

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	Coldfire V4
Core Size	32-Bit Single-Core
Speed	250MHz
Connectivity	1-Wire®, CANbus, EBI/EMI, Ethernet, I ² C, SmartCard, SPI, SSI, UART/USART, USB, USB OTG
Peripherals	DMA, PWM, WDT
Number of I/O	87
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.14V ~ 1.32V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf54416cmj250

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

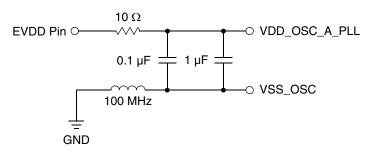


Figure 2 shows an example for isolating the ADC power supply from the I/O supply (EVDD) and ground. Note that in this power supply the 10 Ω resistor is replaced by a 0 Ω resistor. This will reduce the IR drop into the ADC, limiting additional gain error.

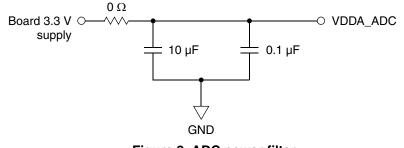


Figure 2. ADC power filter

Figure 3 shows an example for bypassing the internal core digital power supply for the MPU. This bypass should be applied to as many IVDD signals as routing allows. Each one should be placed as close to the ball as possible.

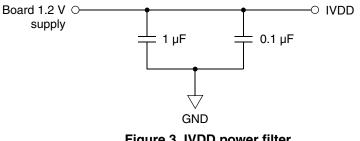
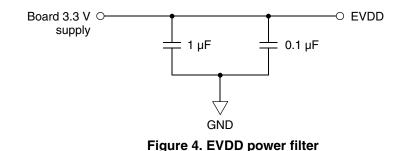



Figure 4 shows an example for bypassing the external pad ring digital power supply for the MPU. This bypass should be applied to as many EVDD signals as routing allows. Each one should be placed as close to the ball as possible.

MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8

Hardware design considerations

Figure 5 shows an example for bypassing the FlexBus power supply for the MPU. This bypass should be applied to as many FB_VDD signals as routing allows. Each one should be placed as close to the ball as possible.

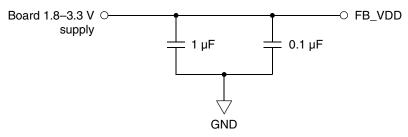
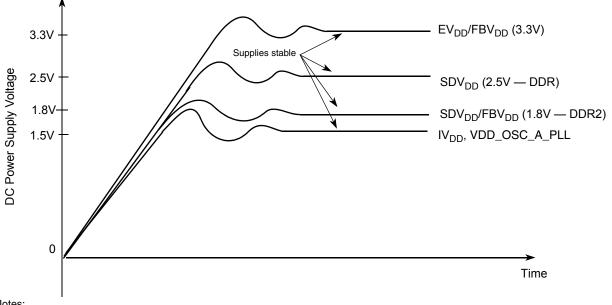



Figure 5. FB_VDD power filter

2.2 Supply voltage sequencing

Figure 6 shows requirements in the sequencing of the I/O V_{DD} (EV_{DD}), FlexBus V_{DD} (FBV_{DD}), SDRAM V_{DD} (SDV_{DD}), PLL V_{DD} (VDD_OSC_A_PLL), and internal logic/core V_{DD} (IV_{DD}).

Notes:

- Input voltage must not be greater than the supply voltage (EV_{DD} , FBV_{DD} , SDV_{DD} , IV_{DD} , or PV_{DD}) by more than 0.5V at any time, including during power-up.
- ² Use 25 V/millisecond or slower rise time for all supplies.

Figure 6. Supply voltage sequencing and separation cautions

The relationships between FBV_{DD}, SDV_{DD} and EV_{DD} are non-critical during power-up and power-down sequences. FBV_{DD} (1.8 - 3.3V), SDV_{DD} (2.5V or 1.8V) and EV_{DD} are specified relative to IV_{DD}.

NOTE

All I/O VDD pins must be powered on when the device is functioning, except when in standby mode.

In standby mode, all I/O VDD pins, except VSTBY_RTC (battery), can be switched off.

Characteristic	Symbol	Typical	Unit
External I/O pad operating supply current (nominal 3.3 V)	EVDD	3	mA
USB operating supply current (nominal 3.3 V)	VDD_USBO, VDD_USBH	30	mA
ADC operating supply current (nominal 3.3 V) Speed mode 00 Speed mode 01	VDDA_ADC	14 22	mA
DAC operating supply current (nominal 3.3 V)	VDDA_DAC_ADC	11	mA
RTC standby supply current ISTBY	VSTBY_RTC	17	μA

Table 3. Estimated power consumption specifications (continued)

¹ Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load.

² DDR2 interface power is estimated from the Micron DDR2 data sheet. The numbers given in this table do not include the actual power consumption of the memory itself. The current drawn by the memory needs to be added to the values in this table and may be several hundred mA.

³ EVDD values depend on the application, with the restrictions that any single pin cannot exceed 25 mA and that the total power does not exceed the thermal characteristics.

3 Pin assignments and reset states

3.1 Signal multiplexing

The following table lists all the MCF5441*x* pins grouped by function. The Dir column is the direction for the primary function of the pin only. Refer to the following sections for package diagrams. For a more detailed discussion of the MCF5441*x* signals, consult the *MCF5441x Reference Manual* (MCF54418RM).

NOTE

In this table and throughout this document a single signal within a group is designated without square brackets (i.e., FB_AD23), while designations for multiple signals within a group use brackets (i.e., FB_AD[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Most pins that are muxed with GPIO default to their GPIO functionality. See the following table for a list of the exceptions.

Signal name	GPIO	Alternate 1	Alternate 2	Pullup (U) ¹ Pulldown (D)	Direction ²	Voltage domain	Pad type ³	196 MAPBGA	256 MAPBGA
	•	Externa	al interrupts port	•					
IRQ7	PC6	—	_	—	Ι	EVDD	ssr	G10	F12
IRQ6	PC5	_	USB_CLKIN ¹¹	—	Ι	EVDD	ssr		N1
IRQ4	PC4	DREQ0	_	—	Ι	EVDD	ssr	E11	F14
ĪRQ3	PC3	DSPI0_PCS3	USBH_VBUS_EN	—	I	EVDD	ssr		M1
IRQ2	PC2	DSPI0_PCS2	USBH_VBUS_OC	12	I	EVDD	ssr	_	M2
IRQ1	PC1	_	—	—	I	EVDD	ssr	E13	F13
	1	US	B On-the-Go		1	1			
USBO_DM	_	_	-	—	I/O	VDD_ USB0	ae	B13	A14
USBO_DP	_	-	_	—	I/O	VDD_ USB0	ae	A13	B14
			USB host						•
USBH_DM	_	—	_	—	I/O	VDD_ USBH	ae	—	A15
USBH_DP	_	_	_	—	I/O	VDD_ USBH	ae	_	B15
	1		ADC	1	1		1		
ADC_IN7/ DAC1_OUT	_	_	-	—	I	VDDA_ DAC_ ADC	ae	_	КЗ
ADC_IN[6:4]	_	-	_	—	I	VDDA_ ADC	ae	—	H2, J3, G4
ADC_IN3/ DAC0_OUT	_	_	_	—	I	VDDA_ DAC_ ADC	ae	_	K4
ADC_IN[2:0]	_	-	_	—	I	VDDA_ ADC	ae	—	J2, J1, H1
	1	Re	al time clock			1			-
RTC_EXTAL	_	—	_	—	ı4	VSTBY	ae	B14	B16
RTC_XTAL	—	-	—	—	0	VSTBY	ae	C14	C16
	1	D	SPI0/SBF ¹³	1	1	1	1		1
DSPI0_PCS1/ SBF_CS	PC0	—	-	-	I/O	EVDD	msr	K3	L1

Table 5. MCF5441*x* Signal information and muxing (continued)

Signal name	GPIO	Alternate 1	Alternate 2	Pullup (U) ¹ Pulldown (D)	Direction ²	Voltage domain	Pad type ³	196 MAPBGA	256 MAPBGA
		Enhanced secur	re digital host contr	oller					
SDHC_DAT3	PF2	PWM_A1	DSPI1_PCS0	—	I/O	EVDD	msr	—	B13
SDHC_DAT2	PF1	PWM_B1	DSPI1_PCS2	—	I/O	EVDD	msr	—	E14
SDHC_DAT1	PF0	PWM_A2	DSPI1_PCS1	—	I/O	EVDD	msr	_	D12
SDHC_DAT0	PG7	PWM_B2	DSPI1_SOUT	—	I/O	EVDD	msr		B12
SDHC_CMD	PG6	PWM_B0	DSPI1_SIN	—	I/O	EVDD	msr		C11
SDHC_CLK	PG5	PWM_A0	DSPI1_SCK	—	0	EVDD	msr		A10
		Smart o	card interface 0	•	•				
SIM0_DATA	RGPIO13/PG4	PWM_FAULT2	SDHC_DAT7	—	I/O	EVDD	msr	—	E12
SIM0_VEN	RGPIO12/PG3	PWM_FAULT0		_	0	EVDD	msr		D13
SIM0_RST	RGPIO11/PG2	PWM_FORCE	SDHC_DAT6	—	0	EVDD	msr		C15
SIM0_PD	RGPIO10/PG1	PWM_SYNC	SDHC_DAT5	—	I	EVDD	msr	—	C14
SIM0_CLK	RGPIO9/PG0	PWM_FAULT1	SDHC_DAT4	—	0	EVDD	msr	—	A11
		Synchronou	s serial interface 0 ¹	9	L				
SSI0_RXD	PH7	I2C2_SDA	SIM1_VEN		I	EVDD	msr	B12	C12
SSI0_TXD	PH6	I2C2_SCL	SIM1_DATA		0	EVDD	msr	A11	C13
SSI0_FS	PH5	UART7_TXD	SIM1_RST	_	I/O	EVDD	msr	C13	E15
SSI0_MCLK	PH4	SSI_CLKIN	SIM1_CLK	—	0	EVDD	msr	A12	A12
SSI0_BCLK	PH3	UART7_RXD	SIM1_PD	—	I/O	EVDD	msr	D13	A13
		Etherr	et subsystem					1	
MII0_MDC	PI1	RMII0_MDC ²⁰	_	_	0	EVDD	fsr	N14	P16
MII0_MDIO	PI0	RMII0_MDIO ²⁰		_	I/O	EVDD	fsr	M14	N16
MII0_RXDV	PJ7	RMII0_CRS_DV ²⁰		_	1	EVDD	fsr	M13	P14
MII0_RXD[1:0]	PJ[6:5]	RMII0_RXD[1:0] ²⁰		_	Ι	EVDD	fsr	P13, N13	R15, T15
MII0_RXER	PJ4	RMII0_RXER ²⁰	—	_	I	EVDD	fsr	M12	N14
MII0_TXD[1:0]	PJ[3:2]	RMII0_TXD[1:0] ²⁰	_	—	0	EVDD	fsr	L12, L11	R13, P13
MII0_TXEN	PJ1	RMII0_TXEN ²⁰		D ²¹	0	EVDD	fsr	N12	P12
MII0_COL	PJ0	RMII1_MDC	ULPI_STP	—	I	EVDD	fsr	—	R12
MII0_TXER	PK7	RMII1_MDIO	ULPI_DATA4	—	0	EVDD	fsr	—	R14
MII0_CRS	PK6	RMII1_CRS_DV	ULPI_DATA5	—	Ι	EVDD	fsr	—	P11
MII0_RXD[3:2]	PK[5:4]	RMII1_RXD[1:0]	ULPI_DATA[1:0]	—	Ι	EVDD	fsr	—	P15, N13

Table 5. MCF5441*x* Signal information and muxing (continued)

		-				-					
Signal name	GPIO	Alternate 1	Alternate 2	Pullup (U) ¹ Pulldown (D)	Direction ²	Voltage domain	Pad type ³	196 MAPBGA	256 MAPBGA		
MII0_RXCLK	PK3	RMII1_RXER	ULPI_DATA6	—	I	EVDD	fsr	_	M14		
MII0_TXD[3:2]	PK[2:1]	RMII1_TXD[1:0]	ULPI_DATA[3:2]	_	0	EVDD	fsr	_	T13, N12		
MII0_TXCLK	PK0	RMII1_TXEN	ULPI_DATA7	D ²¹	Ι	EVDD	fsr	—	T14		
BDM/JTAG											
ALLPST ²²	PH2	_		—	0	EVDD	fsr	K12	—		
DDATA[3:2]	PH[1:0]	_		—	0	EVDD	fsr	_	L15, M13		
DDATA[1:0]	PI[7:6]	_	_	—	0	EVDD	fsr	_	M15, L14		
PST[3:0]	PI[5:2]	_		—	0	EVDD	fsr	_	J13, J16, J15, J14		
JTAG_EN	—	—	—	D	I	EVDD	msr	N11	N15		
PSTCLK	_	TCLK ²³	—	—	I	EVDD	fsr	L14	M16		
DSI		TDI ²³	_	U	I	EVDD	msr	L10	L13		
DSO	—	TDO ²³		—	0	EVDD	msr	L13	K14		
BKPT	—	TMS ²³	—	U	I	EVDD	msr	K13	K16		
DSCLK	—	TRST ²³	—	U	I	EVDD	msr	L9	K13		
		(this signal	Test must be grounded)								
TEST		—	—	D	I	EVDD	ssr	K10	R16		
		Pow	ver supplies			1		1	1		
IVDD	_	_	_	-	_	—		D9, D10, E9, E10, F9, F10, F12	E9–E11, F9–F11		
EVDD	_	_	_	—	_	—	—	F4–F7, G6, G7, H6, H7, J5, J6			
FB_VDD	—	—	—	_	—	—	—	D5–D7, E4–E7	E5–E7, F5, F6, G5		
SD_VDD	_	_	_	—	-	—	—	K7–K9, L5–L7	M7-M12		
VDD_OSC_A_PLL	_	—	—	—	—	—	vddint	F14	F15		
VSS_OSC_A_PLL	_	—	—	—	—	—	vddint	F13	F16		
VDD_USBO	_	—	—	—	—	—	vdde	F11	G12		
VDD_USBH	_	—	—	—	—	—	vdde	—	H12		
VDDA_ADC	—	—	—	-	—	—	—	—	H4		

²¹ Configurable pull that is enabled and pulled down after reset.

- ²² The ALLPST signal is available only on the 196 MAPBGA package and allows limited debug trace functionality compared to the 256 MAPBGA package.
- ²³ If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins.

²⁴ VSTBY is for optional standby lithium battery. If not used, connect to EVDD.

3.2 Pinout—196 MAPBGA

The pinout for the MCF54410 package is shown below.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
A	GND	FB_ AD10	FB_ AD14	FB_ AD16	FB_ AD18	FB_ AD19	FB_ AD24	FB_ AD27	FB_ AD30	FB_ AD31	SSI0_ TXD	SSI0_ MCLK	USB_ DPLS	GND	A
в	FB_ AD6	FB_ AD9	FB_ AD11	FB_ AD13	FB_ AD17	FB_ AD20	FB_ AD23	FB_ AD26	FB_ AD29	U1_ RXD	U0_ TXD	SSI0_ RXD	USB_ DMNS	RTC_ EXTAL	в
с	FB_ AD3	FB_ AD5	FB_ AD8	FB_ AD12	FB_ AD15	FB_ AD21	FB_ AD22	FB_ AD25	FB_ AD28	U1_ TXD	U0_ RXD	U0RTS_ B	SSI0_ FS	RTC_ XTAL	с
D	FB_ AD0	FB_ AD2	FB_ AD4	FB_ AD7				GND	CVDD	CVDD	U1RTS_ B	U1CTS_ B	SSI0_ BCLK	GND	D
E	FB_BE2 _B	FB_ALE	FB_ AD1					GND	CVDD	CVDD	IRQ4_B	U0CTS_ B	IRQ1_B	VSTBY	E
F	FB_BE0 _B	FB_BE1 _B	FB_BE3 _B	EVDD	EVDD	EVDD	EVDD	GND	CVDD	CVDD	VDD_ USBO	CVDD	VSS_OS C_A_PL L	VDD_OS C_A_PL L	F
G	FB_CLK	FB_CS0 _B	FB_CS1 _B	GND	BOOT MOD1	EVDD	EVDD	GND	GND	IRQ7_B	GND	I2C0_ SDA	T3IN	EXTAL	G
н	FB_OE_ B	FB_RW_ B	FB_TA_ B	GND	BOOT MOD0	EVDD	EVDD	GND	GND	GND	GND	I2C0_ SCL	T1IN	XTAL	н
J	DSPI0_ PCS0	DSPI0_ SOUT	DSPI0_ SCK	SD_BA1	EVDD	EVDD	GND	GND	GND	GND	GND	T2IN	TOIN	GND	J
к	SD_A1	DSPI0_ SIN	DSPI0_ PCS1	SD_CAS _B	GND	GND	SDVDD	SDVDD	SDVDD	TEST	GND	ALLPST	TMS	RSTIN_ B	к
L	SD_A9	SD_A10	SD_A5	SD_A4	SDVDD	SDVDD	SDVDD	SD_VTT	TRST_B	TDI	RM110_ TXD0	RM110_ TXD1	TDO	TCLK	L
м	SD_A12	SD_A7	SD_A11	SD_RAS _B	SD_CS_ B	SD_BA2	SD_D0	SD_D2	SD_D4	SD_D6	OWIO	RMII0_ RXER	RMII0_ CRS_DV	RMII0_ MDIO	м
N	SD_A3	SD_A2	SD_A0	SD_A8	SD_WE_ B	SD_CKE	SD_DQM	SD_D1	SD_VRE F	SD_D5	JTAG_E N	RMII0_ TXEN	RMII0_ RXD0	RMII0_ MDC	N
Ρ	GND	SD_A6	SD_A13	SD_BA0	SD_ODT	SD_CLK	SD_CLK_ B	SD_DQS	SD_DQS _B	SD_D3	SD_D7	RSTOUT _B	RMII0_ RXD1	GND	Р
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	-

Figure 7. MCF54410 Pinout (196 MAPBGA)

4 Electrical characteristics

This document contains electrical specification tables and reference timing diagrams for the MCF5441*x* microprocessor. This section contains detailed information on AC/DC electrical characteristics and AC timing specifications.

NOTE

The specifications for this device in any other document are superseded by the specifications in this document.

4.1 Absolute maximum ratings

Table 6.	Absolute	maximum	ratings ^{1, 2}
----------	----------	---------	-------------------------

Rating	Symbol	Pin name	Value	Units
External I/O pad supply voltage	EV _{DD}	EVDD	-0.3 to +4.0	V
Internal logic supply voltage	IV _{DD}	IVDD	-0.5 to +2.0	V
FlexBus I/O pad supply voltage	FBV _{DD}	FB_VDD	-0.3 to +4.0	V
SDRAM I/O pad supply voltage	SDV _{DD}	SD_VDD	-0.3 to +4.0	V
PLL supply voltage	PV _{DD}	VDD_OSC_A_PLL	-0.3 to +4.0	V
USB OTG supply voltage	USBV _{DD}	VDD_USBO	-0.3 to +4.0	V
USB host supply voltage	USBV _{DD}	VDD_USBH	-0.3 to +4.0	V
ADC supply voltage	AV _{DD}	VDDA_ADC	-0.3 to +4.0	V
DAC and ADC supply voltage	—	VDDA_DAC_ADC	-0.3 to +4.0	V
RTC standby supply voltage	RTCV _{STBY}	VSTBY_RTC	-0.3 to +4.0	V
Digital input voltage ³	V _{IN}	—	-0.3 to +3.6	V
Instantaneous maximum current Single pin limit (applies to all pins) ^{3, 4, 5}	I _{DD}	—	25	mA
Operating temperature range (packaged)	T _A (T _L – T _H)	—	-40 to +85	°C
Storage temperature range	T _{stg}		-55 to +150	°C

¹ Functional operating conditions are given in Table 11. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.

- ² This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Immunity to static and electrical fields is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., V_{SS} or EV_{DD}).
- ³ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, and then use the larger of the two values.
- $^4\,$ All functional non-supply pins are internally clamped to V_{SS} and EV_{DD} .
- ⁵ Power supply must maintain regulation within operating EV_{DD} , FBV_{DD} , and SDV_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > EV_{DD}$, FBV_{DD} , or SDV_{DD}) is greater than I_{DD} , the injection current may flow out of EV_{DD} , FBV_{DD} , or SDV_{DD} and could result in external power supply going out of regulation. Ensure the external EV_{DD} , FBV_{DD} , or SDV_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MPU is not consuming power (for example, no clock).

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A \times 273 \,^{\circ}C) + Q_{JMA} \times P_D^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

4.3 ESD protection

Table 8. ESD protection characteristics^{1, 2}

Characteristics	Symbol	Value	Units
ESD Target for Human Body Model	HBM	2000	V

All ESD testing is in conformity with JESD22 Stress Test Qualification.

² A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable specification at room temperature followed by hot temperature, unless specified otherwise in the device specifications provided in this document.

4.4 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply over voltage is applied to each power supply pin.
- A current injection is applied to each input, output, and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Table 9. Latch-up results

No.			Parameter	Conditions	Class
1	LU	LU CC Static latch-up class		$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A

4.5 DC electrical specifications

Table 10. Power supply specifications

Characteristic	Symbol	Pin Name	Min	Мах	Units
Internal logic supply voltage, nominal 1.2 V	IV _{DD}	IVDD	1.14	1.32	V
FlexBus supply voltage Nominal 1.8–3.3 V	FBV _{DD}	FB_VDD	1.71	3.63	V
SDRAM supply voltage DDR2 @ 1.8 V	SDV _{DD}	SD_VDD	1.71	1.98	V
SDRAM input reference voltage	SDV _{REF}	SD_VREF	0.49 x SDV _{DD}	0.51 x SDV _{DD}	V
SDRAM termination supply voltage	SDV _{TT}	SD_VTT	SDV _{REF} - 0.04	SDV _{REF} + 0.04	V
PLL analog operation voltage range, nominal 3.3 V	PV _{DD}	VDD_OSC_ A_PLL	3.135	3.63	V

Characteristic	Symbol	Pin Name	Min	Max	Units
External I/O pad supply voltage, nominal 3.3 V	EV _{DD}	EVDD	3.135	3.63	V
USB supply voltage, nominal 3.3 V	USBV _{DD}	VDD_USBO VDD_USBH	3.135	3.63	V
ADC supply voltage	AV _{DD}	VDDA_ADC	3.135	3.63	V
DAC supply voltage	_	VDDA_DAC_ ADC	3.135	3.63	V
RTC standby supply voltage	RTCV _{STBY}	VSTBY_RTC	1.6	EV _{DD} – 0.2V	V

Table 10. Power supply specifications (continued)

Characteristic	Symbol	Min	Мах	Units
CMOS input high voltage	EVIH	$0.65 \times EV_{DD}$	EV _{DD} + 0.3	V
CMOS input low voltage	EVIL	$V_{\rm SS} - 0.3$	$0.35 \times EV_{DD}$	V
CMOS output high voltage $I_{OH} = -2.0 \text{ mA}$	EV _{OH}	$0.8 \times EV_{DD}$		V
CMOS output low voltage I _{OL} = 2.0 mA	EV _{OL}	_	$0.2 \times EV_{DD}$	V
SDRAM input high voltage DDR2 @ 1.8V	SDV _{IH}	SDV _{REF} + 0.125	SDV _{DD} + 0.3	V
SDRAM input low voltage DDR2 @ 1.8V	SDV _{IL}	-0.3	SDV _{REF} - 0.125	V
SDRAM output high voltage DDR2@ 1.8V I _{OH} = -13.4 mA	SDV _{OH}	$SDV_{DD} imes 0.9$	_	V
SDRAM output low voltage DDR2@ 1.8V I _{OH} = 13.4 mA	SDV _{OL}	_	$\text{SDV}_{\text{DD}} imes 0.1$	V
FlexBus input high voltage	FBV _{IH}	$0.51 \times FBV_{DD}$	FBV _{DD} + 0.3	V
@ 1.8V-3.3V FlexBus input low voltage @ 1.8V-3.3V	FBV _{IL}	V _{SS} – 0.3	$0.42 \times \text{FBV}_{\text{DD}}$	V
FlexBus output high voltage @ 1.8V–3.3V I _{OH} = –5.0 mA for all modes	FBV _{OH}	$0.8 \times FBV_{DD}$		V
FlexBus output low voltage @ 1.8V–3.3V I _{OL} = 5.0 mA for all modes	FBV _{OL}	-	$0.2 \times FBV_{DD}$	V
Input Leakage Current $V_{in} = V_{DD}$ or V_{SS} , Input-only pins	l _{in}	-2.5	2.5	μA

Table 11. I/O electrical specifications

Pad type ¹	Slew rate select field value	Drive load (pF)	Rise/fall time (ns)
msr	11	50	1.2
	11	200	6
	10	50	9
	10	200	14
	01	50	17
	01	200	23
	00	50	110
	00	200	120
fsr	11	50	1.1
		200	2.6
	10	50	2.4
	10	200	5
	01	50	5
	01	200	8
	00	50	16
	00	200	21

Table 12. Output pad slew rates (continued)

The ae pads are used for USB communication and are governed by usb.org specifications. They are not included in this table.

4.7 DDR pad drive strengths

1

The DDR pins on the MCF5441x devices have programmable drive strengths. Table 13 lists the drive strengths for pins based on the value programmed into the appropriate field of the drive strength control register. Refer to Table 5 for a list of the external signals to pad connections.

NOTE

For a single device drive, this setting should be 00 to enable Half Strength mode. High strength is intended for multiple device drives (DIMM).

Table 13. DDR pad drive strengths

Pad type	Drive strength select field value	Drive strength
st	00	Half strength 1.8V DDR2
	01	Full strength 1.8V DDR2
	10	Reserved
	11	Reserved

4.8 Oscillator and PLL electrical characteristics

Reference Figure 9 for crystal circuits.

Num	Characteristic	Symbol	Min	Мах	Unit
1	PLL Reference Frequency Range ¹ Crystal reference External reference	f _{ref_crystal} f _{ref_ext}	14 ¹ 14 ¹	50 ¹ 50 ¹	MHz MHz
2	Sys Sys		120 60	250 100	MHz MHz
3	VCO frequency	f _{vco}	240	500	MHz
4	DCC frequency ³	f _{DCC}	300	500	MHz
5	Crystal start-up time ^{4, 5}	t _{cst}	_	10	ms
6	EXTAL input high voltage External and limp modes	V _{IHEXT}	EVIH	EVDD	V
7	EXTAL input low voltage External and limp modes	V _{ILEXT}	0	EV _{IL}	v
8	PLL lock time ^{4, 6}	t _{lpll}		50	ms
9	Duty cycle of reference ⁴	t _{dc}	-45%	+45%	%
10	Crystal capacitive load	CL	_	From crystal spec	pF
11	Feedback resistor	R _F	10	—	MΩ
12	Series resistor	R _S	0	200	Ω
13	Discrete load capacitance for XTAL	C _{L_XTAL}		$\begin{array}{c} 2 \times C_L - \\ C_{S_XTAL} - \\ C_{PCB_XTAL}^{7} \end{array}$	pF
14	Discrete load capacitance for EXTAL	C _{L_EXTAL}		$\begin{array}{c} 2 \times C_L - \\ C_{S_EXTAL} - \\ C_{PCB_EXTAL}^{7} \end{array}$	pF
15	FB_CLK period jitter, ^{4, 5, 7, 8,} Measured at f _{SYS} Max Peak-to-peak jitter (clock edge to clock edge) Long term jitter	C _{jitter}	_	10 0.1	% f _{sys/3} % f _{sys/3}

Table 14. PLL electrical characteristics

These reference value ranges are for after a PLL predivider (PREDIV), which can be programmed to 1, 2, 4, 8, or 16. The PREDIV value can be set while booting from serial flash. In parallel reset configuration, the PREDIV value is set to one. In this mode, if the input frequency results in an out of range reference frequency, boot the processor in limp mode, set the proper PREDIV and multiplier settings, and switch to PLL mode.

² All internal registers retain data at 0 Hz.

³ Required only for DDR2 memory.

⁴ This parameter is guaranteed by characterization before qualification rather than 100% tested.

- ⁵ Proper PC board layout procedures must be followed to achieve specifications.
- ⁶ This specification is the PLL lock time only and does not include oscillator start-up time.

⁷ C_{PCB_EXTAL} and C_{PCB_XTAL} are the measured PCB stray capacitances on EXTAL and XTAL, respectively.

⁸ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via PLL V_{DD}, EV_{DD}, and V_{SS} and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.

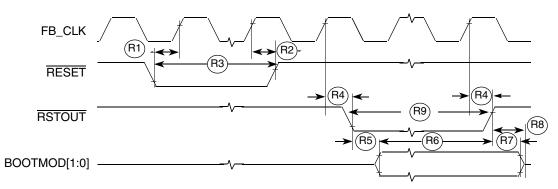


Figure 10. RESET and configuration override timing

4.10 FlexBus timing specifications

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the FlexBus output clock (FB_CLK). All other timing relationships can be derived from these values.

All FlexBus signals use pad type pad_fsr. The following timing specifications assume a pad slew rate setting of 11 and a load of 50 pF.¹

Num	Characteristic	Min	Max	Unit	Notes
	Frequency of operation	—	62.5	MHz	
FB1	Clock period	16	_	ns	
FB2	Output valid	—	6.0	ns	1
FB3	Output hold	0.5	—	ns	1
FB4	Input setup	5.5	_	ns	2
FB5	Input hold	0	—	ns	2

Table 16. FlexBus timing specifications

¹ Specification is valid for all FB_AD[31:0], FB_R/W, FB_ALE, FB_TS, FB_CSn, FB_OE, FB_BE/BWEn, and FB_TSIZ[1:0].

² Specification is valid for all FB_AD[31:0] and $\overline{FB_TA}$.

^{1.} These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to increase edge rise and fall times, thus reducing EMI.



Figure 18. DDR read timing

4.13 USB transceiver timing specifications

The MCF5441x device is compliant with industry standard USB 2.0 specification.

4.14 ULPI timing specifications

The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing requirements for the ULPI pins are given in Table 19. These timings apply to synchronous mode only. All timings are measured with respect to the clock as seen at the USB_CLKIN pin on the MCF5441x. The ULPI PHY is the source of the 60MHz clock.

NOTE

The USB controller requires a 60-MHz clock, even if using the on-chip FS/LS transceiver instead of the ULPI interface. In this case, the 60-MHz clock can be generated by the PLL or input on the USB_CLKIN pin.

eSDHC timing specifications 4.15.1

Figure 20 depicts the timing of eSDHC, and Table 20 lists the eSDHC timing characteristics.

		• •			
ID	Parameter	Min	Max	Unit	
Card In	put Clock				
SD1	Clock frequency (low speed)	f _{PP} ¹	0	400	kHz
	Clock frequency (SD/SDIO full speed)	f _{PP} ²	0	40	MHz
	Clock frequency (MMC full speed)	f _{PP} ³	0	20	MHz
	Clock frequency (identification mode)	f _{OD} ⁴	100	400	kHz
SD2	Clock low time	t _{WL}	7		ns
SD3	Clock high time	t _{WH}	7	—	ns
SD4	Clock rise time	t _{TLH}	—	3	ns
SD5	Clock fall time	t _{THL} — 3		3	ns
eSDHC	Output / card inputs SDHC_CMD, SDHC_DAT (referen	ce to SDHC_CL	.К)		
SD6	eSDHC output delay (output valid)	t _{OD}	-5	5	ns
eSDHC	Input / card outputs SDHC_CMD, SDHC_DAT (reference	ce to SDHC_CL	К)		
SD7	eSDHC input setup time	t _{ISU}	5	_	ns
SD8	eSDHC input hold time	t _{IH}	0	—	ns

Table 20. eSDHC interface timing specifications

1 In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.

2 In normal data transfer mode for SD/SDIO card, clock frequency can be any value from 0 to 25 MHz.

3 In normal data transfer mode for MMC card, clock frequency can be any value from 0 to 20 MHz.

⁴ In card identification mode, card clock must be 100 kHz– 400 kHz, voltage ranges from 2.7 to 3.6 V.

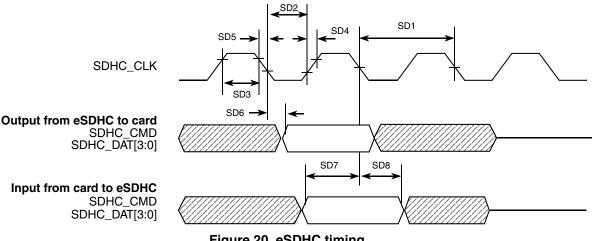
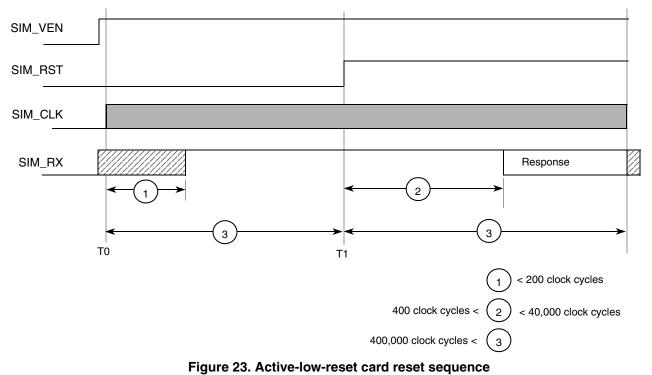



Figure 20. eSDHC timing

4.16.2.2 Cards with active-low reset

The sequence of reset for this kind of card is as follows (see Figure 23):

- 1. After powerup, the clock signal is enabled on SIM_CLK (time T0)
- 2. After 200 clock cycles, RX must be high.
- 3. SIM_RST must remain low for at least 40,000 clock cycles after T0 (no response is to be received on RX during those 40,000 clock cycles)
- 4. SIM_RST is set high (time T1)
- 5. SIM_RST must remain high for at least 40,000 clock cycles after T1 and a response must be received on RX between 400 and 40,000 clock cycles after T1.

4.16.3 Power-down sequence

Power down sequence for SIM interface is as follows:

- 1. SIM_PD port detects the removal of the SIM card
- 2. SIM_RST goes low
- 3. SIM_CLK goes low
- 4. SIM_TX goes low
- 5. SIM VEN goes low

Each of these steps is completed in one CKIL period (usually 32 kHz). Power-down may be started in response to a card-removal detection or launched by the processor. Figure 24 and Table 23 show the usual timing requirements for this sequence, with Fckil = CKIL frequency value.

4.25 SBF timing specifications

The Serial boot facility (SBF) provides a means to read configuration information and system boot code from a broad array of SPI-compatible EEPROMs, flashes, FRAMs, nVSRAMs, etc. Table 37 provides the AC timing specifications for the SBF.

All SBF signals use pad type pad_msr. The following timing specifications assume a pad slew rate setting of 11 and a load of 50 pF.^1

Name	Characteristic	Symbol	Min	Мах	Unit	Notes
_	SBF_CK frequency	f _{SBFCK}	_	62.5	MHz	
SB1	SBF_CK cycle time	t _{SBFCK}	16.67	_	ns	1
SB2	SBF_CK high/low time	—	30%	_	t _{SBFCK}	
SB3	SBF_CS to SBF_CK delay	—	t _{SBFCK} – 2.0	_	ns	
SB4	SBF_CK to SBF_CS delay	—	t _{SBFCK} – 2.0	_	ns	
SB5	SBF_CK to SBF_DO valid	—	_	5	ns	
SB6	SBF_CK to SBF_DO invalid	—	-5	_	ns	
SB7	SBF_DI to SBF_SCK input setup	—	10	_	ns	
SB8	SBF_CK to SBF_DI input hold	—	0	_	ns	

Table 37. SBF AC timing specifications

At reset, the SBF_CK cycle time is $t_{REF} \times 60$. The first byte of data read from the serial memory contains a divider value that is used to set the SBF_CK cycle time for the duration of the serial boot process.

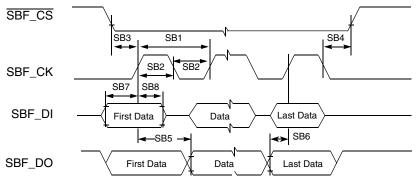


Figure 34. SBF timing

^{1.} These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to increase edge rise and fall times, thus reducing EMI.

Revision history

Rev. No.	Date	Summary of changes
3	31 July 2009	Changed 169MAPBGA package to 196MAPBGA throughout. MCF54410 device now supports a single SSI module and one Ethernet controller with IEEE 1588 support
4	17 Aug 2009	Updated MCF5441 <i>x</i> Signal Information and Muxing table with 196MAPBGA pin locations Changed SD_D <i>n</i> pin locations on 256 MAPBGA package Added note to Section 4.6, "Output pad loading and slew rate"
5	29 Jan 2010	Added orderable part numbers
6		Swapped locations of RTC_EXTAL and RTC_XTAL pins in Table 5, Figure 7, and Figure 8 Corrected instances of MCF5445 <i>x</i> to MCF5441 <i>x</i> Added thermal characteristic s to Table 7 Added case outline numbers to Table 42 Changed PLL supply voltage from "–0.5 to +2.0" to "–0.3 to +4.0" in Table 6 Miscellaneous corrections based on information from shared review comments by team members
7	October 2011	 Updated the pinouts in Table 5, "MCF5441x Signal information and muxing". Updated the Figure 7, "MCF54410 Pinout (196 MAPBGA)". Removed the symbol ADC_IN7/DAC1_OUT from Table 9, "Latch-up results". Updated Table 11, "I/O electrical specifications". Updated Table 13, "DDR pad drive strengths".
8	June 2012	 In Table 7, added the thermal characteristics for the 196 MAPBGA package. In Table 42, updated the case outline number for the 196 MAPBGA package from "98ARH98217" to "98ASA00321D".

Table 43. Revision history (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF54418 Rev. 8 06/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2011-2012. All rights reserved.

