

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	Coldfire V4
Core Size	32-Bit Single-Core
Speed	250MHz
Connectivity	1-Wire®, CANbus, EBI/EMI, Ethernet, I ² C, SmartCard, SPI, SSI, UART/USART, USB, USB OTC
Peripherals	DMA, PWM, WDT
Number of I/O	87
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	64K x 8
/oltage - Supply (Vcc/Vdd)	1.14V ~ 1.32V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf54418cmj250

Table of Contents

1	MCF:	5441x family comparison4			4.15.2 eSDHC electrical DC characteristics	38
	1.1	Ordering information		4.16	SIM timing specifications	38
2	Hard	ware design considerations5			4.16.1 General timing requirements	39
	2.1	Power filtering			4.16.2 Reset sequence	39
	2.2	Supply voltage sequencing			4.16.3 Power-down sequence	
		2.2.1 Power-up sequence8		4.17	SSI timing specifications	41
		2.2.2 Power-down sequence8		4.18	12-bit ADC specifications	
	2.3	Power consumption specifications			12-bit DAC timing specifications	
3	Pin a	ssignments and reset states9			mcPWM timing specifications	
	3.1	Signal multiplexing9		4.21	I ² C timing specifications	45
	3.2	Pinout—196 MAPBGA			Ethernet assembly timing specifications	
	3.3	Pinout—256 MAPBGA			4.22.1 Receive signal timing specifications	47
4	Elect	rical characteristics21			4.22.2 Transmit signal timing specifications	47
	4.1	Absolute maximum ratings			4.22.3 Asynchronous input signal timing	
	4.2	Thermal characteristics22			specifications	48
	4.3	ESD protection			4.22.4 MDIO serial management timing	
	4.4	Static latch-up (LU)			specifications	48
	4.5	DC electrical specifications23		4.23	32-bit timer module timing specifications	49
	4.6	Output pad loading and slew rate		4.24	DSPI timing specifications	49
	4.7	DDR pad drive strengths26		4.25		
	4.8	Oscillator and PLL electrical characteristics		4.26	1-Wire timing specifications	53
	4.9	Reset timing specifications		4.27	General purpose I/O timing specifications	53
	4.10	FlexBus timing specifications		4.28	Rapid general purpose I/O timing specifications	53
	4.11	NAND flash controller (NFC) timing specifications 30		4.29	JTAG and boundary scan timing specifications	54
	4.12	DDR SDRAM controller timing specifications		4.30	Debug AC timing specifications	56
	4.13	USB transceiver timing specifications	5	Pack	age information	57
		ULPI timing specifications35	6	Prod	uct documentation	57
	4.15	eSDHC timing specifications36	7	Revis	sion history	58
		4.15.1 eSDHC timing specifications				

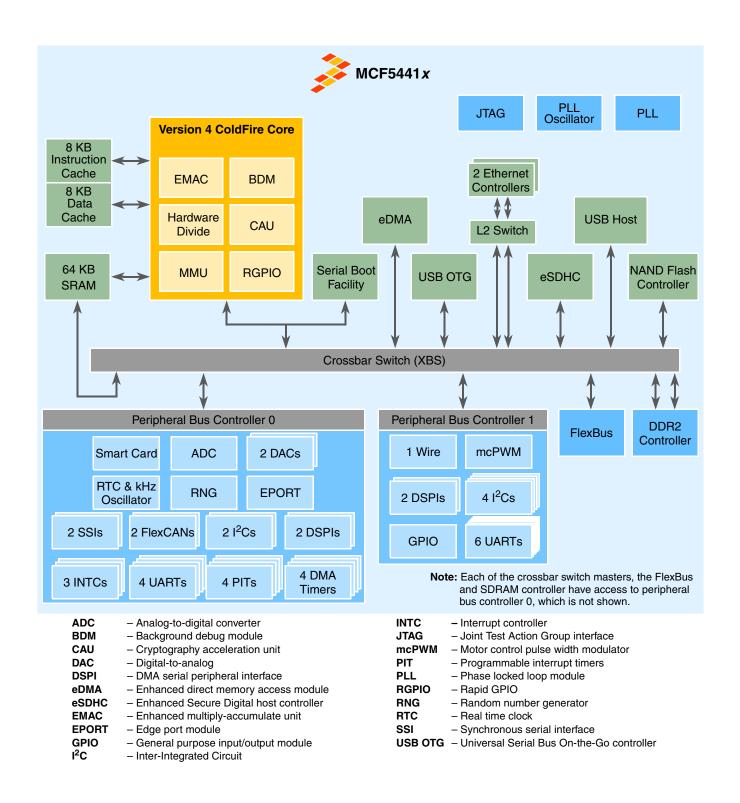


Table 1. MCF5441x family configurations (continued)

Module	MCF54410	MCF54415	MCF54416	MCF54417	MCF54418
NAND flash controller	•	•	•	•	•
1-Wire [®] interface	•	•	•	•	•
Serial boot facility	•	•	•	•	•
Watchdog timer	•	•	•	•	•
Interrupt controllers (INTC)	3	3	3	3	3
Edge port module (EPORT)	3 IRQs	5 IRQs	5 IRQs	5 IRQs	5 IRQs
Rapid GPIO pins	9	16	16	16	16
General-purpose I/O (GPIO) pins	48	87	87	87	87
JTAG - IEEE [®] 1149.1 Test Access Port	•	•	•	•	•
Package	196 MAPBGA			56 BGA	

1.1 Ordering information

Table 2. Orderable part numbers

Freescale Part Number	Description		Speed	Temperature
MCF54410CMF250	MCF54410 Microprocessor	196 MAPBGA		
MCF54415CMJ250	MCF54415 Microprocessor			
MCF54416CMJ250	MCF54416 Microprocessor	256 MAPBGA	250 MHz	–40 to +85°C
MCF54417CMJ250	MCF54417 Microprocessor	230 MAI BOA		
MCF54418CMJ250	MCF54418 Microprocessor			

2 Hardware design considerations

2.1 Power filtering

To further enhance noise isolation, an external filter is strongly recommended for the analog V_{DD} pins (VDDA_PLL and VDDA_DAC_ADC). The filter shown in Figure 1 should be connected between the board 3.3 V (nominal) supply and the analog pins. The resistor and capacitors should be placed as close to the dedicated analog V_{DD} pin as possible. The 10 Ω resistor in the given filter is required.

MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8

Figure 5 shows an example for bypassing the FlexBus power supply for the MPU. This bypass should be applied to as many FB VDD signals as routing allows. Each one should be placed as close to the ball as possible.

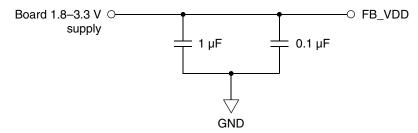
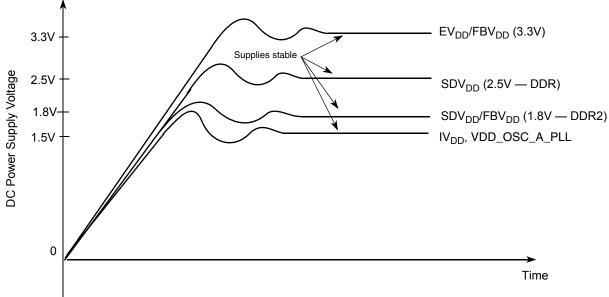



Figure 5. FB_VDD power filter

2.2 Supply voltage sequencing

Figure 6 shows requirements in the sequencing of the I/O V_{DD} (EV $_{DD}$), FlexBus V_{DD} (FBV $_{DD}$), SDRAM V_{DD} (SDV $_{DD}$), PLL V_{DD} (VDD_OSC_A_PLL), and internal logic/core V_{DD} (IV $_{DD}$).

Notes:

Figure 6. Supply voltage sequencing and separation cautions

The relationships between FBV_{DD}, SDV_{DD} and EV_{DD} are non-critical during power-up and power-down sequences. FBV_{DD} (1.8 – 3.3V), SDV_{DD} (2.5V or 1.8V) and EV_{DD} are specified relative to IV_{DD}.

NOTE

All I/O VDD pins must be powered on when the device is functioning, except when in standby mode.

In standby mode, all I/O VDD pins, except VSTBY RTC (battery), can be switched off.

MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8

Input voltage must not be greater than the supply voltage (EV_{DD}, FBV_{DD}, SDV_{DD}, IV_{DD}, or PV_{DD}) by more than 0.5V at any time, including during power-up.

² Use 25 V/millisecond or slower rise time for all supplies.

Hardware design considerations

2.2.1 Power-up sequence

If $EV_{DD}/FBV_{DD}/SDV_{DD}$ are powered up with the IV_{DD} at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to the $EV_{DD}/FBV_{DD}/SDV_{DD}$ to be in a high impedance state. There is no limit on how long after $EV_{DD}/FBV_{DD}/SDV_{DD}$ powers up before IV_{DD} must power up. IV_{DD} should not lead the EV_{DD} , FBV_{DD} , or SDV_{DD} by more than 0.4 V during power ramp-up, or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 25 V/millisecond to avoid turning on the internal ESD protection clamp diodes.

2.2.2 Power-down sequence

If IV_{DD}/PV_{DD} are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after IV_{DD} and PV_{DD} power down before EV_{DD} , FBV_{DD} , or SDV_{DD} must power down. IV_{DD} should not lag EV_{DD} , FBV_{DD} , or SDV_{DD} going low by more than 0.4 V during power down or there will be undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies.

The recommended power down sequence is as follows:

- 1. Drop IV_{DD}/PV_{DD} to 0 V.
- 2. Drop $EV_{DD}/FBV_{DD}/SDV_{DD}$ supplies.

2.3 Power consumption specifications

Table 3. Estimated power consumption specifications

Characteristic	Symbol	Typical	Unit
Core operating supply current (nominal 1.2 V) ¹ Run mode Wait mode Doze mode Stop00 mode Stop01 mode Stop02 mode Stop03 mode	IVDD	127 33 32 9.3 9.2 3.6 3.4	mA
FlexBus operating supply current Run mode (application dependent) Wait mode Doze mode Stop00 mode Stop01, Stop02, Stop03 mode	FBVDD	80 49 42 40 28	mA
SDRAM operating supply current (DDR2 at 1.8 V) Isys(DQ) [×8, 2×DQS] Isys(WR) [×8, 2×DQS] Isys(RD) [×8, 2×DQS] SDRAM input reference current Isys(REF) SDRAM termination current Isys(termRD) Total SDIDD MPU side ²	SDVDD SDVREF SDVTT	3 15 15 1.3 41 75	mA
Oscillator/PLL operating supply current (nominal 3.3 V) Run, Wait, Doze, Stop00, Stop01 mode Stop02 mode Stop03 mode	VDD_OSC_A_PLL	10 6 1	mA

MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8

Table 4. Special-case default signal functionality

Pin	Default signal
FB_CLK, FB_OE, FB_R/W, FB_BE/BWE[1:0], FB_CS[5:4]	FB_CLK, FB_OE, FB_R/W, FB_BE/BWE[1:0], FB_CS[5:4]
FB_ALE	FB_ALE or FB_TS (depending on RCON[3])
FB_BE/BWE3	Boot from NFC, NF_ALE. Otherwise, FB_BE/BWE3.
FB_BE/BWE2	Boot from NFC, NF_CLE. Otherwise, FB_BE/BWE2.
FB_CS1	Boot from NFC, NFC_CE. Otherwise, GPIO.
FB_CS0	Boot from FlexBus, FB_CS0. Otherwise, GPIO.
FB_TA	Boot from NFC, NFC_R/B. Otherwise, FB_TA.
ALLPST, PST[3:0], DDATA[3:0]	ALLPST, PST[3:0], DDATA[3:0]

NOTE

While most modules and functionalities between the 196 and 256 MAPBGA package are the same, the following modules have been removed from 196 MAPBGA for pin space:

UART2, UART6, UART9, PWM, SSI1, SIM1, USB HOST, IRQ6, IRQ3, IRQ2, FLEXCAN1, I2C1, ADC, DAC.

Other modifications to the 196 MAPBGA package are:

- SDRAMC One address line, SD_A14, is removed.
- SDHC Number of data lines for eSDHC have been reduced to 4 instead of 8.
- MAC Only MAC0_RMII mode is implemented.

Table 5. MCF5441x Signal information and muxing

Signal name	GPIO	Alternate 1	Alternate 2	Pullup (U) ¹ Pulldown (D)	Direction ²	Voltage domain	Pad type ³	196 MAPBGA	256 MAPBGA	
	Reset									
RESET	_	_	_	U	I	EVDD	ssr	K14	K15	
RSTOUT	_	_	_	_	0	EVDD	msr	P12	L16	
	Clock									
EXTAL/ RMII_REF_CLK	_	_	_	_	l ⁴	EVDD	ae	G14	G16	

MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8

Pin assignments and reset states

Table 5. MCF5441x Signal information and muxing (continued)

Signal name	GPIO	Alternate 1	Alternate 2	Pullup (U) ¹ Pulldown (D)	Direction ²	Voltage domain	Pad type ³	196 MAPBGA	256 MAPBGA	
XTAL	_	_	_	_	0	EVDD	ae	H14	H16	
Mode selection										
BOOTMOD[1:0]	_	_	_	T —	ı	EVDD	msr	G5,H5	K5, L5	
,			FlexBus	•				•		
FB_AD[31:24]/ NFC_IO[15:8] ⁵	_	_	_	_	I/O	FBVDD	fsr	A10, A9, B9, C9, A8, B8, C8, A7	B9, C8, A9, B8, D8, A8, D7, B7	
FB_AD[23:16]/ NFC_IO[7:0] ⁵	_	_	_	_	I/O	FBVDD	fsr	B7, C7, C6, B6, A6, A5, B5, A4	C7, A7, D6, A6, B6, D5, C6, A5	
FB_AD[15:10]	_	_	_	6	I/O	FBVDD	fsr	C5, A3, B4, C4, B3, A2	B5, A4, A3, D4, B4, C5	
FB_AD[9:8]	_	_	_	U ⁷	I/O	FBVDD	fsr	B2, C3	C4, B3	
FB_AD[7:0]	_	_	_	_	I/O	FBVDD	fsr	D4, B1, C2, D3, C1, D2, E3, D1	C3, E4, D3, E3, A2, B2, C2, F3	
FB_ALE	PA7	FB_TS	_	_	0	FBVDD	fsr	E2	D2	
FB_OE/ NFC_RE	PA6	FB_TBST/ NFC_RE	_	_	0	FBVDD	fsr	H1	F1	
FB_R/W/ NFC_WE	PA5	_	_	_	0	FBVDD	fsr	H2	G2	
FB_TA	PA4	_	NFC_R/B	U ⁸	0	FBVDD	fsr	НЗ	НЗ	
FB_BE/BWE3	PA3	FB_CS3	FB_A1/ NFC_ALE ⁹	_	0	FBVDD	fsr	F3	C1	
FB_BE/BWE2	PA2	FB_CS2	FB_A0/ NFC_CLE ¹⁰	_	0	FBVDD	fsr	E1	E2	
FB_BE/BWE[1:0]	PA[1:0]	FB_TSIZ[1:0]	_	_	0	FBVDD	fsr	F2, F1	D1, F4	
FB_CLK	PB7	_	_	_	0	FBVDD	fsr	G1	G1	
FB_CS5	PB6	DACK1	_	-	0	FBVDD	fsr	_	F2	
FB_CS4	PB5	DREQ1	_	-	0	FBVDD	fsr	_	B1	
FB_CS1	PB4	_	NFC_CE	_	0	FBVDD	fsr	G3	E1	
FB_CS0	PB3	_	_	_	0	FBVDD	fsr	G2	G3	
,		•	I ² C 0	1	•				ı	
I2C0_SCL	PB2	UART8_TXD	CAN0_TX		I/O	EVDD	ssr	H12	G15	
I2C0_SDA	PB1	UART8_RXD	CAN0_RX	_	I/O	EVDD	ssr	G12	G14	

Pin assignments and reset states

Table 5. MCF5441x Signal information and muxing (continued)

Signal name GPIO		Alternate 1	ternate 1 Alternate 2		Direction ²	Voltage domain	Pad type ³	196 MAPBGA	256 MAPBGA
		Externa	al interrupts port						
ĪRQ7	PC6	_	_	_	I	EVDD	ssr	G10	F12
ĪRQ6	PC5	_	USB_CLKIN ¹¹	_	I	EVDD	ssr	_	N1
ĪRQ4	PC4	DREQ0	_	_	I	EVDD	ssr	E11	F14
ĪRQ3	PC3	DSPI0_PCS3	USBH_VBUS_EN	_	I	EVDD	ssr		M1
ĪRQ2	PC2	DSPI0_PCS2	USBH_VBUS_OC	_12	I	EVDD	ssr	_	M2
ĪRQ1	PC1	_	_	_	I	EVDD	ssr	E13	F13
		US	B On-the-Go		1	I	I	l	
USBO_DM	_	_	_	_	I/O	VDD_ USB0	ae	B13	A14
USBO_DP	_	_	_	_	I/O	VDD_ USB0	ae	A13	B14
			USB host						
USBH_DM	_	_	_	_	I/O	VDD_ USBH	ae	_	A15
USBH_DP	_	_	_	_	I/O	VDD_ USBH	ae	_	B15
			ADC	•			I.		•
ADC_IN7/ DAC1_OUT	_	_	_	_	I	VDDA_ DAC_ ADC	ae	_	К3
ADC_IN[6:4]	_	_	_	_	I	VDDA_ ADC	ae	_	H2, J3, G4
ADC_IN3/ DAC0_OUT	_	_	_	_	I	VDDA_ DAC_ ADC	ae	_	K4
ADC_IN[2:0]	_	_	_	_	I	VDDA_ ADC	ae	_	J2, J1, H1
		Re	al time clock	•	•	•			•
RTC_EXTAL	_	_	_	_	l ⁴	VSTBY	ae	B14	B16
RTC_XTAL	_	_	_	_	0	VSTBY	ae	C14	C16
	L	D	SPI0/SBF ¹³	1	1	ı	ı	1	
DSPI0_PCS1/ SBF_CS	PC0	_	_	_	I/O	EVDD	msr	К3	L1

Pin assignments and reset states

- ²¹ Configurable pull that is enabled and pulled down after reset.
- ²² The ALLPST signal is available only on the 196 MAPBGA package and allows limited debug trace functionality compared to the 256 MAPBGA package.
- ²³ If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins.
- ²⁴ VSTBY is for optional standby lithium battery. If not used, connect to EVDD.

3.2 Pinout—196 MAPBGA

The pinout for the MCF54410 package is shown below.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
A	GND	FB_ AD10	FB_ AD14	FB_ AD16	FB_ AD18	FB_ AD19	FB_ AD24	FB_ AD27	FB_ AD30	FB_ AD31	SSI0_ TXD	SSI0_ MCLK	USB_ DPLS	GND	A
В	FB_ AD6	FB_ AD9	FB_ AD11	FB_ AD13	FB_ AD17	FB_ AD20	FB_ AD23	FB_ AD26	FB_ AD29	U1_ RXD	U0_ TXD	SSI0_ RXD	USB_ DMNS	RTC_ EXTAL	В
С	FB_ AD3	FB_ AD5	FB_ AD8	FB_ AD12	FB_ AD15	FB_ AD21	FB_ AD22	FB_ AD25	FB_ AD28	U1_ TXD	U0_ RXD	U0RTS_ B	SSI0_ FS	RTC_ XTAL	С
D	FB_ AD0	FB_ AD2	FB_ AD4	FB_ AD7	FBVDD	FBVDD	FBVDD	GND	CVDD	CVDD	U1RTS_ B	U1CTS_ B	SSI0_ BCLK	GND	D
E	FB_BE2 _B	FB_ALE	FB_ AD1	FBVDD				GND	CVDD	CVDD	IRQ4_B	U0CTS_ B	IRQ1_B	VSTBY	E
F	FB_BE0 _B	FB_BE1 _B	FB_BE3 _B	EVDD	EVDD	EVDD	EVDD	GND	CVDD	CVDD	VDD_ USBO	CVDD	VSS_OS C_A_PL L	VDD_OS C_A_PL L	F
G	FB_CLK	FB_CS0 _B	FB_CS1 _B	GND	BOOT MOD1	EVDD	EVDD	GND	GND	IRQ7_B	GND	I2C0_ SDA	T3IN	EXTAL	G
н	FB_OE_ B	FB_RW_ B	FB_TA_ B	GND	BOOT MOD0	EVDD	EVDD	GND	GND	GND	GND	I2C0_ SCL	T1IN	XTAL	н
J	DSPI0_ PCS0	DSPI0_ SOUT	DSPI0_ SCK	SD_BA1	EVDD	EVDD	GND	GND	GND	GND	GND	T2IN	TOIN	GND	J
K	SD_A1	DSPI0_ SIN	DSPI0_ PCS1	SD_CAS _B	GND	GND	SDVDD	SDVDD	SDVDD	TEST	GND	ALLPST	TMS	RSTIN_ B	ĸ
L	SD_A9	SD_A10	SD_A5	SD_A4	SDVDD	SDVDD	SDVDD	SD_VTT	TRST_B	TDI	RM110_ TXD0	RM110_ TXD1	TDO	TCLK	L
М	SD_A12	SD_A7	SD_A11	SD_RAS _B	SD_CS_ B	SD_BA2	SD_D0	SD_D2	SD_D4	SD_D6	OWIO	RMII0_ RXER	RMII0_ CRS_DV	RMII0_ MDIO	М
N	SD_A3	SD_A2	SD_A0	SD_A8	SD_WE_ B	SD_CKE	SD_DQM	SD_D1	SD_VRE F	SD_D5	JTAG_E N	RMII0_ TXEN	RMII0_ RXD0	RMII0_ MDC	N
P	GND	SD_A6	SD_A13	SD_BA0	SD_ODT	SD_CLK	SD_CLK_ B	SD_DQS	SD_DQS _B	SD_D3	SD_D7	RSTOUT _B	RMII0_ RXD1	GND	Р
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

Figure 7. MCF54410 Pinout (196 MAPBGA)

4 Electrical characteristics

This document contains electrical specification tables and reference timing diagrams for the MCF5441x microprocessor. This section contains detailed information on AC/DC electrical characteristics and AC timing specifications.

NOTE

The specifications for this device in any other document are superseded by the specifications in this document.

4.1 Absolute maximum ratings

Table 6. Absolute maximum ratings 1, 2

Rating	Symbol	Pin name	Value	Units
External I/O pad supply voltage	EV _{DD}	EVDD	-0.3 to +4.0	V
Internal logic supply voltage	IV _{DD}	IVDD	-0.5 to +2.0	V
FlexBus I/O pad supply voltage	FBV _{DD}	FB_VDD	-0.3 to +4.0	V
SDRAM I/O pad supply voltage	SDV _{DD}	SD_VDD	-0.3 to +4.0	V
PLL supply voltage	PV _{DD}	VDD_OSC_A_PLL	-0.3 to +4.0	V
USB OTG supply voltage	USBV _{DD}	VDD_USBO	-0.3 to +4.0	V
USB host supply voltage	USBV _{DD}	VDD_USBH	-0.3 to +4.0	V
ADC supply voltage	AV_DD	VDDA_ADC	-0.3 to +4.0	V
DAC and ADC supply voltage	_	VDDA_DAC_ADC	-0.3 to +4.0	V
RTC standby supply voltage	RTCV _{STBY}	VSTBY_RTC	-0.3 to +4.0	V
Digital input voltage ³	V _{IN}	_	-0.3 to +3.6	V
Instantaneous maximum current Single pin limit (applies to all pins) ^{3, 4, 5}	I _{DD}	_	25	mA
Operating temperature range (packaged)	T _A (T _L – T _H)	_	-40 to +85	°C
Storage temperature range	T _{stg}	_	−55 to +150	°C

Functional operating conditions are given in Table 11. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.

This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Immunity to static and electrical fields is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., V_{SS} or EV_{DD}).

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, and then use the larger of the two values.

 $^{^4}$ All functional non-supply pins are internally clamped to V_{SS} and EV_{DD} .

Power supply must maintain regulation within operating EV_{DD} , FBV_{DD} , and SDV_{DD} range during instantaneous and operating maximum current conditions. If positive injection current $(V_{in} > EV_{DD}, FBV_{DD}, or SDV_{DD})$ is greater than I_{DD} , the injection current may flow out of EV_{DD} , FBV_{DD} , or SDV_{DD} and could result in external power supply going out of regulation. Ensure the external EV_{DD} , FBV_{DD} , or SDV_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MPU is not consuming power (for example, no clock).

Table 12. Output pad slew rates (continued)

Pad type ¹	Slew rate select field value	Drive load (pF)	Rise/fall time (ns)
msr	11	50	1.2
	11	200	6
	10	50	9
	10	200	14
	01	50	17
	O1	200	23
	00	50	110
	00	200	120
fsr	11	50	1.1
	11	200	2.6
	10	50	2.4
	10	200	5
	01	50	5
	O1	200	8
	00	50	16
		200	21

The ae pads are used for USB communication and are governed by usb.org specifications. They are not included in this table.

4.7 DDR pad drive strengths

The DDR pins on the MCF5441x devices have programmable drive strengths. Table 13 lists the drive strengths for pins based on the value programmed into the appropriate field of the drive strength control register. Refer to Table 5 for a list of the external signals to pad connections.

NOTE

For a single device drive, this setting should be 00 to enable Half Strength mode. High strength is intended for multiple device drives (DIMM).

Table 13. DDR pad drive strengths

Pad type	Drive strength select field value	Drive strength
st	00	Half strength 1.8V DDR2
	01	Full strength 1.8V DDR2
	10	Reserved
	11	Reserved

4.8 Oscillator and PLL electrical characteristics

Reference Figure 9 for crystal circuits.

Table 14. PLL electrical characteristics

Num	Characteristic	Symbol	Min	Max	Unit
1	PLL Reference Frequency Range ¹ Crystal reference External reference	f _{ref_crystal} f _{ref_ext}	14 ¹ 14 ¹	50 ¹ 50 ¹	MHz MHz
2	Core frequency FB_CLK frequency ² (MISCCR2[FBHALF] = 0)	f _{sys} f _{sys/2}	120 60	250 100	MHz MHz
3	VCO frequency	f _{vco}	240	500	MHz
4	DCC frequency ³	f _{DCC}	300	500	MHz
5	Crystal start-up time ^{4, 5}	t _{cst}	_	10	ms
6	EXTAL input high voltage External and limp modes	V _{IHEXT}	EV _{IH}	EVDD	V
7	EXTAL input low voltage External and limp modes	V _{ILEXT}	0	EV _{IL}	V
8	PLL lock time ^{4, 6}	t _{lpII}	_	50	ms
9	Duty cycle of reference ⁴	t _{dc}	-45%	+45%	%
10	Crystal capacitive load	C _L	_	From crystal spec	pF
11	Feedback resistor	R _F	10	_	MΩ
12	Series resistor	R _S	0	200	Ω
13	Discrete load capacitance for XTAL	C _{L_XTAL}	_	$\begin{array}{c} 2 \times C_L - \\ C_{S_XTAL} - \\ C_{PCB_XTAL}^7 \end{array}$	pF
14	Discrete load capacitance for EXTAL	C _{L_EXTAL}	_	2 × C _L - C _{S_EXTAL} - C _{PCB_EXTAL} ⁷	pF
15	FB_CLK period jitter, ^{4, 5, 7, 8,} Measured at f _{SYS} Max Peak-to-peak jitter (clock edge to clock edge) Long term jitter	C _{jitter}	_ _	10 0.1	% f _{sys/3} % f _{sys/3}

These reference value ranges are for after a PLL predivider (PREDIV), which can be programmed to 1, 2, 4, 8, or 16. The PREDIV value can be set while booting from serial flash. In parallel reset configuration, the PREDIV value is set to one. In this mode, if the input frequency results in an out of range reference frequency, boot the processor in limp mode, set the proper PREDIV and multiplier settings, and switch to PLL mode.

² All internal registers retain data at 0 Hz.

³ Required only for DDR2 memory.

⁴ This parameter is guaranteed by characterization before qualification rather than 100% tested.

Proper PC board layout procedures must be followed to achieve specifications.

⁶ This specification is the PLL lock time only and does not include oscillator start-up time.

 $^{^7}$ C_{PCB EXTAL} and C_{PCB XTAL} are the measured PCB stray capacitances on EXTAL and XTAL, respectively.

Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via PLL V_{DD}, EV_{DD}, and V_{SS} and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.

4.15.1 eSDHC timing specifications

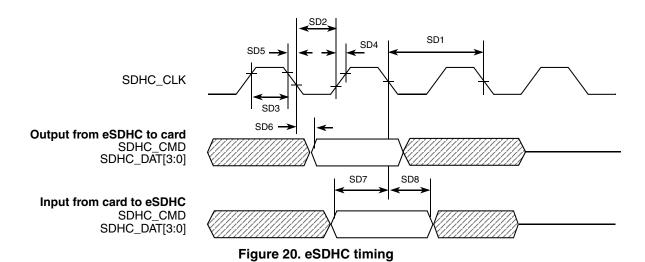

Figure 20 depicts the timing of eSDHC, and Table 20 lists the eSDHC timing characteristics.

Table 20. eSDHC interface timing specifications

ID	Parameter	Symbols	Min	Max	Unit		
Card In	put Clock			1			
SD1	Clock frequency (low speed)	f _{PP} ¹	0	400	kHz		
	Clock frequency (SD/SDIO full speed)	f _{PP} ²	0	40	MHz		
	Clock frequency (MMC full speed)	f _{PP} ³	0	20	MHz		
	Clock frequency (identification mode)	f _{OD} ⁴	100	400	kHz		
SD2	Clock low time	t _{WL}	7	_	ns		
SD3	Clock high time	t _{WH}	7	_	ns		
SD4	Clock rise time	t _{TLH}	_	3	ns		
SD5	Clock fall time	t _{THL}	_	3	ns		
eSDHC	Output / card inputs SDHC_CMD, SDHC_DAT (reference	ce to SDHC_CL	K)				
SD6	eSDHC output delay (output valid)	t _{OD}	-5	5	ns		
eSDHC	eSDHC Input / card outputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)						
SD7	eSDHC input setup time	t _{ISU}	5	_	ns		
SD8	eSDHC input hold time	t _{IH}	0	_	ns		

¹ In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.

 $^{^4\,}$ In card identification mode, card clock must be 100 kHz– 400 kHz, voltage ranges from 2.7 to 3.6 V.

MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8

² In normal data transfer mode for SD/SDIO card, clock frequency can be any value from 0 to 25 MHz.

³ In normal data transfer mode for MMC card, clock frequency can be any value from 0 to 20 MHz.

4.15.2 eSDHC electrical DC characteristics

Table 21 lists the eSDHC electrical DC characteristics.

Table 21. MMC/SD interface electrical specifications

Num	Parameter	Design value	Min	Max	Unit	Condition/remark
Bus sigr	nal line load					
7	Pull-up resistance	47	10	100	kΩ	Internal PU
8	Open drain resistance	NA	NA	NA	kΩ	For MMC cards only
Open dra	ain signal level	-				For MMC cards only
9	Output high voltage		V _{DD} – 0.2		V	I _{OH} = -100 μA
10	Output low voltage			0.3	V	I _{OL} = 2 mA
Bus sigr	nal levels	•				
11	Output high voltage		0.75 x V _{DD}		V	$I_{OH} = -100 \ \mu A \ @V_{DD} \ min$
12	Output low voltage			0.125 x V _{DD}	V	I _{OL} = 100 μA @V _{DD} min
13	Input high voltage		0.625 x V _{DD}	V _{DD} + 3	V	
14	Input low voltage		V _{SS} - 0.3	0.25 x V _{DD}	V	

4.16 SIM timing specifications

Each SIM card interface consist of a total of 12 pins (two separate ports of six pins each. Mostly one port with 5 pins is used).

The interface is meant to be used with synchronous SIM cards. This means that the SIM module provides a clock for the SIM card to use. The frequency of this clock is normally 372 times the data rate on the TX/RX pins, however SIM module can work with CLK equal to 16 times the data rate on TX/RX pins.

There is no timing relationship between the clock and the data. The clock that the SIM module provides to the SIM card is used by the SIM card to recover the clock from the data, like a standard UART. All six (or five when a bidirectional TXRX is used) of the pins for each half of the SIM module are asynchronous to each other. There are no required timing relationships between the signals in normal mode. However, there are some in reset and power down sequences.

All SIM signals use pad type pad_msr. SIM timing is fairly relaxed compared to other interfaces and can be met at 50 pF loading with any slew rate setting other than 00.1

MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8

^{1.} These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to increase edge rise and fall times, thus reducing EMI.

Table 24. SSI timing — master modes¹

Num	Description	Symbol	Min	Max	Units	Notes
S1	SSI_MCLK cycle time	t _{MCLK}	15.15		ns	2
S2	SSI_MCLK pulse width high / low		45%	55%	t _{MCLK}	
S3	SSI_BCLK cycle time	t _{BCLK}	80	_	ns	3
S4	SSI_BCLK pulse width		45%	55%	t _{BCLK}	
S5	SSI_BCLK to SSI_FS output valid		_	15	ns	
S6	SSI_BCLK to SSI_FS output invalid		0	_	ns	
S7	SSI_BCLK to SSI_TXD valid		_	15	ns	
S8	SSI_BCLK to SSI_TXD invalid / high impedance		0	_	ns	
S9	SSI_RXD / SSI_FS input setup before SSI_BCLK		15	_	ns	
S10	SSI_RXD / SSI_FS input hold after SSI_BCLK		0	_	ns	

¹ All timings specified with a capacitive load of 25pF.

Table 25. SSI timing — slave modes¹

Num	Description	Symbol	Min	Max	Units	Notes
S11	SSI_BCLK cycle time	t _{BCLK}	80		ns	
S12	SSI_BCLK pulse width high / low		45%	55%	t _{BCLK}	
S13	SSI_FS input setup before SSI_BCLK		10		ns	
S14	SSI_FS input hold after SSI_BCLK		2		ns	
S15	SSI_BCLK to SSI_TXD / SSI_FS output valid			15	ns	
S16	S16 SSI_BCLK to SSI_TXD / SSI_FS output invalid / high impedance		0	1	ns	
S17	S17 SSI_RXD setup before SSI_BCLK		15		ns	
S18	SSI_RXD hold after SSI_BCLK		2	_	ns	

¹ All timings specified with a capacitive load of 25pF.

² SSI_BCLK can be generated from SSI_CLKIN or a divided version of the internal system clock (f_{sys}).

³ SSI_BCLK can be derived from SSI_CLKIN or a divided version of the internal system clock (f_{sys}).

53

4.25 SBF timing specifications

The Serial boot facility (SBF) provides a means to read configuration information and system boot code from a broad array of SPI-compatible EEPROMs, flashes, FRAMs, nVSRAMs, etc. Table 37 provides the AC timing specifications for the SBF.

All SBF signals use pad type pad_msr. The following timing specifications assume a pad slew rate setting of 11 and a load of 50 pF.¹

Name	Characteristic	Symbol	Min	Max	Unit	Notes
_	SBF_CK frequency	f _{SBFCK}		62.5	MHz	
SB1	SBF_CK cycle time	t _{SBFCK}	16.67	_	ns	1
SB2	SBF_CK high/low time	_	30%	_	t _{SBFCK}	
SB3	SBF_CS to SBF_CK delay	_	t _{SBFCK} - 2.0	_	ns	
SB4	SBF_CK to SBF_CS delay	_	t _{SBFCK} - 2.0	_	ns	
SB5	SBF_CK to SBF_DO valid	_	_	5	ns	
SB6	SBF_CK to SBF_DO invalid	_	- 5	_	ns	
SB7	SBF_DI to SBF_SCK input setup	_	10	_	ns	
SB8	SBF_CK to SBF_DI input hold	_	0	_	ns	

Table 37. SBF AC timing specifications

At reset, the SBF_CK cycle time is $t_{REF} \times 60$. The first byte of data read from the serial memory contains a divider value that is used to set the SBF_CK cycle time for the duration of the serial boot process.

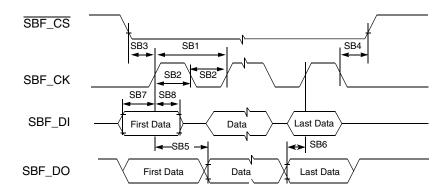


Figure 34. SBF timing

^{1.} These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to increase edge rise and fall times, thus reducing EMI.

MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8

Electrical characteristics

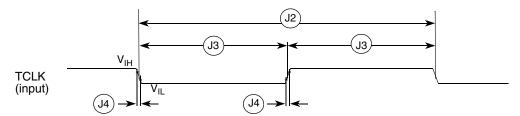


Figure 37. Test clock input timing

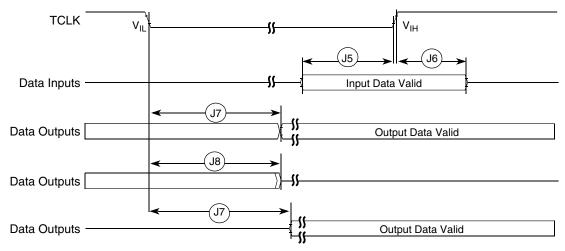


Figure 38. Boundary scan (JTAG) timing

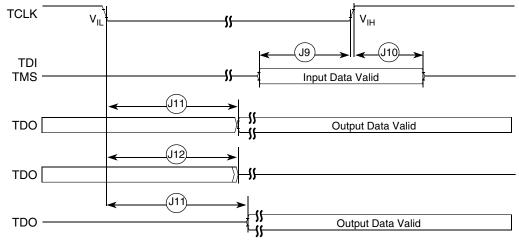


Figure 39. Test access port timing

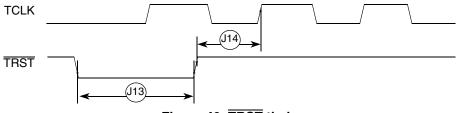


Figure 40. TRST timing

MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8

Package information

5 Package information

The latest package outline drawings are available on the product summary pages on http://www.freescale.com/coldfire. Table 42 lists the case outline numbers per device. Use these numbers in the web page's keyword search engine to find the latest package outline drawings.

Table 42. Package information

Device	Package type	Case outline numbers
MCF54410	196 MAPBGA	98ASA00321D
MCF54415		
MCF54416	256 MAPBGA	98ARH98219A
MCF54417		90ANN90219A
MCF54418		

6 Product documentation

Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale Literature Distribution Center, or through the Freescale world-wide web address at http://www.freescale.com/coldfire.

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF54418

Rev. 8 06/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2011-2012. All rights reserved.

