E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore ProcessorARM® Cortex®-M0+Core Size32Bit Single-CoreSpeed32MHzConnectivityPC, IrDA, LINbus, SPI, UART/USART, USBPripheralsBrow-out Detect/Reset, DMA, I*S, LCD, POR, PWM, WDTNumber of I/O50Program Memory Size128KB (128K x 8)EPROM SizeFASHRAM SizeS0Voltage - Supply (Vcc/Vd)18V - 3.6VData ConvertersAD 15x12b; D/A 2x12b
Core Size32-Bit Single-CoreSpeed32MHzConnectivityi²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, DMA, I²S, LCD, POR, PWM, WDTNumber of I/O50Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size6K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd).8V ~ 3.6V
Speed32MHzConnectivityi²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, DMA, I²S, LCD, POR, PWM, WDTNumber of I/O50Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size6K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6V
ConnectivityI²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, DMA, I²S, LCD, POR, PWM, WDTNumber of I/O50Program Memory Size128KB (128K × 8)Program Memory TypeFLASHEEPROM Size6K × 8RAM Size20K × 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6V
PeripheralsBrown-out Detect/Reset, DMA, I2S, LCD, POR, PWM, WDTNumber of I/O50Program Memory Size128KB (128K × 8)Program Memory TypeFLASHEEPROM Size6K × 8RAM Size20K × 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6V
Number of I/O50Program Memory Size128KB (128K × 8)Program Memory TypeFLASHEEPROM Size6K × 8RAM Size20K × 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6V
Program Memory Size128KB (128K × 8)Program Memory TypeFLASHEEPROM Size6K × 8RAM Size20K × 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6V
Program Memory TypeFLASHEEPROM Size6K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6V
EEPROM Size6K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6V
RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6V
Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V
Data ConvertersA/D 15x12b; D/A 2x12b
Oscillator Type Internal
Operating Temperature -40°C ~ 85°C (TA)
Mounting Type Surface Mount
Package / Case 64-UFBGA
Supplier Device Package64-UFBGA (5x5)
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l073rbh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 45.	HSE oscillator characteristics	റ
Table 45. Table 46.	LSE oscillator characteristics	
Table 40. Table 47.	16 MHz HSI16 oscillator characteristics	
Table 47. Table 48.	HSI48 oscillator characteristics	
Table 40. Table 49.	LSI oscillator characteristics	
Table 49. Table 50.	MSI oscillator characteristics	
Table 51.	PLL characteristics	
Table 52.	RAM and hardware registers	
Table 53.	Flash memory and data EEPROM characteristics	
Table 54.	Flash memory and data EEPROM endurance and retention	
Table 55.	EMS characteristics	
Table 56.	EMI characteristics	
Table 57.	ESD absolute maximum ratings	
Table 58.	Electrical sensitivities	
Table 59.	I/O current injection susceptibility	
Table 60.	I/O static characteristics	
Table 61.	Output voltage characteristics	
Table 62.	I/O AC characteristics	
Table 63.	NRST pin characteristics	
Table 64.	ADC characteristics	
Table 65.	R_{AIN} max for f_{ADC} = 16 MHz	
Table 66.	ADC accuracy	
Table 67.	DAC characteristics	
Table 68.	Temperature sensor calibration values	
Table 69.	Temperature sensor characteristics 1	
Table 70.	Comparator 1 characteristics 1	07
Table 71.	Comparator 2 characteristics 1	07
Table 72.	TIMx characteristics	80
Table 73.	I2C analog filter characteristics1	09
Table 74.	USART/LPUART characteristics	09
Table 75.	SPI characteristics in voltage Range 1 1	10
Table 76.	SPI characteristics in voltage Range 2 1	11
Table 77.	SPI characteristics in voltage Range 3 1	12
Table 78.	I2S characteristics	
Table 79.	USB startup time	16
Table 80.	USB DC electrical characteristics	
Table 81.	USB: full speed electrical characteristics	17
Table 82.	LCD controller characteristics	17
Table 83.	LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package	
	mechanical data	20
Table 84.	UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array	
	package mechanical data	22
Table 85.	UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)	23
Table 86.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat	
	package mechanical data	25
Table 87.	TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball	
	grid array package mechanical data1	28
Table 88.	TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)	
Table 89.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data	
Table 90.	Thermal characteristics.	
Table 91.	STM32L073xx ordering information scheme	
Table 92.	Document revision history	
	,	

List of figures

Figure 1.	STM32L073xx block diagram	. 12
Figure 2.	Clock tree	. 24
Figure 3.	STM32L073xx LQFP100 pinout - 14 x 14 mm	. 37
Figure 4.	STM32L073xx UFBGA100 ballout - 7x 7 mm	. 38
Figure 5.	STM32L073xx LQFP64 pinout - 10 x 10 mm	. 39
Figure 6.	STM32L073xx TFBGA64 ballout - 5x 5 mm	. 40
Figure 7.	STM32L073xx LQFP48 pinout - 7 x 7 mm	. 41
Figure 8.	Memory map	. 56
Figure 9.	Pin loading conditions.	. 57
Figure 10.	Pin input voltage	. 57
Figure 11.	Power supply scheme	. 58
Figure 12.	Optional LCD power supply scheme	. 59
Figure 13.	Current consumption measurement scheme	
Figure 14.	IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from	
0	Flash memory, Range 2, HSE, 1WS	. 68
Figure 15.	IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from	
0	Flash memory, Range 2, HSI16, 1WS	. 68
Figure 16.	IDD vs VDD, at TA= 25 °C, Low-power run mode, code running	
0	from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS	. 72
Figure 17.	IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled	
0	and running on LSE Low drive	. 73
Figure 18.	IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled,	
0	all clocks off	. 74
Figure 19.	High-speed external clock source AC timing diagram	
Figure 20.	Low-speed external clock source AC timing diagram	
Figure 21.	HSE oscillator circuit diagram	
Figure 22.	Typical application with a 32.768 kHz crystal	
Figure 23.	HSI16 minimum and maximum value versus temperature	
Figure 24.	VIH/VIL versus VDD (CMOS I/Os)	
Figure 25.	VIH/VIL versus VDD (TTL I/Os)	
Figure 26.	I/O AC characteristics definition	
Figure 27.	Recommended NRST pin protection	
Figure 28.	ADC accuracy characteristics	
Figure 29.	Typical connection diagram using the ADC	
Figure 30.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	
Figure 31.	Power supply and reference decoupling (V_{REF+} connected to V_{DDA})	
Figure 32.	12-bit buffered/non-buffered DAC.	
Figure 33.	SPI timing diagram - slave mode and CPHA = 0	112
Figure 34.	SPI timing diagram - slave mode and CPHA = $1^{(1)}$	113
Figure 35.	SPI timing diagram - master mode ⁽¹⁾	113
Figure 36.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾	115
Figure 37.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	115
Figure 38.	USB timings: definition of data signal rise and fall time	
Figure 39.	LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline	119
Figure 40.	LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat	. •
	recommended footprint.	121
Figure 41.	LQFP100 marking example (package top view)	121
Figure 42.	UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball	_ ·

Figure 1. STM32L073xx block diagram

DocID027096 Rev 3

3 Functional overview

3.1 Low-power modes

The ultra-low-power STM32L073xx support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply.

There are three power consumption ranges:

- Range 1 (V_{DD} range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz
- Range 2 (full V_{DD} range), with a maximum CPU frequency of 16 MHz
- Range 3 (full V_{DD} range), with a maximum CPU frequency limited to 4.2 MHz

Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off.

Low-power run mode

This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both limited.

Low-power sleep mode

This mode is achieved by entering Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator's operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.

When wakeup is triggered by an event or an interrupt, the system reverts to the Run mode with the regulator on.

Stop mode with RTC

The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V_{CORE} domain are stopped, the PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.

The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup events, the USB/USART/I2C/LPUART/LPTIMER wakeup events.

	Functionalities depending on the operating power supply range				
Operating power supply range	DAC and ADC operation	Dynamic voltage scaling range	I/O operation	USB	
V _{DD} = 1.65 to 1.71 V	ADC only, conversion time up to 570 ksps	Range 2 or range 3	Degraded speed performance	Not functional	
V _{DD} = 1.71 to 1.8 V ⁽¹⁾	ADC only, conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Degraded speed performance	Functional ⁽²⁾	
V_{DD} = 1.8 to 2.0 V ⁽¹⁾	Conversion time up to 1.14 Msps	Range1, range 2 or range 3	Degraded speed performance	Functional ⁽²⁾	
V _{DD} = 2.0 to 2.4 V	Conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Full speed operation	Functional ⁽²⁾	
V _{DD} = 2.4 to 3.6 V	Conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Full speed operation	Functional ⁽²⁾	

CPU frequency changes from initial to final must respect "fcpu initial <4*fcpu final". It must also respect 5
µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2
MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz.

2. To be USB compliant from the I/O voltage standpoint, the minimum $V_{\text{DD_USB}}$ is 3.0 V.

Table 4. CPU frequency range depending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
32 kHz to 4.2 MHz (0ws)	Range 3

3.4 Reset and supply management

3.4.1 **Power supply schemes**

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{DD_USB} = 1.65 to 3.6V: external power supply for USB transceiver, USB_DM (PA11) and USB_DP (PA12). To guarantee a correct voltage level for USB communication V_{DD_USB} must be above 3.0V. If USB is not used this pin must be tied to V_{DD}.

3.4.2 Power supply supervisor

The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

Two versions are available:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The devices feature an embedded programmable voltage detector (PVD) that monitors the $V_{DD/VDDA}$ power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when $V_{DD/VDDA}$ drops below the V_{PVD} threshold and/or when $V_{DD/VDDA}$ is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

• Startup clock

After reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.

• Clock security system (CSS)

This feature can be enabled by software. If an HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.

Another clock security system can be enabled, in case of failure of the LSE it provides an interrupt or wakeup event which is generated if enabled.

• Clock-out capability (MCO: microcontroller clock output)

It outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

3.17 Timers and watchdogs

The ultra-low-power STM32L073xx devices include three general-purpose timers, one low-power timer (LPTIM), one basic timer, two watchdog timers and the SysTick timer.

Table 10 compares the features of the general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM2, TIM3	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM21, TIM22	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 10. Timer feature comparison

3.17.1 General-purpose timers (TIM2, TIM3, TIM21 and TIM22)

There are four synchronizable general-purpose timers embedded in the STM32L073xx device (see *Table 10* for differences).

TIM2, TIM3

TIM2 and TIM3 are based on 16-bit auto-reload up/down counter. It includes a 16-bit prescaler. It features four independent channels each for input capture/output compare, PWM or one-pulse mode output.

The TIM2/TIM3 general-purpose timers can work together or with the TIM21 and TIM22 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2/TIM3 have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

TIM21 and TIM22

TIM21 and TIM22 are based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. They have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together and be synchronized with the TIM2/TIM3, full-featured general-purpose timers.

They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock.

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

3.18.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S)

Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

The USARTs with synchronous capability can also be used as SPI master.

One standard I2S interfaces (multiplexed with SPI2) is available. It can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When the I2S interfaces is configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

The SPIs can be served by the DMA controller.

Refer to *Table 14* for the differences between SPI1 and SPI2.

SPI features ⁽¹⁾	SPI1	SPI2
Hardware CRC calculation	Х	Х
I2S mode	-	Х
TI mode	Х	Х

Table 14. SPI/I2S implementation

1. X = supported.

3.18.5 Universal serial bus (USB)

The STM32L073xx embeds a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software-configurable endpoint setting with packet memory up to 1 KB and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal-less operation.

1. The above figure shows the package top view.

2. I/O pin supplied by VDD_USB.

Table 15. Legend/abbreviations used in the pinout table

Name	Abbreviation	Definition	
Pin name	Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name		
	S	Supply pin	
Pin type	I	Input only pin	
	I/O	Input / output pin	
	FT	5 V tolerant I/O	
	FTf	5 V tolerant I/O, FM+ capable	
I/O structure	TC	Standard 3.3V I/O	
	В	Dedicated BOOT0 pin	
	RST	Bidirectional reset pin with embedded weak pull-up resistor	
Notes	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.		

6.1.6 Power supply scheme

Figure 11. Power supply scheme

Symbol	Parameter	Conditions	Min	Max	Unit
Та		Maximum power dissipation (range 6)	-40	85	
	Temperature range	Maximum power dissipation (range 7)	-40	105	
		Maximum power dissipation (range 3)	-40	125	°C
	Junction temperature range (range 6)	-40 °C \leq T _A \leq 85 °	-40	105	
TJ	Junction temperature range (range 7)	-40 °C \leq T _A \leq 105 °C	-40	125	
	Junction temperature range (range 3)	-40 °C \leq T _A \leq 125 °C	-40	130	

 Table 26. General operating conditions (continued)

1. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and normal operation.

2. V_{DD_USB} must respect the following conditions:

- When V_DD is powered on (V_DD < V_DD_min), V_DD_USB should be always lower than V_DD.

- When V_{DD} is powered down (V_{DD} < V_{DD_min}), V_{DD_USB} should be always lower than V_{DD}.

- In operating mode, V_{DD_USB} could be lower or higher $V_{DD.}$

- If the USB is not used, V_{DD} USB must range from V_{DD} min to V_{DD} max to be able to use PA11 and PA12 as standard I/Os.

3. To sustain a voltage higher than V_{DD} +0.3V, the internal pull-up/pull-down resistors must be disabled.

 If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see *Table 90: Thermal characteristics* on page 134).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	PVD threshold 6	Falling edge	2.97	3.05	3.09	V
V _{PVD6}		Rising edge	3.08	3.15	3.20	v
	Hysteresis voltage	BOR0 threshold	-	40	-	
V _{hyst}		All BOR and PVD thresholds excepting BOR0	-	100	-	mV

 Table 27. Embedded reset and power control block characteristics (continued)

1. Guaranteed by characterization results.

2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.

6.3.3 Embedded internal reference voltage

The parameters given in *Table 29* are based on characterization results, unless otherwise specified.

Table 28. Embedde	ed internal reference volta	ge calibration values

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 25 °C V _{DDA} = 3 V	0x1FF8 0078 - 0x1FF8 0079

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽²⁾	Internal reference voltage	– 40 °C < T _J < +125 °C	1.202	1.224	1.242	V
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V _{DDA} and V _{REF+} voltage during V _{REFINT} factory measure	-	2.99	3	3.01	V
A _{VREF_MEAS}	Accuracy of factory-measured V_{REFINT} value ⁽³⁾	Including uncertainties due to ADC and V _{DDA} /V _{REF+} values	-	-	±5	mV
T _{Coeff} ⁽⁴⁾	Temperature coefficient $-40 \ ^{\circ}C < T_{J} < +125 \ ^{\circ}C$		-	25	100	ppm/°C
A _{Coeff} ⁽⁴⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽⁴⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽⁴⁾⁽⁵⁾	ADC sampling time when reading the internal reference voltage	-	5	10	-	μs
T _{ADC_BUF} ⁽⁴⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽⁴⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μA
I _{VREF_OUT} ⁽⁴⁾	VREF_OUT output current ⁽⁶⁾	-	-	-	1	μA
C _{VREF_OUT} ⁽⁴⁾	VREF_OUT output load	-	-	-	50	pF

Table 29. Embedded internal reference voltage⁽¹⁾

Figure 18. I_{DD} vs V_{DD} , at T_A = 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks off

Table 38. Typical and maximum current consumptions in Standby mode	Table 38.	Typical and	maximum	current	consump	otions i	n Standby	/ mode
--	-----------	-------------	---------	---------	---------	----------	-----------	--------

Symbol	Parameter	Conditi	Тур	Max ⁽¹⁾	Unit	
			$T_A = -40 \text{ to } 25^{\circ}\text{C}$	0,855	1,70	
I _{DD} Supply current in Standb (Standby) mode			T _A = 55 °C	-	2,90	
		Independent watchdog and LSI enabled	T _A = 85 °C	-	3,30	
		T _A = 105 °C	-	4,10		
	Supply current in Standby		T _A = 125 °C	-	8,50	- μA -
	mode	Independent watchdog and LSI off	T _A = − 40 to 25°C	0,29	0,60	
			T _A = 55 °C	0,32	1,20	
			T _A = 85 °C	0,5	2,30	
			T _A = 105 °C	0,94	3,00	
			T _A = 125 °C	2,6	7,00	

1. Guaranteed by characterization results at 125 °C, unless otherwise specified

Output voltage levels

Unless otherwise specified, the parameters given in *Table 61* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 26*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin CMOS port ⁽²⁾ ,		-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I_{IO} = +8 mA 2.7 V \leq V _{DD} \leq 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	$\begin{array}{c} {\sf TTL \ port^{(2)},} \\ {\sf I}_{IO} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	-	0.4	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	$\begin{array}{c} {\sf TTL} \mbox{ port}^{(2)}, \\ {\sf I}_{IO} \mbox{=} \mbox{-}6\mbox{ mA} \\ 2.7\mbox{ V} \le {\sf V}_{DD} \le \mbox{ 3.6 V} \end{array}$	2.4	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	$\begin{array}{l} {I_{IO}} \mbox{ = +15 mA} \\ 2.7 \ V \le V_{DD} \le \ 3.6 \ V \end{array}$	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	$\begin{array}{l} \text{I}_{\text{IO}} \text{ = -15 mA} \\ \text{2.7 V} \leq \text{V}_{\text{DD}} \leq \ \text{3.6 V} \end{array}$	V _{DD} -1.3	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I_{IO} = +4 mA 1.65 V \leq V _{DD} < 3.6 V	-	0.45	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	$\begin{array}{l} \text{I}_{IO} = \text{-4 mA} \\ 1.65 \text{ V} \leq \text{V}_{DD} \leq \ 3.6 \text{ V} \end{array}$	V _{DD} -0.45	-	
V _{OLFM+} ⁽¹⁾⁽⁴⁾	Output low level voltage for an FTf	$\begin{array}{l} \text{I}_{\text{IO}} = 20 \text{ mA} \\ 2.7 \text{ V} \leq \text{V}_{DD} \leq \ 3.6 \text{ V} \end{array}$	-	0.4	
VOLFM+	I/O pin in Fm+ mode	$\begin{array}{l} {\sf I}_{IO} \mbox{=} \ 10 \ mA \\ 1.65 \ V \le V_{DD} \le \ 3.6 \ V \end{array}$	-	0.4	

Table 61.	Output voltage characteristics
-----------	--------------------------------

 The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 24*. The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and must not exceed ΣI_{IO(PIN)}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 24. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be respected and must not exceed $\Sigma I_{IO(PIN)}$.

4. Guaranteed by characterization results.

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The simplified formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

		P may for		R _{AIN} max for standard channels (kΩ)						
T _s (cycles)	t _S (μs)	R _{AIN} max for fast channels (kΩ)	V _{DD} > V _{DD} > 2.7 V 2.4 V				V _{DD} > 1.75 V	V _{DD} > 1.65 V and T _A > –10 °C	V _{DD} > 1.65 V and T _A > 25 °C	
1.5	0.09	0.5	< 0.1	NA	NA	NA	NA	NA	NA	
3.5	0.22	1	0.2	< 0.1	NA	NA	NA	NA	NA	
7.5	0.47	2.5	1.7	1.5	< 0.1	NA	NA	NA	NA	
12.5	0.78	4	3.2	3	1	NA	NA	NA	NA	
19.5	1.22	6.5	5.7	5.5	3.5	NA	NA	NA	< 0.1	
39.5	2.47	13	12.2	12	10	NA	NA	NA	5	
79.5	4.97	27	26.2	26	24	< 0.1	NA	NA	19	
160.5	10.03	50	49.2	49	47	32	< 0.1	< 0.1	42	

Table 65. R_{AIN} max for f_{ADC} = 16 MHz⁽¹⁾

1. Guaranteed by design.

Table 66. ADC accuracy⁽¹⁾⁽²⁾⁽³⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ET	Total unadjusted error		-	2	4	
EO	Offset error		-	1	2.5	
EG	Gain error		-	1	2	LSB
EL	Integral linearity error		-	1.5	2.5	
ED	Differential linearity error		-	1	1.5	
	Effective number of bits	1.65 V < V _{DDA} = V _{REF+} < 3.6 V,	10.2	11		
ENOB	Effective number of bits (16-bit mode oversampling with ratio =256) ⁽⁴⁾	range 1/2/3	11.3	12.1	-	bits
SINAD	Signal-to-noise distortion		63	69	-	
	Signal-to-noise ratio		63	69	-	
SNR	Signal-to-noise ratio (16-bit mode oversampling with ratio =256) ⁽⁴⁾		70	76	-	dB
THD	Total harmonic distortion		-	-85	-73	

7.3 LQFP64 package information

Figure 45. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 86. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data

Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	-	12.000	-	-	0.4724	-	
D1	-	10.000	-	-	0.3937	-	
D3	-	7.500	-	-	0.2953	-	
E	-	12.000	-	-	0.4724	-	
E1	-	10.000	-	-	0.3937	-	

Figure 54. Thermal resistance

7.6.1 **Reference document**

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID027096 Rev 3