

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC3850 Quad Core
Interface	Ethernet, I ² C, PCI, RGMII, Serial RapidIO, SGMII, SPI, UART/USART
Clock Rate	1GHz
Non-Volatile Memory	ROM (96kB)
On-Chip RAM	576kB
Voltage - I/O	2.50V
Voltage - Core	1.00V
Operating Temperature	0°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8154esag1000b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Pin Assignment				
	1.1	FC-PBGA Ball Layout Diagram			
	1.2	Signal List By Ball Location			
2	Elect	rical Characteristics			
	2.1	Maximum Ratings			
	2.2	Recommended Operating Conditions			
	2.3	Thermal Characteristics			
	2.4	CLKIN Requirements			
	2.5	DC Electrical Characteristics			
	2.6	AC Timing Characteristics			
3	Hard	ware Design Considerations54			
	3.1	Power Supply Ramp-Up Sequence			
	3.2	PLL Power Supply Design Considerations			
	3.3	Clock and Timing Signal Board Layout Considerations 58			
	3.4	SGMII AC-Coupled Serial Link Connection Example58			
	3.5	Connectivity Guidelines			
	3.6	Guide to Selecting Connections for Remote Power			
		Supply Sensing64			
4	Orde	ring Information65			
5	Pack	age Information			
6	Product Documentation				
7	Revis	sion History			

List of Figures

Figure 1.	MSC8154E Block Diagram
Figure 2.	StarCore SC3850 DSP Subsystem Block Diagram 3
Figure 3.	MSC8154E FC-PBGA Package, Top View 4
Figure 4.	Differential Voltage Definitions for Transmitter or
	Receiver
Figure 5.	Receiver of SerDes Reference Clocks
Figure 6.	SerDes Transmitter and Receiver Reference Circuits . 31
Figure 7.	Differential Reference Clock Input DC Requirements
	(External DC-Coupled) 31
Figure 8.	Differential Reference Clock Input DC Requirements
	(External AC-Coupled) 32
Figure 9.	Single-Ended Reference Clock Input DC Requirements 32

Figure 10.SGMII Transmitter DC Measurement Circuit 35
Figure 11.DDR2 and DDR3 SDRAM Interface Input Timing
Diagram
Figure 12.MCK to MDQS Timing 39
Figure 13.DDR SDRAM Output Timing 40
Figure 14.DDR2 and DDR3 Controller Bus AC Test Load 40
Figure 15.DDR2 and DDR3 SDRAM Differential Timing
Specifications
Figure 16.Differential Measurement Points for Rise and Fall Time 42
Figure 17.Single-Ended Measurement Points for Rise and Fall Time
Matching
Figure 18. Single Frequency Sinusoidal Jitter Limits
Figure 19.SGMII AC Test/Measurement Load
Figure 20.TDM Receive Signals 46
Figure 21.TDM Transmit Signals
Figure 22.TDM AC Test Load
Figure 23.Timer AC Test Load
Figure 24.MII Management Interface Timing
Figure 25.RGMII AC Timing and Multiplexing
Figure 26.SPI AC Test Load 50
Figure 27.SPI AC Timing in Slave Mode (External Clock) 50
Figure 28.SPI AC Timing in Master Mode (Internal Clock) 51
Figure 29.Test Clock Input Timing
Figure 30.Boundary Scan (JTAG) Timing 53
Figure 31.Test Access Port Timing
Figure 32.TRST Timing
Figure 33.Supply Ramp-Up Sequence with VDD Ramping Before
V _{DDIO} and CLKIN Starting With V _{DDIO}
Figure 34. Supply Ramp-Up Sequence
Figure 35.Reset Connection in Functional Application
Figure 36.Reset Connection in Debugger Application
Figure 37.PLL Supplies
Figure 38.SerDes PLL Supplies
Figure 39.4-Wire AC-Coupled SGMII Serial Link Connection
Example
Figure 40.MSC8154E Mechanical Information, 783-ball FC-PBGA
Package

Figure 1. MSC8154E Block Diagram

Figure 2. StarCore SC3850 DSP Subsystem Block Diagram

Pin Assignment

1 Pin Assignment

This section includes diagrams of the MSC8154E package ball grid array layouts and tables showing how the pinouts are allocated for the package.

1.1 FC-PBGA Ball Layout Diagram

The top view of the FC-PBGA package is shown in Figure 3 with the ball location index numbers.

Top View

Figure 3. MSC8154E FC-PBGA Package, Top View

1.2 Signal List By Ball Location

Table 1 presents the signal list sorted by ball number. When designing a board, make sure that the power rail for each signal is appropriately considered. The specified power rail must be tied to the voltage level specified in this document if any of the related signal functions are used (active)

Note: The information in Table 1 and Table 2 distinguishes among three concepts. First, the power pins are the balls of the device package used to supply specific power levels for different device subsystems (as opposed to signals). Second, the power rails are the electrical lines on the board that transfer power from the voltage regulators to the device. They are indicated here as the reference power rails for signal lines; therefore, the actual power inputs are listed as N/A with regard to the power rails. Third, symbols used in these tables are the names for the voltage levels (absolute, recommended, and so on) and not the power supplies themselves.

Ball Number	Ball Number Signal Name ^{1,2}		Power Rail Name
A2	M2DQS3	I/O	GVDD2
A3	M2DQS3	I/O	GVDD2
A4	M2ECC0	I/O	GVDD2
A5	M2DQS8	I/O	GVDD2
A6	M2DQS8	I/O	GVDD2
A7	M2A5	0	GVDD2
A8	M2CK1	0	GVDD2
A9	M2CK1	0	GVDD2
A10	M2CS0	0	GVDD2
A11	M2BA0	0	GVDD2
A12	M2CAS	0	GVDD2
A13	M2DQ34	I/O	GVDD2
A14	M2DQS4	I/O	GVDD2
A15	M2DQS4	I/O	GVDD2
A16	M2DQ50	I/O	GVDD2
A17	M2DQS6	I/O	GVDD2
A18	M2DQS6	I/O	GVDD2
A19	M2DQ48	I/O	GVDD2
A20	M2DQ49	I/O	GVDD2
A21	VSS	Ground	N/A
A22	Reserved	NC	—
A23	SXPVDD1	Power	N/A
A24	SXPVSS1	Ground	N/A
A25	Reserved	NC	—
A26	Reserved	NC	—
A27	SXCVDD1	Power	N/A
A28	SXCVSS1	Ground	N/A
B1	M2DQ24	I/O	GVDD2
B2	GVDD2	Power	N/A
B3	M2DQ25	I/O	GVDD2
B4	VSS	Ground	N/A
B5	GVDD2	Power	N/A
B6	M2ECC1	I/O	GVDD2
B7	VSS	Ground	N/A
B8	GVDD2	Power	N/A

Table 1. Signal List by Ball Number

Ball Number	Signal Name ^{1,2} Pin Type ¹⁰		Power Rail Name	
B9	M2A13	0	GVDD2	
B10	VSS	Ground	N/A	
B11	GVDD2	Power	N/A	
B12	M2CS1	0	GVDD2	
B13	VSS	Ground	N/A	
B14	GVDD2	Power	N/A	
B15	M2DQ35	I/O	GVDD2	
B16	VSS	Ground	N/A	
B17	GVDD2	Power	N/A	
B18	M2DQ51	I/O	GVDD2	
B19	VSS	Ground	N/A	
B20	GVDD2	Power	N/A	
B21	Reserved	NC	—	
B22	Reserved	NC	_	
B23	SR1_TXD0	0	SXPVDD1	
B24	SR1_TXD0	0	SXPVDD1	
B25	SXCVDD1	Power	N/A	
B26	SXCVSS1	Ground	N/A	
B27	SR1_RXD0	I	SXCVDD1	
B28	SR1_RXD0	I	SXCVDD1	
C1	M2DQ28	I/O	GVDD2	
C2	M2DM3	0	GVDD2	
C3	M2DQ26	I/O	GVDD2	
C4	M2ECC4	I/O	GVDD2	
C5	M2DM8	0	GVDD2	
C6	M2ECC2	I/O	GVDD2	
C7	M2CKE1	0	GVDD2	
C8	M2CK0	0	GVDD2	
C9	M2CK0	0	GVDD2	
C10	M2BA1	0	GVDD2	
C11	M2A1	0	GVDD2	
C12	M2WE	0	GVDD2	
C13	M2DQ37	I/O	GVDD2	
C14	M2DM4	0	GVDD2	
C15	M2DQ36	I/O	GVDD2	
C16	M2DQ32	I/O	GVDD2	
C17	M2DQ55	I/O	GVDD2	
C18	M2DM6	0	GVDD2	
C19	M2DQ53	I/O	GVDD2	
C20	M2DQ52	I/O	GVDD2	
C21	Reserved	NC	_	
C22	SR1_IMP_CAL_RX I SXC		SXCVDD1	
C23	SXPVSS1 Ground		N/A	
C24	SXPVDD1 Pr		N/A	
C25	SR1_REF_CLK	I	SXCVDD1	
C26	SR1_REF_CLK	I	SXCVDD1	

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name	
E17	M2DQ56	I/O	GVDD2	
E18	M2DQ57	I/O	GVDD2	
E19	M2DQS7	I/O	GVDD2	
E20	Reserved	NC	—	
E21	Reserved	NC	—	
E22	Reserved	NC	—	
E23	SXPVDD1	Power	N/A	
E24	SXPVSS1	Ground	N/A	
E25	SR1_PLL_AGND ⁹	Ground	SXCVSS1	
E26	SR1_PLL_AVDD ⁹	Power	SXCVDD1	
E27	SXCVSS1	Ground	N/A	
E28	SXCVDD1	Power	N/A	
F1	VSS	Ground	N/A	
F2	GVDD2	Power	N/A	
F3	M2DQ16	I/O	GVDD2	
F4	VSS	Ground	N/A	
F5	GVDD2	Power	N/A	
F6	M2DQ17	I/O	GVDD2	
F7	VSS	Ground	N/A	
F8	GVDD2	Power	N/A	
F9	M2BA2	0	GVDD2	
F10	VSS	Ground	N/A	
F11	GVDD2	Power	N/A	
F12	M2A4	0	GVDD2	
F13	VSS	Ground	N/A	
F14	GVDD2	Power	N/A	
F15	M2DQ42	I/O	GVDD2	
F16	VSS	Ground	N/A	
F17	GVDD2	Power	N/A	
F18	M2DQ58	I/O	GVDD2	
F19	M2DQS7	I/O	GVDD2	
F20	GVDD2	Power	N/A	
F21	SXPVDD1	Power	N/A	
F22	SXPVSS1	Ground	N/A	
F23	SR1_TXD2/SG1_TX ⁴	0	SXPVDD1	
F24	SR1_TXD2/SG1_TX ⁴	0	SXPVDD1	
F25	SXCVDD1	Power	N/A	
F26	SXCVSS1	Ground	N/A	
F27	SR1_RXD2/SG1_RX ⁴	I	SXCVDD1	
F28	SR1_RXD2/SG1_RX ⁴		SXCVDD1	
G1	M2DQS2	I/O	GVDD2	
G2	M2DQS2	I/O	GVDD2	
G3	M2DQ19	I/O	I/O GVDD2	
G4	M2DM2 O 0		GVDD2	
G5	M2DQ21	I/O	GVDD2	
G6	M2DQ22	I/O	GVDD2	

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name	
K15	VDD	Power	N/A	
K16	VSS	Ground	N/A	
K17	VSS	Ground	N/A	
K18	VSS	Ground	N/A	
K19	VDD	Power	N/A	
K20	Reserved	NC	_	
K21	Reserved	NC	_	
K22	Reserved	NC	_	
K23	SXPVDD2	Power	N/A	
K24	SXPVSS2	Ground	N/A	
K25	SXCVDD2	Power	N/A	
K26	SXCVSS2	Ground	N/A	
K27	SXCVDD2	Power	N/A	
K28	SXCVSS2	Ground	N/A	
L1	M2DQ9	I/O	GVDD2	
L2	M2DQ12	I/O	GVDD2	
L3	M2DQ13	I/O	GVDD2	
L4	M2DQS0	I/O	GVDD2	
L5	M2DQS0	I/O	GVDD2	
L6	M2DM0	0	GVDD2	
L7	M2DQ3	I/O	GVDD2	
L8	M2DQ2	I/O	GVDD2	
L9	M2DQ4	I/O	GVDD2	
L10	VDD	Power	N/A	
L11	VSS	Ground	N/A	
L12	M3VDD	Power	N/A	
L13	VSS	Ground	N/A	
L14	VSS	Ground	N/A	
L15	VSS	Ground	N/A	
L16	VSS	Ground	N/A	
L17	VSS	Ground	N/A	
L18	VDD	Power	N/A	
L19	VSS	Ground	N/A	
L20	Reserved	NC	_	
L21	Reserved	NC		
L22	Reserved	NC	_	
L23	SR2_TXD3/PE_TXD3/SG2_TX ⁴	0	SXPVDD2	
L24	SR2_TXD3/PE_TXD3/SG2_TX ⁴	0	SXPVDD2	
L25	SXCVSS2	Ground	N/A	
L26	SXCVDD2	Power	N/A	
L27	SR2_RXD3/PE_RXD3/SG2_RX ⁴	I	SXCVDD2	
L28	SR2_RXD3/PE_RXD3/SG2_RX ⁴	I	SXCVDD2	
M1	M2DQ8	I/O	GVDD2	
M2	VSS	Ground	N/A	
M3	GVDD2	Power	N/A	
M4	M2DQ15	I/O	GVDD2	

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰ Power Ra Name	
V21	RCW_LSEL_3/RC20	I/O	NVDD
V22	RCW_LSEL_2/RC19 I/O		NVDD
V23	SXPVDD2	Power	N/A
V24	SXPVSS2	Ground	N/A
V25	RCW_LSEL_1/RC18	I/O	NVDD
V26	RC21	I	NVDD
V27	SXCVDD2	Power	N/A
V28	SXCVSS2	Ground	N/A
W1	VSS	Ground	N/A
W2	GVDD1	Power	N/A
W3	M1DM1	0	GVDD1
W4	VSS	Ground	N/A
W5	GVDD1	Power	N/A
W6	M1DQ0	I/O	GVDD1
W7	VSS	Ground	N/A
W8	GVDD1	Power	N/A
W9	M1DQ5	I/O	GVDD1
W10	VDD	Power	N/A
W11	VSS	Ground	N/A
W12	VDD	Power	N/A
W13	VSS	Ground	N/A
W14	VDD	Power	N/A
W15	VSS	Ground	N/A
W16	VDD	Power	N/A
W17	VSS	Ground	N/A
W18	VDD	Power	N/A
W19	VSS	Ground	N/A
W20	VSS	Ground	N/A
W21	RCW_LSEL0/RC17	I/O	NVDD
W22	GPIO19/SPI_MISO ^{5,8}	I/O	NVDD
W23	VSS	Ground	N/A
W24	NVDD	Power	N/A
W25	GPIO11/IRQ11/RC11 ^{5,8}	I/O	NVDD
W26	GPIO3/DRQ1/IRQ3/RC3 ^{5,8}	I/O	NVDD
W27	GPIO7/IRQ7/RC7 ^{5,8}	I/O	NVDD
W28	GPIO2/IRQ2/RC2 ^{5,8}	I/O	NVDD
Y1	M1DQS1	I/O	GVDD1
Y2	M1DQS1	I/O	GVDD1
Y3	M1DQ10	I/O	GVDD1
Y4	M1DQ11	I/O	GVDD1
Y5	M1DQ14	I/O	GVDD1
Y6	M1DQ23	I/O	GVDD1
Y7	M1ODT0	0	GVDD1
Y8	M1A12	0	GVDD1
Y9	M1A14	0	GVDD1
Y10	VSS	Ground	N/A

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name	
AH17	M1DQS6	I/O	GVDD1	
AH18	M1DQS6	I/O	GVDD1	
AH19	M1DQ48	I/O	GVDD1	
AH20	M1DQ49	I/O	GVDD1	
AH21	VSS	Ground	N/A	
AH22	TDM0RCK/GE2_RD2 ³	I/O	NVDD	
AH23 TDM0RDT/GE2_RD3 ³ I/O			NVDD	
AH24 TDM0TSN/GE2_RD0 ³		I/O	NVDD	
AH25	I/O	NVDD		
AH26 TDM3TDT/GE1_RD3 ³		I/O	NVDD	
AH27	TDM3TCK/GE1_RD2 ³	I	NVDD	
AH28	VSS	Ground	N/A	
Notes: 1. 2. 3. 4. 5.	 Reserved signals should be disconnected for compatibility with future revisions of the device. Non-user signals are reserved for manufacturing and test purposes only. The assigned signal name is used to indicate whether the signal must be unconnected (Reserved), pulled down (VSS), or pulled up (VDD). Signal function during power-on reset is determined by the RCW source type. Selection of TDM versus RGMII functionality is determined by the RCW bit values. Selection of RapidIO, SGMII, and PCI Express functionality is determined by the RCW bit values. Selection of the GPIO function and other functions is done by GPIO register setup. For configuration details, see the GPIO chapter in the MSC8154E Reference Manual. 			
6. 7. 8.	Open-drain signal. Internal 20 KΩ pull-up resistor. For signals with GPIO functionality, the open-drain and internal 20 KΩ pull-up resistor can be configured by GPIO register			

programming. See the *GPIO* chapter of the *MSC8154E* Reference Manual for configuration details.
9. Connect to power supply via external filter. See Section 3.2, *PLL Power Supply Design Considerations* for details.

10. Pin types are: Ground = all VSS connections; Power = all VDD connections; I = Input; O = Output; I/O = Input/Output; NC = not connected.

2.5 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MSC8154E.

2.5.1 DDR SDRAM DC Electrical Characteristics

This section describes the DC electrical specifications for the DDR SDRAM interface of the MSC8154E.

Note: DDR2 SDRAM uses $V_{DDDDR}(typ) = 1.8 V$ and DDR3 SDRAM uses $V_{DDDDR}(typ) = 1.5 V$.

2.5.1.1 DDR2 (1.8 V) SDRAM DC Electrical Characteristics

Table 6 provides the recommended operating conditions for the DDR SDRAM controller when interfacing to DDR2 SDRAM.

Note: At recommended operating conditions (see Table 3) with $V_{DDDDR} = 1.8$ V.

Parameter/Condition	Symbol	Min	Max	Unit	Notes
I/O reference voltage	MV _{REF}	$0.49 \times V_{DDDDR}$	$0.51 imes V_{DDDDR}$	V	2, 3, 4
Input high voltage	V _{IH}	MV _{REF} + 0.125 V _{DDDDR} + 0.3		V	5
Input low voltage	V _{IL}	-0.3	MV _{REF} - 0.125	V	5
I/O leakage current	I _{OZ}	-50	50	μΑ	6
Output high current (V _{OUT} (VOH) = 1.37 V)	I _{ОН}	-13.4	—	mA	7
Output low current (V _{OUT} (VOL) = 0.33 V)	I _{OL}	13.4	—	mA	7
 Notes: 1. V_{DDDDR} is expected to be within 50 mV of the DRAM V_{DD} supply voltage at all times. The DRAM and memory controller can use the same or different sources. 2. MV_{REF} is expected to be equal to 0.5 × V_{DDDDR} and to track V_{DDDDR} DC variations as measured at the receiver. Peak-to-pea noise on MV_{REF} may not exceed ±2% of the DC value. 3. V_m is not applied directly to the device. It is the supply to which far and signal termination is made and is expected to be equilated to be equilated. 				ntroller can eak-to-peak	

Table 6. DDR2 SDRAM Interface DC Electrical Characteristics

V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF} with a minimum value of MV_{REF} – 0.4 and a maximum value of MV_{REF} + 0.04 V. V_{TT} should track variations in the DC-level of MV_{REF}.

4. The voltage regulator for MV_{REF} must be able to supply up to 300 μ A.

5. Input capacitance load for DQ, DQS, and DQS signals are available in the IBIS models.

6. Output leakage is measured with all outputs are disabled, $0 V \le V_{OUT} \le V_{DDDDR}$.

7. Refer to the IBIS model for the complete output IV curve characteristics.

2.5.2.2 SerDes Reference Clock Receiver Characteristics

The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clock inputs are SR1_REF_CLK/SR1_REF_CLK or SR2_REF_CLK/SR2_REF_CLK. Figure 5 shows a receiver reference diagram of the SerDes reference clocks.

Figure 5. Receiver of SerDes Reference Clocks

The characteristics of the clock signals are as follows:

- The supply voltage requirements for V_{DDSXC} are as specified in Table 3.
- The SerDes reference clock receiver reference circuit structure is as follows:
 - The SR[1–2]_REF_CLK and SR[1–2]_REF_CLK are internally AC-coupled differential inputs as shown in Figure 5. Each differential clock input (SR[1–2]_REF_CLK or SR[1–2]_REF_CLK) has on-chip 50-Ω termination to GND_{SXC} followed by on-chip AC-coupling.
 - The external reference clock driver must be able to drive this termination.
 - The SerDes reference clock input can be either differential or single-ended. Refer to the differential mode and single-ended mode descriptions below for detailed requirements.
- The maximum average current requirement also determines the common mode voltage range.
 - When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA because the input is AC-coupled on-chip.
 - This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V / 50 = 8 mA) while the minimum common mode input level is 0.1 V above GND_{SXC} . For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 mA to 16 mA (0-0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV.
 - If the device driving the SR[1–2]_REF_CLK and $\overline{SR[1-2]}_REF_CLK$ inputs cannot drive 50 Ω to GND_{SXC} DC or the drive strength of the clock driver chip exceeds the maximum input current limitations, it must be AC-coupled externally.
- The input amplitude requirement is described in detail in the following sections.

2.5.2.3 SerDes Transmitter and Receiver Reference Circuits

Figure 6 shows the reference circuits for SerDes data lane transmitter and receiver.

Note: The [1–2] indicates the specific SerDes Interface (1 or 2) and the m indicates the specific channel within that interface (0,1,2,3). Actual signals are assigned by the HRCW assignments at reset (see **Chapter 5**, *Reset* in the reference manual for details)

Figure 6. SerDes Transmitter and Receiver Reference Circuits

2.5.3 DC-Level Requirements for SerDes Interfaces

The following subsections define the DC-level requirements for the SerDes reference clocks, the PCI Express data lines, the Serial RapidIO data lines, and the SGMII data lines.

2.5.3.1 DC-Level Requirements for SerDes Reference Clocks

The DC-level requirement for the SerDes reference clock inputs is different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs, as described below:

- Differential Mode
 - The input amplitude of the differential clock must be between 400 mV and 1600 mV differential peak-peak (or between 200 mV and 800 mV differential peak). In other words, each signal wire of the differential pair must have a single-ended swing of less than 800 mV and greater than 200 mV. This requirement is the same for both external DC-coupled or AC-coupled connection.
 - For an external DC-coupled connection, the maximum average current requirements sets the requirement for average voltage (common mode voltage) as between 100 mV and 400 mV. Figure 7 shows the SerDes reference clock input requirement for DC-coupled connection scheme.

Figure 10. SGMII Transmitter DC Measurement Circuit

Table 16 describes the SGMII SerDes receiver AC-coupled DC electrical characteristics.

Table 16	. SGMII DC	Receiver	Electrical	Characteristics ⁵
----------	------------	----------	------------	------------------------------

	Symbol	Min	Тур	Max	Unit	Notes	
DC Input voltage range		_	N/A			_	1
Input differential	SRDSnCR4[EICE{12:10}] = 0b001 for SGMII1 SRDSnCR4[EICF{4:2}] = 0b001 for SGMII2	V _{RX_DIFFp-p}	100	_	1200	mV	2, 4
voltage	SRDSnCR4[EICE{12:10}] = 0b100 for SGMII1 SRDSnCR4[EICF{4:2}] = 0b100 for SGMII2		175	—			
Loss of signal	SRDSnCR4[EICE{12:10}] = 0b001 for SGMII1 SRDSnCR4[EICF{4:2}] = 0b001 for SGMII2	VLOS	30	—	100	mV	3, 4
threshold	SRDSnCR4[EICE{12:10}] = 0b100 for SGMII1 SRDSnCR4[EICF{4:2}] = 0b100 for SGMII2		65	—	175		
Receiver differential input impedance		Z _{RX_DIFF}	80	—	120	W	—
Notos: 1	•	•	•	•	•	•	

coupled. externally a

 $V_{\mathsf{RX_DIFFp}\text{-}p}$ is also referred to as peak-to-peak input differential voltage. 2.

The concept of this parameter is equivalent to the Electrical Idle Detect Threshold parameter in the PCI Express interface. 3. Refer to the PCI Express Differential Receiver (RX) Input Specifications section of the PCI Express Specification document. for details.

The values for SGMII1 and SGMII2 are selected in the SRDS control registers. 4.

5. The supply voltage is 1.0 V.

Table 21. DDR SDRAM Output AC Timing Specifications (continued)

Parameter		Symbol ¹	Min	Max	Unit	Notes	
Notes:	1.	The symbols used for timing specifications follow the pattern of t _{(first two letters of functional block)(signal)(state) (reference)(state) for}					
		(DD) from the rising or falling edge of the reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing					
		t _{DDKHAS} symbolizes DDR timing (DD) for the	time t _{MCK} mem	ory clock reference (K) goes from the high (I	H) state unt	il outputs
		(A) are setup (S) or output valid time. Also, t _{DDKLDX} symbolizes DDR timing (DD) for the time t _{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.					
	2.	All MCK/MCK referenced measurements are made from the crossing of the two signals.					
	3.	ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS.					
	4.	Note that t _{DDKHMH} follows the symbol conventions described in note 1. For example, t _{DDKHMH} describes the DDR timing (DD)					
		trom the rising edge of the MCK(n) clock (KH) until the MDQS	signal is valid (MH). t will typically be set to	DDKHMH can be modified to a start the same delay as the	ed through	control of
		CLK CNTL register The timing parameters	_2 register. This listed in the table	assume that these to	vo parameters have be	en set to th	ne same
		adjustment value. See the MSC8154E Refer	rence Manual for	a description and unc	derstanding of the timir	ng modifica	tions
		enabled by use of these bits.		•	0	0	
	5.	Determined by maximum possible skew betw	veen a data strol	be (MDQS) and any c	orresponding bit of dat	ta (MDQ), E	CC
		(MECC), or data mask (MDM). The data stro	be should be ce	ntered inside of the da	ata eye at the pins of the	ne MSC815	4E.
	6.	At recommended operating conditions with V	/ _{DDDDR} (1.5 V or	1,8 V) ± 5%.			

Note: For the ADDR/CMD setup and hold specifications in Table 21, it is assumed that the clock control register is set to adjust the memory clocks by ¹/₂ applied cycle.

Figure 12 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

Figure 12. MCK to MDQS Timing

Electrical Characteristics

Table 24. SR[1–2]_REF_CLK and SR[1–2]_REF_CLK Input Clock Requirements (continued)

Parameter		Symbol	Min	Typical	Мах	Units	Notes	
Notes:	1.	. Caution: Only 100 and 125 have been tested. Other values will not work correctly with the rest of the system.						
	2.	Limits from PCI Express CEM Rev 1.0a						
	3.	Measured from -200 mV to +200 mV on the differential waveform (derived from SR[1-2]_REF_CLK minus						
		SR[1-2]_REF_CLK). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV						mV
		measurement window is centered on the differential zero crossing. See Figure 16.						
	4.	Measurement taken from differential waveform						
	5.	Measurement taken from single-ended waveform						
	6.	6. Matching applies to rising edge for SR[1-2]_REF_CLK and falling edge rate for SR[1-2]_REF_CLK. It is measured using				using a		
	200 mV window centered on the median cross point where SR[1–2]_REF_CLK rising meets SR[1–2]_REF_CLK falling.				ing. The			
		median cross point is used to calc	ulate the voltage thre	sholds that the	oscilloscope us	ses for the edge	e rate calculatio	ns. The
		rise edge rate of SR[1-2]_REF_CLK should be compared to the fall edge rate of SR[1-2]_REF_CLK; the maximum allowed						allowed
	difference should not exceed 20% of the slowest edge rate. See Figure 17							

Figure 16. Differential Measurement Points for Rise and Fall Time

Figure 17. Single-Ended Measurement Points for Rise and Fall Time Matching

Hardware Design Considerations

2. After the above rails rise to 90% of their nominal voltage, the following I/O power rails may rise in any sequence (see Figure 34): QVDD, NVDD, GVDD1, and GVDD2.

Figure 34. Supply Ramp-Up Sequence

- Notes: 1. If the M3 memory is not used, M3VDD can be tied to GND.
 - 2. If the MAPLE-B is not used, MVDD can be tied to GND.
 - 3. If the HSSI port1 is not used, SXCVDD1 and SXPVDD1 must be connected to the designated power supplies.
 - 4. If the HSSI port2 is not used, SXCVDD2 and SXPVDD2 must be connected to the designated power supplies.
 - 5. If the DDR port 1 interface is not used, it is recommended that GVDD1 be left unconnected.
 - 6. If the DDR port 2 interface is not used, it is recommended that GVDD2 be left unconnected.

3.1.4 Reset Guidelines

When a debugger is not used, implement the connection scheme shown in Figure 35.

Figure 35. Reset Connection in Functional Application

When a debugger is used, implement the connection scheme shown in Figure 36.

Figure 36. Reset Connection in Debugger Application

3.2 PLL Power Supply Design Considerations

Each global PLL power supply must have an external RC filter for the PLLn_AVDD input (see Figure 37) in which the following components are defined as listed:

- $R = 5 \Omega \pm 5\%$
- $C1 = 10 \ \mu\text{F} \pm 10\%$, 0603, X5R, with ESL $\leq 0.5 \ \text{nH}$, low ESL Surface Mount Capacitor.
- $C2 = 1.0 \ \mu\text{F} \pm 10\%$, 0402, X5R, with ESL $\leq 0.5 \ \text{nH}$, low ESL Surface Mount Capacitor.

Note: A higher capacitance value for C2 may be used to improve the filter as long as the other C2 parameters do not change.

All three PLLs can connect to a single supply voltage source (such as a voltage regulator) as long as the external RC filter is applied to each PLL separately. For optimal noise filtering, place the circuit as close as possible to its PLLn_AVDD inputs.

Figure 37. PLL Supplies

Each SerDes PLL power supply must be filtered using a circuit similar to the one shown in Figure 38, to ensure stability of the internal clock. For maximum effectiveness, the filter circuit should be placed as closely as possible to the SRn_PLL_AVDD ball to ensure it filters out as much noise as possible. The ground connection should be near the SRn_PLL_AVDD ball. The 0.003 μ F capacitor is closest to the ball, followed by the two 2.2 μ F capacitors, and finally the 1 Ω resistor to the board supply plane. The capacitors are connected from SRn_PLL_AVDD to the ground plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All trances should be kept short, wide, and direct.

Figure 38. SerDes PLL Supplies

3.5.1.4 DDR2 Unused MAPAR Pin Connections

When the MAPAR signals are not used, refer to Table 43 to determine the correct pin connections.

Table 43. Connectivit	y of MAPAR	Pins for DDR2
-----------------------	------------	---------------

Signal Name		Signal Name	Pin connection		
MAPAR_OUT		Г	NC		
MAPAR_IN			NC		
Notes:	 For the signals listed in this table, the initial M stands for M1 or M2 depending on which DDR controller is used for DDR2. For MSC8154E Revision 1 silicon, these pins were connected to GND. For newer revisions of the MSC8154E, connecting these pins to GND increases device power consumption. 				

3.5.2 HSSI-Related Pins

3.5.2.1 HSSI Port Is Not Used

The signal names in Table 44 and Table 45 are generic names for a RapidIO interface. For actual pin names refer to Table 1.

Table 44. Connectivity of Serial RapidIO	Interface Related Pins When	the RapidIO Interface Is Not Used
--	-----------------------------	-----------------------------------

Signal Name	Pin Connection		
SR_IMP_CAL_RX	NC		
SR_IMP_CAL_TX	NC		
SR[1-2]_REF_CLK	SXCVSS		
SR[1-2]_REF_CLK	SXCVSS		
SR[1-2]_RXD[3-0]	SXCVSS		
SR[1-2]_RXD[3-0]	SXCVSS		
SR[1-2]_TXD[3-0]	NC		
SR[1-2]_TXD[3-0]	NC		
SR[1-2]_PLL_AVDD	In use		
SR[1–2]_PLL_AGND	In use		
SXPVSS	In use		
SXCVSS	In use		
SXPVDD	In use		
SXCVDD	In use		
Note: All lanes in the HSSI SerDes should be powered down. Refer to the MSC8154E Reference Manual for details.			

3.5.2.2 HSSI Specific Lane Is Not Used

Table 45. Connectivity of HSSI Related Pins When Specific Lane Is Not Used

Signal Name	Pin Connection
SR_IMP_CAL_RX	In use
SR_IMP_CAL_TX	In use
SR[1-2]_REF_CLK	In use
SR[1-2]_REF_CLK	In use

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- A MAXIMUM SOLDER BALL DIAMETER MEASURE PARALLEL TO DATUM A.
- A DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- A PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.
- 6. ALL DIMENSIONS ARE SYMMETRIC ACROSS THE PACKAGE CENTER LINES, UNLESS DIMENSIONED OTHERWISE.
- 7. 29.2MM MAXIMUM PACKAGE ASSEMBLY (LID + LAMINATE) X AND Y.

Figure 40. MSC8154E Mechanical Information, 783-ball FC-PBGA Package

6 **Product Documentation**

Following is a general list of supporting documentation:

- *MSC8154E Technical Data Sheet* (MSC8154E). Details the signals, AC/DC characteristics, clock signal characteristics, package and pinout, and electrical design considerations of the MSC8154E device.
- *MSC8154E Reference Manual* (MSC8154ERM). Includes functional descriptions of the extended cores and all the internal subsystems including configuration and programming information.
- Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC8154E device.
- *QUICC Engine Block Reference Manual with Protocol Interworking* (QEIWRM). Provides detailed information regarding the QUICC Engine technology including functional description, registers, and programming information.
- *SC3850 DSP Core Reference Manual*. Covers the SC3850 core architecture, control registers, clock registers, program control, and instruction set.
- *MSC8156SC3850 DSP Core Subsystem Reference Manual.* Covers core subsystem architecture, functionality, and registers.

7 Revision History

Table 50 provides a revision history for this data sheet.

Rev.	Date	Description
0	Dec. 2010	Initial public release.
1	Mar 2011	 Updated Table 8. Updated Table 15. Updated Table 17. Updated Table 33. Updated Table 35. Updated Table 39.
2	May 2011	 Updated Table 1. Changed the pin types for the following: F25 from ground to power. F26 from power to ground. T6 from power to O.
3	Oct 2011	• Updated Table 34 and Table 35 to reflect 1 Gbps and 100 Mbps data rate instead of 1 GHz and 100 MHz.
4	Dec 2011	• Added note 4 to Table 39.

Table 50. Document Revision History