

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Core ProcessorARM® Cortex®-M0+Core Size32-Bit Single-CoreSpeed32MHzConnectivityI*C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, DMA, I*S, LCD, POR, PWM, WDTNumber of I/O37Program Memory Size192KB (192K x 8)Program Memory TypeFLASHEEPROM Size6K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case49-UFBGA, WLCSP		
Core Size32-Bit Single-CoreSpeed32MHzConnectivityPC, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, DMA, I*S, LCD, POR, PWM, WDTNumber of I/O37Program Memory Size192KB (192K x 8)Program Memory TypeFLASHEEPROM Size6K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case49-UFBGA, WLCSP	Product Status	Active
Speed32MHzConnectivityI*C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, DMA, I*S, LCD, POR, PWM, WDTNumber of I/O37Program Memory Size192KB (192K x 8)Program Memory TypeFLASHEEPROM Size6K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case49-UFBGA, WLCSP	Core Processor	ARM® Cortex®-M0+
Connectivityi²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, DMA, I²S, LCD, POR, PWM, WDTNumber of I/O37Program Memory Size192KB (192K x 8)Program Memory TypeFLASHEEPROM Size6K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case49-UFBGA, WLCSP	Core Size	32-Bit Single-Core
PeripheralsBrown-out Detect/Reset, DMA, I2S, LCD, POR, PWM, WDTNumber of I/O37Program Memory Size192KB (192K x 8)Program Memory TypeFLASHEEPROM Size6K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case49-UFBGA, WLCSP	Speed	32MHz
Number of I/O37Program Memory Size192KB (192K x 8)Program Memory TypeFLASHEEPROM Size6K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case49-UFBGA, WLCSPSuppler Device Package9-WLCSP	Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Program Memory Size192KB (192K x 8)Program Memory TypeFLASHEEPROM Size6K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case49-UFBGA, WLCSP	Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size6K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case49-UFBGA, WLCSPSupplier Device Package49-WLCSP	Number of I/O	37
EEPROM Size6K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case49-UFBGA, WLCSPSupplier Device Package49-WLCSP	Program Memory Size	192KB (192K x 8)
RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case49-UFBGA, WLCSPSupplier Device Package49-WLCSP	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case49-UFBGA, WLCSPSupplier Device Package49-WLCSP	EEPROM Size	6K x 8
Data ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case49-UFBGA, WLCSPSupplier Device Package49-WLCSP	RAM Size	20K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case49-UFBGA, WLCSPSupplier Device Package49-WLCSP	Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Operating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case49-UFBGA, WLCSPSupplier Device Package49-WLCSP	Data Converters	A/D 10x12b; D/A 2x12b
Mounting TypeSurface MountPackage / Case49-UFBGA, WLCSPSupplier Device Package49-WLCSP	Oscillator Type	Internal
Package / Case 49-UFBGA, WLCSP Supplier Device Package 49-WLCSP	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package 49-WLCSP	Mounting Type	Surface Mount
	Package / Case	49-UFBGA, WLCSP
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l073czy6tr	Supplier Device Package	49-WLCSP
	Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l073czy6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Functional overview

3.1 Low-power modes

The ultra-low-power STM32L073xx support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply.

There are three power consumption ranges:

- Range 1 (V_{DD} range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz
- Range 2 (full V_{DD} range), with a maximum CPU frequency of 16 MHz
- Range 3 (full V_{DD} range), with a maximum CPU frequency limited to 4.2 MHz

Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off.

Low-power run mode

This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both limited.

Low-power sleep mode

This mode is achieved by entering Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator's operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.

When wakeup is triggered by an event or an interrupt, the system reverts to the Run mode with the regulator on.

Stop mode with RTC

The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V_{CORE} domain are stopped, the PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.

The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup events, the USB/USART/I2C/LPUART/LPTIMER wakeup events.

3.4.3 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32 KHz oscillator, RCC_CSR).

3.5 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

Clock prescaler

To get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.

• Safe clock switching

Clock sources can be changed safely on the fly in Run mode through a configuration register.

Clock management

To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.

System clock source

Three different clock sources can be used to drive the master clock SYSCLK:

- 1-25 MHz high-speed external crystal (HSE), that can supply a PLL
- 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLLMultispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.

• Auxiliary clock source

Two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:

- 32.768 kHz low-speed external crystal (LSE)
- 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.

• RTC and LCD clock source

The LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.

USB clock source

A 48 MHz clock trimmed through the USB SOF or LSE supplies the USB interface.

3.19 Clock recovery system (CRS)

The STM32L073xx embeds a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.20 Cyclic redundancy check (CRC) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

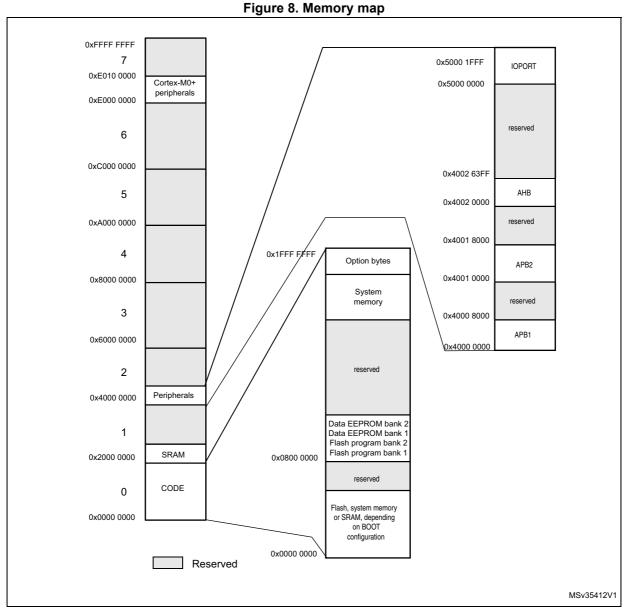
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

3.21 Serial wire debug port (SW-DP)

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

					Table 19. Alter	mate functior	ns port C			
			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
•	F	Port	SPI1/SPI2/I2S2/ USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I2C1/ LCD/ TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/USB/ LPTIM1/TIM2/3 /EVENTOUT/SYS_AF	I2C1/TSC/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/E VENTOUT	I2C3/LPUART1/ COMP1/2/ TIM3
		PC0	LPTIM1_IN1	LCD_SEG18	EVENTOUT	TSC_G7_IO1			LPUART1_RX	I2C3_SCL
		PC1	LPTIM1_OUT	LCD_SEG19	EVENTOUT	TSC_G7_IO2			LPUART1_TX	I2C3_SDA
		PC2	LPTIM1_IN2	LCD_SEG20	SPI2_MISO/ I2S2_MCK	TSC_G7_103				
כ		PC3	LPTIM1_ETR	LCD_SEG21	SPI2_MOSI/ I2S2_SD	TSC_G7_104				
		PC4	EVENTOUT	LCD_SEG22	LPUART1_TX					
5		PC5		LCD_SEG23	LPUART1_RX	TSC_G3_IO1				
000		PC6	TIM22_CH1	LCD_SEG24	TIM3_CH1	TSC_G8_IO1				
0	U	PC7	TIM22_CH2	LCD_SEG25	TIM3_CH2	TSC_G8_IO2				
5	Port	PC8	TIM22_ETR	LCD_SEG26	TIM3_CH3	TSC_G8_IO3				
		PC9	TIM21_ETR	LCD_SEG27	USB_OE/TIM3_CH4	TSC_G8_IO4				I2C3_SDA
		PC10	LPUART1_TX	LCD_COM4/LCD_SEG 28/LCD_SEG48					USART4_TX	
		PC11	LPUART1_RX	LCD_COM5/LCD_SEG 29/LCD_SEG49					USART4_RX	
		PC12		LCD_COM6/LCD_SEG 30/LCD_SEG50	USART5_TX				USART4_CK	
		PC13								
		PC14								
		PC15								

52/139


STM32L073xx

Pin descriptions

53/					Table 20. A	lternate func	tions port D			
53/139			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port		SPI1/SPI2/I2S2/ USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I2C1/ LCD/TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/USB/ LPTIM1/TIM2/3 /EVENTOUT/ SYS_AF	I2C1/TSC/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/E VENTOUT	I2C3/LPUART1/ COMP1/2/TIM3
		PD0	TIM21_CH1	SPI2_NSS/I2S2_WS	-	-	-	-	-	-
		PD1	-	SPI2_SCK/I2S2_CK	-	-	-	-	-	-
		PD2	LPUART1_RTS_ DE	LCD_COM7/ LCD_SEG31/ LCD_SEG51	TIM3_ETR	-	-	-	USART5_RX	-
Doc		PD3	USART2_CTS	LCD_SEG44	SPI2_MISO/ I2S2_MCK	-	-	-	-	-
DocID027096		PD4	USART2_RTS_D E	SPI2_MOSI/I2S2_SD	-	-	-	-	-	-
096		PD5	USART2_TX	-	-	-	-	-	-	-
Rev	D	PD6	USART2_RX	-	-	-	-	-	-	-
ώ	Port D	PD7	USART2_CK	TIM21_CH2	-	-	-	-	-	-
		PD8	LPUART1_TX	LCD_SEG28	-	-	-	-	-	-
		PD9	LPUART1_RX	LCD_SEG29	-	-	-	-	-	-
		PD10	-	LCD_SEG30	-	-	-	-	-	-
		PD11	LPUART1_CTS	LCD_SEG31	-	-	-	-	-	-
		PD12	LPUART1_RTS_ DE	LCD_SEG32	-	-	-	-	-	-
		PD13	-	LCD_SEG33	-	-	-	-	-	-
		PD14	-	LCD_SEG34	-	-	-	-	-	-
		PD15	USB_CRS_SYNC	LCD_SEG35	-	-	-	-	-	-

5

5 Memory mapping

1. Refer to the STM32L073xx reference manual for details on the Flash memory organization for each memory size.

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 23: Voltage characteristics*, *Table 24: Current characteristics*, and *Table 25: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Definition	Min	Мах	Unit
V _{DD} -V _{SS}	External main supply voltage (including V _{DDA} , V _{DD_USB} , V _{DD}) ⁽¹⁾	-0.3	4.0	
	Input voltage on FT and FTf pins	$V_{SS} - 0.3$	V _{DD} +4.0	
V _{IN} ⁽²⁾	Input voltage on TC pins	V _{SS} -0.3	4.0	V
VIN Y	Input voltage on BOOT0	V _{SS}	$V_{DD} + 4.0$	
	Input voltage on any other pin	$V_{SS} - 0.3$	4.0	
$ \Delta V_{DD} $	Variations between different V_{DDx} power pins	-	50	
V _{DDA} -V _{DDx}	Variations between any V_{DDx} and V_{DDA} power $pins^{(3)}$	-	300	mV
ΔV _{SS}	Variations between all different ground pins including $V_{\text{REF}\text{-}}$ pin	-	50	
$V_{REF+} - V_{DDA}$ Allowed voltage difference for $V_{REF+} > V_{DDA}$		-	0.4	V
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Secti	ion 6.3.11	

Table 23.	Voltage	characteristics
-----------	---------	-----------------

1. All main power ($V_{DD}, V_{DD}, U_{SB}, V_{DDA}$) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 24* for maximum allowed injected current values.

 It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and device operation. V_{DD_USB} is independent from V_{DD} and V_{DDA}: its value does not need to respect this rule.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V	PVD threshold 6	Falling edge	2.97	3.05	3.09	V	
V _{PVD6}		Rising edge	3.08	3.15	3.20	v	
		BOR0 threshold	-	40	-		
V _{hyst}	Hysteresis voltage	All BOR and PVD thresholds excepting BOR0	-	100	-	mV	

 Table 27. Embedded reset and power control block characteristics (continued)

1. Guaranteed by characterization results.

2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.

6.3.3 Embedded internal reference voltage

The parameters given in *Table 29* are based on characterization results, unless otherwise specified.

Table 28. Embedde	ed internal reference volta	ge calibration values

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 25 °C V _{DDA} = 3 V	0x1FF8 0078 - 0x1FF8 0079

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽²⁾	Internal reference voltage	– 40 °C < T _J < +125 °C	1.202	1.224	1.242	V
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V_{DDA} and V_{REF+} voltage during V_{REFINT} factory measure	-	2.99	3	3.01	V
A _{VREF_MEAS}	Accuracy of factory-measured V_{REFINT} value ⁽³⁾	Including uncertainties due to ADC and V _{DDA} /V _{REF+} values	-	-	±5	mV
T _{Coeff} ⁽⁴⁾	Temperature coefficient	–40 °C < T _J < +125 °C	-	25	100	ppm/°C
A _{Coeff} ⁽⁴⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽⁴⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽⁴⁾⁽⁵⁾	ADC sampling time when reading the internal reference voltage	-	5	10	-	μs
T _{ADC_BUF} ⁽⁴⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽⁴⁾ Consumption of reference voltage buffer for ADC		-	-	13.5	25	μA
I _{VREF_OUT} ⁽⁴⁾	VREF_OUT output current ⁽⁶⁾	-	-	-	1	μA
C _{VREF_OUT} ⁽⁴⁾	VREF_OUT output load	-	-	-	50	pF

Table 29. Embedded internal reference voltage⁽¹⁾

Symbol	Parameter	Conditio	f _{HCLK} (MHz)	Тур	Max ⁽¹⁾	Unit	
			Range3,	1	175	230	
			Vcore=1.2 V	2	315	360	μA
			VOS[1:0]=11	4	570	630	
		f _{HSE} = f _{HCLK} up to	Range2,	4	0,71	0,78	
		16 MHz included, f _{HSE} = f _{HCLK} /2 above	Vcore=1.5 V	8	1,35	1,6	
	Supply current in Run mode code executed from RAM, Flash	16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16	2,7	3	mA
			Range1, Vcore=1.8 V	8	1,7	1,9	
I _{DD} (Run				16	3,2	3,7	
from RAM)			VOS[1:0]=01	32	6,65	7,1	
	memory switched off		Range3, Vcore=1.2 V	0,065	38	98	
		MSI clock		0,524	105	160	μA
			VOS[1:0]=11	4,2	615	710	
		HSI clock source	Range2, Vcore=1.5 V VOS[1:0]=10	16	2,85	3	mA
		(16 MHz)	Range1, Vcore=1.8 V VOS[1:0]=01	32	6,85	7,3	IIIA

Table 32. Current consumption in Run mode, code with data processing running from RAM

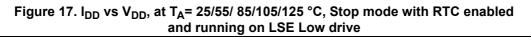
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

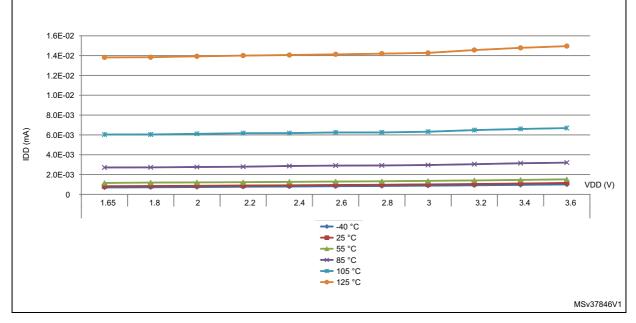
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 33. Current consumption in Run mode vs code type,code with data processing running from RAM⁽¹⁾

Symbol	Parameter		f _{HCLK}	Тур	Unit		
				Dhrystone		570	
Supply current in			Range 3,	CoreMark	4 MHz	670	
	f f unto	V _{CORE} =1.2 V, VOS[1:0]=11	Fibonacci		410	μA	
I _{DD} (Run from	Run mode, code executed from	f _{HSE} = f _{HCLK} up to 16 MHz included,		while(1)		375	
RAM)	RAM, Flash memory switched	f _{HSE} = f _{HCLK} /2 above 16 MHz (PLL on) ⁽²⁾		Dhrystone		6,65	
	off		Range 1,	CoreMark	32 MHz	6,95	mA
			V _{CORE} =1.8 V, VOS[1:0]=01	Fibonacci		5,9	
				while(1)		5,2	

1. Guaranteed by characterization results, unless otherwise specified.


2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).



Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit	
		$T_{A} = -40 \text{ to } 25^{\circ}\text{C}$	0,43	1,00		
	Supply current in Stop mode	T _A = 55°C	0,735	2,50		
I _{DD} (Stop)		T _A = 85°C	2,25	4,90	μA	
		T _A = 105°C	5,3	13,00		
		T _A = 125°C	12,5	28,00		

Table 37. Typical and maximum current consumptions in Stop mode

1. Guaranteed by characterization results at 125 $^\circ\text{C},$ unless otherwise specified.

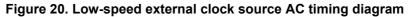
On-chip peripheral current consumption

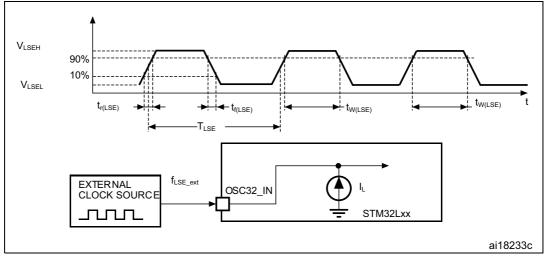
The current consumption of the on-chip peripherals is given in the following tables. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on

Table 40. Peripheral current consumption in Run or Sleep mode⁽¹⁾

Peripheral		Typical	consumption, V	/ _{DD} = 3.0 V, T _A =	25 °C	
		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit
	CRS	2.5	2	2	2	
	DAC1/2	4	3.5	3	2.5	
	I2C1	11	9.5	7.5	9	
	I2C3	11	9	7	9	
	LCD1	4	3.5	3	2.5	
	LPTIM1	10	8.5	6.5	8	
	LPUART1	8	6.5	5.5	6	
	SPI2	9	4.5	3.5	4	µA/MHz
APB1	USB	8.5	4.5	4	4.5	(f _{HCLK})
	USART2	14.5	12	9.5	11	
	USART4	5	4	3	5	
	USART5	5	4	3	5	
	TIM2	10.5	8.5	7	9	
	TIM3	12	10	8	11	
	TIM6	3.5	3	2.5	2	
	TIM7	3.5	3	2.5	2	
	WWDG	3	2	2	2	


Low-speed external user clock generated from an external source


The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 26*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency		1	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	v
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time		465	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time		-	-	10	115
C _{IN(LSE)}	OSC32_IN input capacitance	-	-	0.6	-	pF
DuCy _(LSE)	Duty cycle	-	45	-	55	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

 Table 44. Low-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design, not tested in production

Symbol	Parameter	Condition	Тур	Max	Unit	
		MSI range 0	-	40		
		MSI range 1 - 20				
		MSI range 2	-	40 20 10 4 2.5 2 2 2 3 4		
		MSI range 3 - 4				
+ (2)	MSI oscillator stabilization time	MSI range 4	VISI range 4 - 2.5		μs	
t _{STAB(MSI)} ⁽²⁾		MSI range 5	-	2	μο	
		MSI range 6, Voltage range 1 and 2	- 2			
		MSI range 3, Voltage range 3	-	3		
f _{over(MSI)}	MSI oscillator frequency overshoot	Any range to range 5		4	MHz	
		Any range to range 6	-	6		

Table 50. MSI oscillator characteristics (continued)

1. This is a deviation for an individual part, once the initial frequency has been measured.

2. Guaranteed by characterization results.

6.3.8 PLL characteristics

The parameters given in *Table 51* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 26*.

Table 51. PLL characteristics

Symbol	Parameter		Value		Unit
Symbol	Farameter	Min	Тур	Max ⁽¹⁾	Unit
£	PLL input clock ⁽²⁾	2	-	24	MHz
f _{PLL_IN}	PLL input clock duty cycle	45	-	55	%
f _{PLL_OUT}	PLL output clock	2	-	32	MHz
t _{LOCK}	PLL input = 16 MHz PLL VCO = 96 MHz	-	115	160	μs
Jitter	Cycle-to-cycle jitter	-		±600	ps
I _{DDA} (PLL)	Current consumption on V _{DDA}	-	220	450	μA
I _{DD} (PLL)	Current consumption on V _{DD}	-	120	150	μΑ

1. Guaranteed by characterization results.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT} .

6.3.9 Memory characteristics

RAM memory

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

Table 52. RAM and hardware registers

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Flash memory and data EEPROM

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V _{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V
Programming time for		Erasing	-	3.28	3.94	me
τ _{prog}	word or half-page	Programming	-	3.28	3.94	ms
	Average current during the whole programming / erase operation		-	500	700	μA
I _{DD}	Maximum current (peak) during the whole programming / erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA

Table 53. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

Table 54. Flash memory	and data EEPROM endurance and retention	

Symbol	Parameter	Conditions	Value	Unit	
Symbol	Falameter	Conditions	Min ⁽¹⁾	Unit	
	Cycling (erase / write) Program memory	T 40°C to 105 °C	10	kcycles	
N. (2)	Cycling (erase / write) EEPROM data memory	T _A = -40°C to 105 °C	100		
N _{CYC} ⁽²⁾	Cycling (erase / write) Program memory	T 40°C to 125 °C	0.2	KUYUUUS	
	Cycling (erase / write) EEPROM data memory	T _A = -40°C to 125 °C	2		

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{ADC} ⁽³⁾	Internal sample and hold capacitor	-	-	-	8	pF
↓ (3)(5)	Calibration time	f _{ADC} = 16 MHz		5.2		μs
t _{CAL} ⁽³⁾⁽⁵⁾	Calibration time	-		83		1/f _{ADC}
		ADC clock = HSI16	1.5 ADC cycles + 2 f _{PCLK} cycles	-	1.5 ADC cycles + 3 f _{PCLK} cycles	-
W _{LATENCY} ⁽⁶⁾	ADC_DR register write latency	ADC clock = PCLK/2	-	4.5	-	f _{PCLK} cycle
		ADC clock = PCLK/4	-	8.5	-	f _{PCLK} cycle
		$f_{ADC} = f_{PCLK}/2 = 16 \text{ MHz}$		0.266		
		$f_{ADC} = f_{PCLK}/2$	8.5		1/f _{PCLK}	
t _{latr} (3)	Trigger conversion latency	$f_{ADC} = f_{PCLK}/4 = 8 \text{ MHz}$	0.516		μs	
		$f_{ADC} = f_{PCLK}/4$	16.5		1/f _{PCLK}	
		f _{ADC} = f _{HSI16} = 16 MHz	0.252	-	0.260	μs
Jitter _{ADC}	ADC jitter on trigger conversion	f _{ADC} = f _{HSI16}	-	1	-	1/f _{HSI16}
ts ⁽³⁾	Sampling time	f _{ADC} = 16 MHz	0.093	-	10.03	μs
LS (*)		-	1.5	-	160.5	1/f _{ADC}
t _{UP_LDO} ⁽³⁾⁽⁵⁾	Internal LDO power-up time	-	-	-	10	μs
t _{STAB} ⁽³⁾⁽⁵⁾	ADC stabilization time	-	14		1/f _{ADC}	
t _{ConV} ⁽³⁾	Total conversion time	f _{ADC} = 16 MHz, 12-bit resolution	0.875	-	10.81	μs
	(including sampling time)	12-bit resolution	14 to 173 (t _S for sampling +12.5 for successive approximation)			1/f _{ADC}

1. V_{DDA} minimum value can be decreased in specific temperature conditions. Refer to Table 65: RAIN max for fADC = 16 MHz.

2. A current consumption proportional to the APB clock frequency has to be added (see *Table 40: Peripheral current consumption in Run or Sleep mode*).

3. Guaranteed by design.

Standard channels have an extra protection resistance which depends on supply voltage. Refer to Table 65: RAIN max for fADC = 16 MHz.

5. This parameter only includes the ADC timing. It does not take into account register access latency.

6. This parameter specifies the latency to transfer the conversion result into the ADC_DR register. EOC bit is set to indicate the conversion is complete and has the same latency.

SPI characteristics

Unless otherwise specified, the parameters given in the following tables are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 26*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode			16	MHz
		Slave mode receiver	-	-	16	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode Transmitter 1.71 <v<sub>DD<3.6V</v<sub>	-	-	12 ⁽²⁾	
		Slave mode Transmitter 2.7 <v<sub>DD<3.6V</v<sub>	-	-	16 ⁽²⁾	
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+ 2	
t _{su(MI)}	Data input setup time	Master mode	0	-	-	
t _{su(SI)}		Slave mode	3	-	-	
t _{h(MI)}	Data input hold time	Master mode	7	-	-	
t _{h(SI)}		Slave mode	3.5	-	-	ns
t _{a(SO}	Data output access time	Slave mode	15	-	36	
t _{dis(SO)}	Data output disable time	Slave mode	10	-	30	
+		Slave mode 1.65 V <v<sub>DD<3.6 V</v<sub>	-	18	41	
t _{v(SO)}	Data output valid time	Slave mode 2.7 V <v<sub>DD<3.6 V</v<sub>	-	18	25	
t _{v(MO)}		Master mode	-	4	7	
t _{h(SO)}	Data output hold time	Slave mode	10	-	-	
t _{h(MO)}		Master mode	0	-	-	

Table 75. SPI characteristics in	voltage Range 1 ⁽¹⁾
----------------------------------	--------------------------------

1. Guaranteed by characterization results.

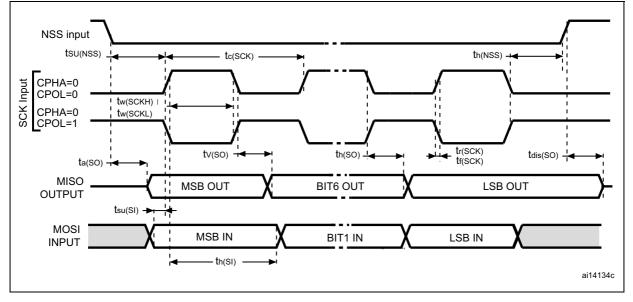
2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

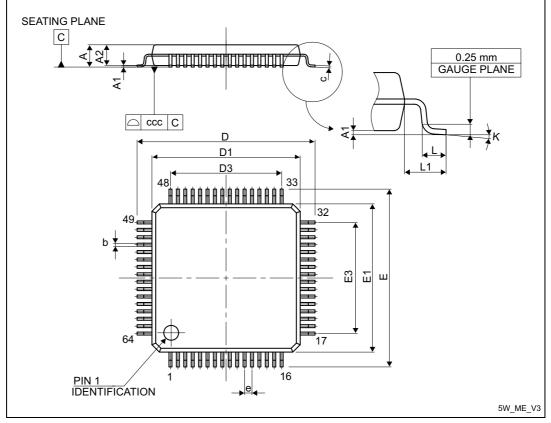
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{SCK} SPI clock frequency		Master mode			2	MHz	
1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	-	2 ⁽²⁾		
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode		50	70	%	
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-		
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-		
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time Master mode		Tpclk-2	Tpclk	Tpclk+2		
t _{su(MI)}	Data input setup time	Master mode	1.5	-	-		
t _{su(SI)}	Data input setup time	Slave mode	6	-	-		
t _{h(MI)}	Data input hold time	Master mode		-	-		
t _{h(SI)}		Slave mode	16	-	-	ns	
t _{a(SO}	Data output access time	Data output access time Slave mode 30		-	70		
t _{dis(SO)}	Data output disable time	Slave mode	40	-	80		
t _{v(SO)}	Data output valid time	Slave mode		30	70		
t _{v(MO)}		Master mode	-	7	9		
t _{h(SO)}	Data output hold time	Slave mode	25	-	-		
t _{h(MO)}	Data output hold time	Master mode	8	-	-		

Table 77. SPI characteristics in voltage F	Range 3 ⁽¹⁾
--	------------------------

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.




Figure 33. SPI timing diagram - slave mode and CPHA = 0

DocID027096 Rev 3

7.3 LQFP64 package information

Figure 45. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 86. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Typ Max Min		Тур	Мах	
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-

Cumple of		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур Мах		Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.500	-	-	0.2165	-	
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.500	-	-	0.2165	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.080	-	-	0.0031	

Table 89. L	QFP48 - 48-pin, 7 x 7	7 mm low-profile	quad flat package	e mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

8 Part numbering

Table 91. STM32L073xx ord	lering ir	nforn	natio	n sc	her	ne			
Example:	STM3	2 L	07	3	R	8	т	6	D TR
Device family									
STM32 = ARM-based 32-bit microcontroller									
Product type									
L = Low power									
Device subfamily									
073 = USB + LCD									
Pin count									
C = 48/49 pins					1				
R = 64 pins									
V = 100 pins									
Flash memory size									
8 = 64 Kbytes									
B = 128 Kbytes									
Z = 192 Kbytes									
Package									
T = LQFP									
H = TFBGA									
I = UFBGA									
Temperature range									
6 = Industrial temperature range, -40 to 85 °C									
7 = Industrial temperature range, -40 to 105 °C									
3 = Industrial temperature range, –40 to 125 $^\circ$ C									
Options									
No character = V_{DD} range: 1.8 to 3.6 V and BOR enabled									-
D = V_{DD} range: 1.65 to 3.6 V and BOR disabled									
Packing									

TR = tape and reel

No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

