Fixed-block I²C does not support undefined bus conditions, nor does it support Repeated Start in Slave mode. These conditions should be avoided, or the UDB-based I²C component should be used instead.

Figure 8-1. Analog Subsystem Block Diagram

The PSoC Creator software program provides a user friendly interface to configure the analog connections between the GPIO and various analog resources and also connections from one analog resource to another. PSoC Creator also provides component libraries that allow you to configure the various analog blocks to perform application specific functions (PGA, transimpedance amplifier, voltage DAC, current DAC, and so on). The tool also generates API interface libraries that allow you to write firmware that allows the communication between the analog peripheral and CPU/Memory.

8.1 Analog Routing

The PSoC 5LP family of devices has a flexible analog routing architecture that provides the capability to connect GPIOs and different analog blocks, and also route signals between different analog blocks. One of the strong points of this flexible routing architecture is that it allows dynamic routing of input and output connections to the different analog blocks.

For information on how to make pin selections for optimal analog routing, refer to the application note, AN58304 - PSoC® 3 and PSoC[®] 5 - Pin Selection for Analog Designs.

8.1.1 Features

- Flexible, configurable analog routing architecture
- 16 analog globals (AG) and two analog mux buses (AMUXBUS) to connect GPIOs and the analog blocks
- Each GPIO is connected to one analog global and one analog mux bus

- Eight analog local buses (abus) to route signals between the different analog blocks
- Multiplexers and switches for input and output selection of the analog blocks

8.1.2 Functional Description

Analog globals (AGs) and analog mux buses (AMUXBUS) provide analog connectivity between GPIOs and the various analog blocks. There are 16 AGs in the PSoC 5LP family. The analog routing architecture is divided into four quadrants as shown in Figure 8-2. Each quadrant has four analog globals (AGL[0..3], AGL[4..7], AGR[0..3], AGR[4..7]). Each GPIO is connected to the corresponding AG through an analog switch. The analog mux bus is a shared routing resource that connects to every GPIO through an analog switch. There are two AMUXBUS routes in PSoC 5LP, one in the left half (AMUXBUSL) and one in the right half (AMUXBUSR), as shown in Figure 8-2.

Analog local buses (abus) are routing resources located within the analog subsystem and are used to route signals between different analog blocks. There are eight abus routes in PSoC 5LP, four in the left half (abusl [0:3]) and four in the right half (abusr [0:3]) as shown in Figure 8-2. Using the abus saves the analog globals and analog mux buses from being used for interconnecting the analog blocks.

Multiplexers and switches exist on the various buses to direct signals into and out of the analog blocks. A multiplexer can have only one connection on at a time, whereas a switch can have multiple connections on simultaneously. In Figure 8-2, multiplexers are indicated by grayed ovals and switches are indicated by transparent ovals.

8.4.2 LUT

The CY8C58LP family of devices contains four LUTs. The LUT is a two input, one output lookup table that is driven by any one or two of the comparators in the chip. The output of any LUT is routed to the digital system interface of the UDB array. From the digital system interface of the UDB array, these signals can be connected to UDBs, DMA controller, I/O, or the interrupt controller.

The LUT control word written to a register sets the logic function on the output. The available LUT functions and the associated control word is shown in Table 8-2.

Table 8-2. LUT Function vs. Program Word and Inputs

Control Word	Output (A and B are LUT inputs)
0000b	FALSE ('0')
0001b	A AND B
0010b	A AND (NOT B)
0011b	A
0100b	(NOT A) AND B
0101b	В
0110b	A XOR B
0111b	A OR B
1000b	A NOR B
1001b	A XNOR B
1010b	NOT B
1011b	A OR (NOT B)
1100b	NOT A
1101b	(NOT A) OR B
1110b	A NAND B
1111b	TRUE ('1')

9.3 Debug Features

The CY8C58LP supports the following debug features:

- Halt and single-step the CPU
- View and change CPU and peripheral registers, and RAM addresses
- Six program address breakpoints and two literal access breakpoints
- Data watchpoint events to CPU
- Patch and remap instruction from flash to SRAM
- Debugging at the full speed of the CPU
- Compatible with PSoC Creator and MiniProg3 programmer and debugger
- Standard JTAG programming and debugging interfaces make CY8C58LP compatible with other popular third-party tools (for example, ARM / Keil)

9.4 Trace Features

The following trace features are supported:

- Instruction trace
- Data watchpoint on access to data address, address range, or data value
- Trace trigger on data watchpoint
- Debug exception trigger
- Code profiling
- Counters for measuring clock cycles, folded instructions, load/store operations, sleep cycles, cycles per instruction, interrupt overhead
- Interrupt events trace
- Software event monitoring, "printf-style" debugging

9.5 SWV and TRACEPORT Interfaces

The SWV and TRACEPORT interfaces provide trace data to a debug host via the Cypress MiniProg3 or an external trace port analyzer. The 5 pin TRACEPORT is used for rapid transmission of large trace streams. The single pin SWV mode is used to minimize the number of trace pins. SWV is shared with a JTAG pin. If debugging and tracing are done at the same time then SWD may be used with either SWV or TRACEPORT, or JTAG may be used with TRACEPORT, as shown in Table 9-1.

Debug and Trace Configuration	GPIO Pins Used
All debug and trace disabled	0
JTAG	4 or 5
SWD	2
SWV	1
TRACEPORT	5
JTAG + TRACEPORT	9 or 10
SWD + SWV	3
SWD + TRACEPORT	7

Table 9-1. Debug Configurations

9.6 Programming Features

The JTAG and SWD interfaces provide full programming support. The entire device can be erased, programmed, and verified. Designers can increase flash protection levels to protect firmware IP. Flash protection can only be reset after a full device erase. Individual flash blocks can be erased, programmed, and verified, if block security settings permit.

9.7 Device Security

PSoC 5LP offers an advanced security feature called device security, which permanently disables all test, programming, and debug ports, protecting your application from external access. The device security is activated by programming a 32-bit key (0x50536F43) to a Write Once Latch (WOL).

The WOL is a type of nonvolatile latch (NVL). The cell itself is an NVL with additional logic wrapped around it. Each WOL device contains four bytes (32 bits) of data. The wrapper outputs a '1' if a super-majority (28 of 32) of its bits match a pre-determined pattern (0x50536F43); it outputs a '0' if this majority is not reached. When the output is 1, the Write Once NV latch locks the part out of Debug and Test modes; it also permanently gates off the ability to erase or alter the contents of the latch. Matching all bits is intentionally not required, so that single (or few) bit failures do not deassert the WOL output. The state of the NVL bits after wafer processing is truly random with no tendency toward 1 or 0.

The WOL only locks the part after the correct 32-bit key (0x50536F43) is loaded into the NVL's volatile memory, programmed into the NVL's nonvolatile cells, and the part is reset. The output of the WOL is only sampled on reset and used to disable the access. This precaution prevents anyone from reading, erasing, or altering the contents of the internal memory.

The user can write the key into the WOL to lock out external access only if no flash protection is set (see "Flash Security" section on page 19). However, after setting the values in the WOL, a user still has access to the part until it is reset. Therefore, a user can write the key into the WOL, program the flash protection data, and then reset the part to lock it.

If the device is protected with a WOL setting, Cypress cannot perform failure analysis and, therefore, cannot accept RMAs from customers. The WOL can be read out via SWD port to electrically identify protected parts. The user can write the key in WOL to lock out external access only if no flash protection is set. For more information on how to take full advantage of the security features in PSoC see the PSoC 5 TRM.

Disclaimer

Note the following details of the flash code protection features on Cypress devices.

Cypress products meet the specifications contained in their particular Cypress datasheets. Cypress believes that its family of products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

11.2 Device Level Specifications

Specifications are valid for –40 °C \leq T_A \leq 105 °C and T_J \leq 120 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted. Unless otherwise specified, all charts and graphs show typical values.

Table 11-2. DC Specifications

Parameter	Description	Conditions		Min	Тур	Max	Units
V _{DDA}	Analog supply voltage and input to analog core regulator	Analog core regulator enabled		1.8	-	5.5	V
V _{DDA}	Analog supply voltage, analog regulator bypassed	Analog core regulator disabled		1.71	1.8	1.89	V
V	Digital supply voltage relative to Vara	Digital core regulator enabled	1.8	-	V _{DDA} ^[17]	V	
♥ DDD	Digital supply voltage relative to vssp	Digital core regulator e	inableu	-	-	V _{DDA} + 0.1 ^[19]	v
V _{DDD}	Digital supply voltage, digital regulator bypassed	Digital core regulator disabled		1.71	1.8	1.89	V
Vpp10 ^[18]	I/O supply voltage relative to Vasia			1.71	-	V _{DDA} ^[17]	v
				-	-	V _{DDA} + 0.1 ^[19]	,
V _{CCA}	Direct analog core voltage input (Analog regulator bypass)	Analog core regulator	disabled	1.71	1.8	1.89	V
V _{CCD}	Direct digital core voltage input (Digital regulator bypass)	Digital core regulator of	lisabled	1.71	1.8	1.89	V
I _{DD} ^[20]	Active Mode				1		1
	Sum of digital and analog IDDD + IDDA. IDDIOX for I/Os not	$V_{DDX} = 2.7 V \text{ to } 5.5 V;$	T = -40 °C	-	1.9	3.8	mA
	enabled. CPU executing complex program from flash.	$F_{CPU} = 3 \text{ MHZ}^{-1}$	T = 25 °C	-	1.9	3.8	
			T = 85 °C	-	2	3.8	
			T = 105 °C	-	2	3.8	
		$V_{DDX} = 2.7 V \text{ to } 5.5 V;$	T = -40 °C	-	3.1	5	
		F _{CPU} = 6 MHZ	T = 25 °C	-	3.1	5	
			T = 85 °C	-	3.2	5	
			T = 105 °C	-	3.2	5	
		V _{DDX} = 2.7 V to 5.5 V; F _{CPU} = 12 MHz ^[21]	T = -40 °C	-	5.4	7	
			T = 25 °C	-	5.4	7	
			T = 85 °C	-	5.6	7	
			T = 105 °C	-	5.6	7	
		$V_{DDX} = 2.7 V \text{ to } 5.5 V;$	T = -40 °C	-	8.9	10.5	
		$F_{CPU} = 24 \text{ MHz}^{2}$	T = 25 °C	-	8.9	10.5	
			T = 85 °C	-	9.1	10.5	
			T = 105 °C	-	9.1	10.5	
		$V_{DDX} = 2.7 V \text{ to } 5.5 V;$	T = -40 °C	-	15.5	17	
		$F_{CPU} = 48 \text{ MHz}^{(2^{1})}$	T = 25 °C	-	15.4	17	
			T = 85 °C	-	15.7	17	
			T = 105 °C	-	15.7	17.25	
		$V_{DDX} = 2.7 V \text{ to } 5.5 V;$	T = -40 °C	-	18	19.5	
		F _{CPU} = 62 MHz	T = 25 °C	-	18	19.5	
			T = 85 °C	_	18.5	19.5	
			T = 105 °C	_	19	21	
		V _{DDX} = 2.7 V to 5.5 V;	T = -40 °C	_	26.5	30	
		F _{CPU} = 74 MHz	T = 25 °C	_	26.5	30	
			T = 85 °C	_	27	30	
			T = 105 °C	_	27	30	
		V_{DDX} = 2.7 V to 5.5 V;	T = -40 °C	_	22	25.5	1
		F _{CPU} = 80 MHz, IMO	T = 25 °C	_	22	25.5]
			T = 85 °C	_	22.5	25.5]
			T = 105 °C	_	22.5	25.5	1

Notes

17. The power supplies can be brought up in any sequence. However, once stable, V_{DDA} must be greater than or equal to all other supplies. 18. The V_{DDIO} supply voltage must be greater than the maximum voltage on the associated GPIO pins. Maximum voltage on GPIO pin $\leq V_{DDIO} \leq V_{DDA}$. 19. Guaranteed by design, not production tested.

20. The current consumption of additional peripherals that are implemented only in programmed logic blocks can be found in their respective datasheets, available in PSoC Creator, the integrated design environment. To estimate total current, find CPU current at frequency of interest and add peripheral currents for your particular system from the device datasheet and component datasheets.

21. Based on device characterization (Not production tested).

11.3.2 Analog Core Regulator

Table 11-5. Analog Core Regulator DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{DDA}	Input voltage		1.8	-	5.5	V
V _{CCA}	Output voltage		-	1.80	-	V
	Regulator output capacitor	±10%, X5R ceramic or better	0.9	1	1.1	μF

Figure 11-7. Analog Regulator PSRR vs Frequency and V_{DD}

11.3.3 Inductive Boost Regulator

Unless otherwise specified, operating conditions are: $V_{BAT} = 0.5 V-3.6 V$, $V_{OUT} = 1.8 V-5.0 V$, $I_{OUT} = 0 mA-50 mA$, $L_{BOOST} = 4.7 \mu H-22 \mu H$, $C_{BOOST} = 22 \mu F \parallel 3 \times 1.0 \mu F \parallel 3 \times 0.1 \mu F$, $C_{BAT} = 22 \mu F$, $I_F = 1.0 A$, excludes 99-pin CSP package. For information on using boost with 99-pin CSP package, contact Cypress support. Unless otherwise specified, all charts and graphs show typical values.

Table 11-6. Inductive Boost Regulator DC Specifications

Parameter	Description	Conc	ditions	Min	Тур	Max	Units
V _{OUT}	Boost output voltage ^[29]	vsel = 1.8 V in regist	er BOOST_CR0	1.71	1.8	1.89	V
		vsel = 1.9 V in regist	er BOOST_CR0	1.81	1.90	2.00	V
		vsel = 2.0 V in regist	vsel = 2.0 V in register BOOST_CR0		2.00	2.10	V
		vsel = 2.4 V in register BOOST_CR0		2.16	2.40	2.64	V
		vsel = 2.7 V in regist	vsel = 2.7 V in register BOOST_CR0		2.70	2.97	V
		vsel = 3.0 V in regist	er BOOST_CR0	2.70	3.00	3.30	V
		vsel = 3.3 V in regist	er BOOST_CR0	2.97	3.30	3.63	V
		vsel = 3.6 V in regist	er BOOST_CR0	3.24	3.60	3.96	V
		vsel = 5.0 V in regist	er BOOST_CR0	4.50	5.00	5.50	V
V _{BAT}	Input voltage to boost ^[30]	I _{OUT} = 0 mA–5 mA	vsel = 1.8 V–2.0 V, T _A = 0 °C–70 °C	0.5	-	0.8	V
		I _{OUT} = 0 mA–15 mA	vsel = 1.8 V–5.0 V ^[31] , T _A = –10 °C–85 °C	1.6	-	3.6	V
		I _{OUT} = 0 mA–25 mA	vsel = 1.8 V–2.7 V, T _A = –10 °C–85 °C	0.8	-	1.6	V
		I _{OUT} = 0 mA–50 mA	vsel = 1.8 V–3.3 V ^[31] , T _A = –40 °C–85 °C	1.8	-	2.5	V
			vsel = 1.8 V–3.3 V ^[31] , T _A = –10 °C–85 °C	1.3	-	2.5	V
			vsel = 2.5 V–5.0 V ^[31] , T _A = –10 °C–85 °C	2.5	-	3.6	V

11.4.3 USBIO

For operation in GPIO mode, the standard range for V_{DDD} applies, see Device Level Specifications on page 68.

Table 11-13. USBIO DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Rusbi	USB D+ pull-up resistance ^[40]	With idle bus	0.900	-	1.575	kΩ
Rusba	USB D+ pull-up resistance ^[40]	While receiving traffic	1.425	-	3.090	kΩ
Vohusb	Static output high ^[40]	$15k\Omega\pm 5\%$ to Vss, internal pull-up enabled	2.8	-	3.6	V
Volusb	Static output low ^[40]	$15k\Omega\pm 5\%$ to Vss, internal pull-up enabled	-	-	0.3	V
Vihgpio	Input voltage high, GPIO mode ^[40]	V _{DDD} = 1.8 V	1.5	-	-	V
		V _{DDD} = 3.3 V	2	-	_	V
		V _{DDD} = 5.0 V	2	-	_	V
Vilgpio	Input voltage low, GPIO mode ^[40]	V _{DDD} = 1.8 V	_	-	0.8	V
		V _{DDD} = 3.3 V	_	-	0.8	V
		V _{DDD} = 5.0 V	_	-	0.8	V
Vohgpio	Output voltage high, GPIO mode ^[40]	I _{OH} = 4 mA, V _{DDD} = 1.8 V	1.6	-	_	V
		I _{OH} = 4 mA, V _{DDD} = 3.3 V	3.1	-	_	V
		I _{OH} = 4 mA, V _{DDD} = 5.0 V	4.2	-	_	V
Volgpio	Output voltage low, GPIO mode ^[40]	I _{OL} = 4 mA, V _{DDD} = 1.8 V	_	-	0.3	V
		I _{OL} = 4 mA, V _{DDD} = 3.3 V	_	-	0.3	V
		I _{OL} = 4 mA, V _{DDD} = 5.0 V	_	-	0.3	V
Vdi	Differential input sensitivity	(D+)–(D–)	-	-	0.2	V
Vcm	Differential input common mode range		0.8	-	2.5	V
Vse	Single ended receiver threshold		0.8	-	2	V
Rps2	PS/2 pull-up resistance ^[40]	In PS/2 mode, with PS/2 pull-up enabled	3	-	7	kΩ
Rext	External USB series resistor ^[40]	In series with each USB pin	21.78 (–1%)	22	22.22 (+1%)	Ω
Zo	USB driver output impedance ^[40]	Including Rext	28	-	44	Ω
C _{IN}	USB transceiver input capacitance		-	-	20	pF
I _{IL} ^[40]	Input leakage current (absolute value) ^[40]	25 °C, V _{DDD} = 3.0 V	-	-	2	nA

40. Based on device characterization (Not production tested).

Table 11-19. Opamp AC Specifications^[44]

Parameter	Description	Conditions	Min	Тур	Max	Units
GBW	Gain-bandwidth product	Power mode = minimum, 15 pF load	1	-	-	MHz
		Power mode = low, 15 pF load	2	-	_	MHz
		Power mode = medium, 200 pF load	1	-	_	MHz
		Power mode = high, 200 pF load	3	-	_	MHz
SR	Slew rate, 20% - 80%	Power mode = minimum, 15 pF load	1.1	-	-	V/µs
		Power mode = low, 15 pF load	1.1	-	-	V/µs
		Power mode = medium, 200 pF load	0.9	-	_	V/µs
		Power mode = high, 200 pF load	3	-	-	V/µs
e _n	Input noise density	Power mode = high, Vdda = 5 V, at 100 kHz	-	45	-	nV/sqrtHz

Figure 11-30. Opamp Noise vs Frequency, Power Mode = High, Vdda = 5V

Note 44. Based on device characterization (Not production tested).

Table 11-37. VDAC AC Specifications^[64]

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{DAC}	Update rate	1 V scale	_	-	1000	ksps
		4 V scale	_	-	250	ksps
TsettleP	Settling time to 0.1%, step 25% to 75%	1 V scale, Cload = 15 pF	-	0.45	1	μs
		4 V scale, Cload = 15 pF	-	0.8	3.2	μs
TsettleN	Settling time to 0.1%, step 75% to 25%	1 V scale, Cload = 15 pF	_	0.45	1	μs
		4 V scale, Cload = 15 pF	-	0.7	3	μs
	Voltage noise	Range = 1 V, fast mode, Vdda = 5 V, 10 kHz	_	750	_	nV/sqrtHz

Figure 11-69. VDAC Step Response, Codes 0x40 - 0xC0, 1 VMode, Fast Mode, Vdda = 5 V

Figure 11-70. VDAC Glitch Response, Codes 0x7F - 0x80, 1 VMode, Fast Mode, Vdda = 5 V

Figure 11-72. VDAC Voltage Noise, 1 V Mode, Fast Mode, Vdda = 5 V

Note

64. Based on device characterization (Not production tested).

Table 11-43. PGA AC Specifications^[68]

Parameter	Description	Conditions	Min	Тур	Max	Units
BW1	–3 dB bandwidth	Power mode = high, gain = 1, input = 100 mV peak-to-peak	6.7	8	-	MHz
		T _A ≤ 105 °C	6	8	-	
SR1	Slew rate	Power mode = high, gain = 1, 20% to 80%	3	_	-	V/µs
e _n	Input noise density	Power mode = high, Vdda = 5 V, at 100 kHz	-	43	-	nV/sqrtHz

Figure 11-74. Bandwidth vs. Temperature, at Different Gain Settings, Power Mode = High

Figure 11-75. Noise vs. Frequency, Vdda = 5 V, Power Mode = High

11.6.8 Universal Digital Blocks (UDBs)

PSoC Creator provides a library of pre-built and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, AND, OR, and so on) that are mapped to the UDB array. See the component datasheets in PSoC Creator for full AC/DC specifications, APIs, and example code.

Table 11-60. UDB AC Specifications^[79]

Parameter	Description	Conditions	Min	Тур	Max	Units
Datapath Per	formance					
F _{MAX_TIMER}	Maximum frequency of 16-bit timer in a UDB pair		-	-	67.01	MHz
F _{MAX_ADDER}	Maximum frequency of 16-bit adder in a UDB pair		-	-	67.01	MHz
F _{MAX_CRC}	Maximum frequency of 16-bit CRC/PRS in a UDB pair		-	-	67.01	MHz
PLD Perform	ance					
F _{MAX_PLD}	Maximum frequency of a two-pass PLD function in a UDB pair		_	-	67.01	MHz
Clock to Outp	Clock to Output Performance					
^t CLK_OUT	Propagation delay for clock in to data out, see Figure 11-76.	25 °C, $V_{DDD} \ge 2.7 V$	_	20	25	ns
^t CLK_OUT	Propagation delay for clock in to data out, see Figure 11-76.	Worst-case placement, routing, and pin selection	_	-	55	ns

Figure 11-76. Clock to Output Performance

Note

^{79.} Based on device characterization (Not production tested).

11.8.3 Interrupt Controller

Table 11-75. Interrupt Controller AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Delay from interrupt signal input to ISR code execution from main line code ^[92]		-	-	12	Tcy CPU
	Delay from interrupt signal input to ISR code execution from ISR code (tail-chaining) ^[92]		-	-	6	Tcy CPU

11.8.4 JTAG Interface

Table 11-76. JTAG Interface AC Specifications^[93]

Parameter	Description	Conditions	Min	Тур	Max	Units
f_TCK	TCK frequency	$3.3~V \le V_{DDD} \le 5~V$	-	-	12 ^[94]	MHz
		$1.71 \text{ V} \leq \text{V}_{\text{DDD}} < 3.3 \text{ V}$	-	_	7 ^[94]	MHz
T_TDI_setup	TDI setup before TCK high		(T/10) – 5	-	-	ns
T_TMS_setup	TMS setup before TCK high		T/4	_	-	
T_TDI_hold	TDI, TMS hold after TCK high	T = 1/f_TCK max	T/4	_	-	
T_TDO_valid	TCK low to TDO valid	T = 1/f_TCK max	-	_	2T/5	
T_TDO_hold	TDO hold after TCK high	T = 1/f_TCK max	T/4	_	-	
T_nTRST	Minimum nTRST pulse width	f_TCK = 2 MHz	8	_	_	ns

Notes

- 92. ARM Cortex-M3 NVIC spec. Visit www.arm.com for detailed documentation about the Cortex-M3 CPU.
- 93. Based on device characterization (Not production tested).
- 94. f_TCK must also be no more than 1/3 CPU clock frequency.

11.8.5 SWD Interface

Table 11-77. SWD Interface AC Specifications^[95]

Parameter	Description	Conditions	Min	Тур	Max	Units
f_SWDCK	SWDCLK frequency	$3.3~V \leq V_{DDD} \leq 5~V$	-	-	12 ^[96]	MHz
		$1.71 \text{ V} \le \text{V}_{\text{DDD}} < 3.3 \text{ V}$	-	-	7 ^[96]	MHz
		1.71 V \leq V_{DDD} < 3.3 V, SWD over USBIO pins	-	-	5.5 ^[96]	MHz
T_SWDI_setup	SWDIO input setup before SWDCK high	T = 1/f_SWDCK max	T/4	-	-	
T_SWDI_hold	SWDIO input hold after SWDCK high	T = 1/f_SWDCK max	T/4	-	-	
T_SWDO_valid	SWDCK high to SWDIO output	T = 1/f_SWDCK max	-	-	T/2	
T_SWDO_hold	SWDIO output hold after SWDCK high	T = 1/f_SWDCK max	1	-	-	ns

11.8.6 TPIU Interface

Table 11-78. TPIU Interface AC Specifications^[95]

Parameter	Description	Conditions	Min	Тур	Max	Units
	TRACEPORT (TRACECLK) frequency		-	-	33 ^[97]	MHz
	SWV bit rate		_	-	33 ^[97]	Mbit

Notes

95. Based on device characterization (Not production tested).

96. f_SWDCK must also be no more than 1/3 CPU clock frequency.
97. TRACEPORT signal frequency and bit rate are limited by GPIO output frequency, see Table 11-9 on page 77.

13. Packaging

Table 13-1. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature		-40	25	105	°C
TJ	Operating junction temperature		-40	-	120	°C
T _{JA}	Package θ_{JA} (68-pin QFN)		_	15	-	°C/Watt
T _{JA}	Package θ_{JA} (100-pin TQFP)		-	34	_	°C/Watt
T _{JC}	Package θ_{JC} (68-pin QFN)		-	13	-	°C/Watt
T _{JC}	Package θ_{JC} (100-pin TQFP)		-	10	-	°C/Watt
T _A	Operating ambient temperature	For CSP parts	-40	25	85	°C
TJ	Operating junction temperature	For CSP parts	-40	-	100	°C
T _{JA}	Package θ_{JA} (99-ball CSP)			16.5		°C/Watt
T _{Jc}	Package θ_{JC} (99-ball CSP)		-	0.1	-	°C/Watt

Table 13-2. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
68-pin QFN	260 °C	30 seconds
100-pin TQFP	260 °C	30 seconds
99-ball WLCSP	255 °C	30 seconds

Table 13-3. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
68-pin QFN	MSL 3
100-pin TQFP	MSL 3
99-ball WLCSP	MSL1

Acronym	Description
PHUB	peripheral hub
PHY	physical layer
PICU	port interrupt control unit
PLA	programmable logic array
PLD	programmable logic device, see also PAL
PLL	phase-locked loop
PMDD	package material declaration datasheet
POR	power-on reset
PRES	precise low-voltage reset
PRS	pseudo random sequence
PS	port read data register
PSoC®	Programmable System-on-Chip™
PSRR	power supply rejection ratio
PWM	pulse-width modulator
RAM	random-access memory
RISC	reduced-instruction-set computing
RMS	root-mean-square
RTC	real-time clock
RTL	register transfer language
RTR	remote transmission request
RX	receive
SAR	successive approximation register
SC/CT	switched capacitor/continuous time
SCL	I ² C serial clock
SDA	I ² C serial data
S/H	sample and hold
SINAD	signal to noise and distortion ratio
SIO	special input/output, GPIO with advanced features. See GPIO.
SOC	start of conversion
SOF	start of frame
SPI	Serial Peripheral Interface, a communications protocol
SR	slew rate
SRAM	static random access memory
SRES	software reset
SWD	serial wire debug, a test protocol
SWV	single-wire viewer
TD	transaction descriptor, see also DMA
THD	total harmonic distortion

Table 14-1. Acronyms Used in this Document (continued)

Table 14-1. Acronyms Used in this Document (continued) Acronym Description TIA transimpedance amplifier TRM technical reference manual TTL transistor-transistor logic ТΧ transmit UART Universal Asynchronous Transmitter Receiver, a communications protocol UDB universal digital block USB Universal Serial Bus USBIO USB input/output, PSoC pins used to connect to a USB port VDAC voltage DAC, see also DAC, IDAC WDT watchdog timer WOL write once latch, see also NVL WRES watchdog timer reset **XRES** external reset pin **XTAL** crystal

Document History Page (continued)

Descriptio Document	Description Title: PSoC [®] 5LP: CY8C58LP Family Datasheet Programmable System-on-Chip (PSoC [®]) Document Number: 001-84932				
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
*H (cont.)	4698847	AVER / MKEA / GJV	03/24/2015	Updated Electrical Specifications: Updated Memory: Updated Flash: Updated Table 11-62: Updated details in "Conditions" column corresponding to "Flash data retention time" parameter. Added Note 81 and referred the same note in last condition corresponding to "Flash data retention time" parameter. Updated EEPROM: Updated Table 11-64: Updated details in "Conditions" column corresponding to "EEPROM data retention time" parameter. Added Note 81 and referred the same note in last condition corresponding to "EEPROM data retention time" parameter. Updated Nonvolatile Latches (NVL): Updated Table 11-66: Updated details in "Conditions" column corresponding to "NVL data retention time" parameter. Added Note 82 and referred the same note in last condition corresponding to "NVL data retention time" parameter. Updated details in "Conditions" column corresponding to "NVL data retention time" parameter. Added Note 82 and referred the same note in last condition corresponding to "NVL data retention time" parameter. Updated Clocking: Updated Internal Main Oscillator: Updated Table 11-80: Replaced 85 °C with 105 °C. Updated Figure 11-83.	
				Updated Ordering Information: Updated Table 12-1: Updated part numbers. Updated Part Numbering Conventions: Added "Q: Extended" as sub bullet under "g: Temperature Range". Updated Packaging: Updated Table 13-1:	
				Changed maximum value of T_A parameter from 85 °C to 105 °C. Changed maximum value of T_J parameter from 100 °C to 120 °C. Updated : Updated : spec 001-88034 – Changed revision from ** to *A.	
*	4839323	MKEA	07/15/2015	Added reference to code examples in More Information. Updated typ value of T_{WRITE} from 2 to 10 in EEPROM AC specs table. Changed "Device supply for USB operation" to "Device supply (V _{DDD}) for USB operation" in USB DC Specifications. Clarified power supply sequencing and margin for V _{DDA} and V _{DDD} . Updated Serial Wire Debug Interface with limitations of debugging on Port 15. Updated Delta-sigma ADC DC Specifications	