
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 15x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-UFBGA
Supplier Device Package	64-UFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l073rzh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 43.	grid array package outline
Ū	grid array package recommended footprint
Figure 44.	UFBGA100 marking example (package top view) 124
Figure 45.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
Figure 46.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint 126
Figure 47.	LQFP64 marking example (package top view) 127
Figure 48.	TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball
	grid array package outline
Figure 49.	TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
	,grid array recommended footprint
Figure 50.	TFBGA64 marking example (package top view)
Figure 51.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
Figure 52.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint
Figure 53.	LQFP48 marking example (package top view)
Figure 54.	Thermal resistance

1 Introduction

The ultra-low-power STM32L073xx are offered in 5 different package types from 48 to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the ultra-low-power STM32L073xx microcontrollers suitable for a wide range of applications:

- Gas/water meters and industrial sensors
- Healthcare and fitness equipment
- Remote control and user interface
- PC peripherals, gaming, GPS equipment
- Alarm system, wired and wireless sensors, video intercom

This STM32L073xx datasheet should be read in conjunction with the STM32L0x3xx reference manual (RM0367).

For information on the ARM[®] Cortex[®]-M0+ core please refer to the Cortex[®]-M0+ Technical Reference Manual, available from the www.arm.com website.

Figure 1 shows the general block diagram of the device family.

3.4.3 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32 KHz oscillator, RCC_CSR).

3.5 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

Clock prescaler

To get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.

• Safe clock switching

Clock sources can be changed safely on the fly in Run mode through a configuration register.

Clock management

To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.

System clock source

Three different clock sources can be used to drive the master clock SYSCLK:

- 1-25 MHz high-speed external crystal (HSE), that can supply a PLL
- 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLLMultispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.

• Auxiliary clock source

Two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:

- 32.768 kHz low-speed external crystal (LSE)
- 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.

• RTC and LCD clock source

The LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.

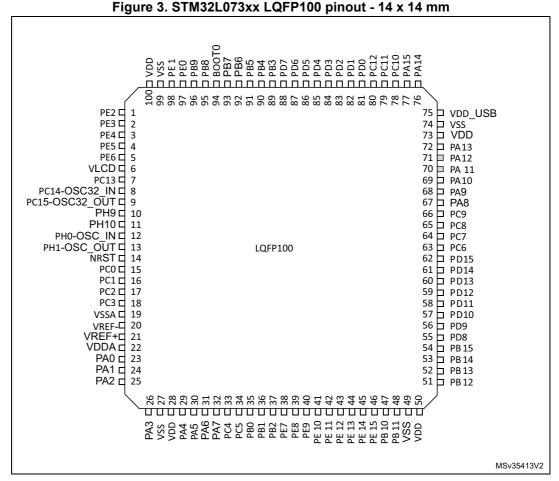
USB clock source

A 48 MHz clock trimmed through the USB SOF or LSE supplies the USB interface.

3.16 Touch sensing controller (TSC)

The STM32L073xx provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (such as glass, plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.


The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0		TSC_G5_IO1	PB3
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
1	TSC_G1_IO3	PA2	5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3		TSC_G5_IO4	PB7
	TSC_G2_IO1	PA4		TSC_G6_IO1	PB11
2	TSC_G2_IO2	PA5	6	TSC_G6_IO2	PB12
2	TSC_G2_IO3	PA6	0	TSC_G6_IO3	PB13
	TSC_G2_IO4	PA7		TSC_G6_IO4	PB14
	TSC_G3_IO1	PC5		TSC_G7_IO1	PC0
3	TSC_G3_IO2	PB0	7	TSC_G7_IO2	PC1
5	TSC_G3_IO3	PB1	1	TSC_G7_IO3	PC2
	TSC_G3_IO4	PB2		TSC_G7_IO4	PC3
	TSC_G4_IO1	PA9		TSC_G8_IO1	PC6
4	TSC_G4_IO2	PA10	8	TSC_G8_IO2	PC7
-	TSC_G4_IO3	PA11	0	TSC_G8_IO3	PC8
	TSC_G4_IO4	PA12		TSC_G8_IO4	PC9

 Table 9. Capacitive sensing GPIOs available on STM32L073xx devices

4 Pin descriptions

1. The above figure shows the package top view.

2. I/O pin supplied by VDD_USB.

	i igule c					Danou	l - JX J	
	1	2	3	4	5	6	7	8
A	₽°C14- OSC32 `_41¥	(PC13)	(PB9)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)
В	アCT5- OSC32 OUオ	(VLCD)	(PB8)		(PD2)	(PC11)	(PC10)	(PA12)
С	(PHO-) osc_IN	(vss)	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)
D	(0SC) (0SC) \QUT		(PB6)	(vss)	(vss)	(vss)	(PA8)	(PC9)
E		(PC1)	(PC0)	(VDD)	(VDD)		(PC7)	(PC8)
F	(VSSA)	(PC2)	(PA2)	(PA5)	(PB0)	(PC6)	(PB15)	(PB14)
G		(PA0)	(PA3)	(PA6)	(PB1)	(PB2)	(PB10)	(PB13)
Н	(VDDA)	(PA1)	(PA4)	(PA7)	(PC4)	(PC5)	(PB11)	(PB12)
	L							

Figure 6. STM32L073xx TFBGA64 ballout - 5x 5 mm

1. The above figure shows the package top view.

2. I/O pin supplied by VDD_USB.

Name		Abbreviation	Definition				
Pin functions	Alternate functions	Functions selected through GPIOx_AFR registers					
	Additional functions	Functions directly selecte	ed/enabled through peripheral registers				

 Table 15. Legend/abbreviations used in the pinout table (continued)

	Pi	n num	ber							
LQFP48	LQFP64	TFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	1	B2	PE2	I/O	FT	-	LCD_SEG38, TIM3_ETR	-
-	-	-	2	A1	PE3	I/O	FT	-	TIM22_CH1, LCD_SEG39, TIM3_CH1	-
-	-	-	3	B1	PE4	I/O	FT	-	TIM22_CH2, TIM3_CH2	-
-	-	-	4	C2	PE5	I/O	FT	-	TIM21_CH1, TIM3_CH3	-
-	-	-	5	D2	PE6	I/O	FT	-	TIM21_CH2, TIM3_CH4	RTC_TAMP3/WKUP3
1	1	B2	6	E2	VLCD	S		-	-	
2	2	A2	7	C1	PC13	I/O	FT	-	-	RTC_TAMP1/RTC_TS/ RTC_OUT/WKUP2
3	3	A1	8	D1	PC14- OSC32_IN (PC14)	I/O	FT	-	-	OSC32_IN
4	4	B1	9	E1	PC15- OSC32_OUT (PC15)	I/O	тс	-	-	OSC32_OUT
-	-	-	10	F2	PH9	I/O	FT	-	-	-
-	-	-	11	G2	PH10	I/O	FT	-	-	-
5	5	C1	12	F1	PH0-OSC_IN (PH0)	I/O	тс	-	USB_CRS_SYNC	OSC_IN
6	6	D1	13	G1	PH1- OSC_OUT (PH1)	I/O	тс	-	-	OSC_OUT
7	7	E1	14	H2	NRST	I/O	-	-	-	-

Table 16. STM32L073xx pin definition

C	Ŋ
	S
	ŝ
Ś	Ş
Š	2

DocID027096 Rev 3

5

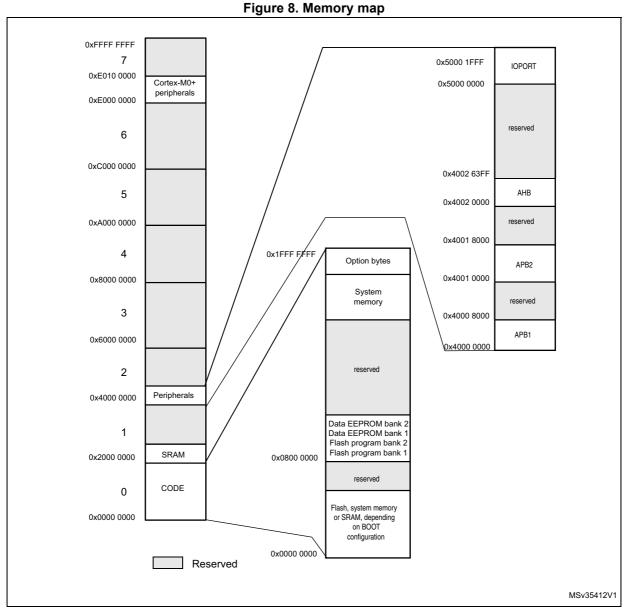
				Table 17.	Alternate fund	tions port A	-		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
F	Port	SPI1/SPI2/I2S2/U SART1/2/ LPUART1/USB/L PTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I2 C1/LCD/ TIM2/21	SPI1/SPI2/I2S2/L PUART1/ USART5/USB/LP TIM1/TIM2/3/EVE NTOUT/ SYS_AF	I2C1/TSC/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2/I2C2/U SART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/E VENTOUT	I2C3/LPUART1/C OMP1/2/ TIM3
	PA0	-	-	TIM2_CH1	TSC_G1_IO1	USART2_CTS	TIM2_ETR	USART4_TX	COMP1_OUT
	PA1	EVENTOUT	LCD_SEG0	TIM2_CH2	TSC_G1_IO2	USART2_RTS_D E	TIM21_ETR	USART4_RX	-
	PA2	TIM21_CH1	LCD_SEG1	TIM2_CH3	TSC_G1_IO3	USART2_TX	-	LPUART1_TX	COMP2_OUT
	PA3	TIM21_CH2	LCD_SEG2	TIM2_CH4	TSC_G1_IO4	USART2_RX	-	LPUART1_RX	-
	PA4	SPI1_NSS	-	-	TSC_G2_IO1	USART2_CK	TIM22_ETR	-	-
	PA5	SPI1_SCK	-	TIM2_ETR	TSC_G2_IO2		TIM2_CH1	-	-
	PA6	SPI1_MISO	LCD_SEG3	TIM3_CH1	TSC_G2_IO3	LPUART1_CTS	TIM22_CH1	EVENTOUT	COMP1_OUT
	PA7	SPI1_MOSI	LCD_SEG4	TIM3_CH2	TSC_G2_IO4	-	TIM22_CH2	EVENTOUT	COMP2_OUT
Port A	PA8	МСО	LCD_COM0	USB_CRS_ SYNC	EVENTOUT	USART1_CK	-	-	I2C3_SCL
	PA9	MCO	LCD_COM1	-	TSC_G4_IO1	USART1_TX	-	I2C1_SCL	I2C3_SMBA
	PA10	-	LCD_COM2	-	TSC_G4_IO2	USART1_RX	-	I2C1_SDA	-
	PA11	SPI1_MISO	-	EVENTOUT	TSC_G4_IO3	USART1_CTS	-	-	COMP1_OUT
	PA12	SPI1_MOSI	-	EVENTOUT	TSC_G4_IO4	USART1_RTS_ DE	-	-	COMP2_OUT
	PA13	SWDIO	-	USB_OE	-	-	-	LPUART1_RX	-
	PA14	SWCLK	-	-	-	USART2_TX	-	LPUART1_TX	-
	PA15	SPI1_NSS	LCD_SEG17	TIM2_ETR	EVENTOUT	USART2_RX	TIM2_CH1	USART4_RTS_D E	-

Pin descriptions

50/139

51/139

DocID027096 Rev 3


5

		4.50	454			functions port B	455	450	457	
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	
	Port	SPI1/SPI2/I2S2/ USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I 2C1/LCD/ TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/USB/L PTIM1/TIM2/3/E VENTOUT/ SYS_AF	I2C1/TSC/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2/I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT	I2C3/LPUART1/ COMP1/2/ TIM3	
	PB0	EVENTOUT	LCD_SEG5	TIM3_CH3	TSC_G3_IO2	-	-	-	-	
	PB1	-	LCD_SEG6	TIM3_CH4	TSC_G3_IO3	LPUART1_RTS_DE	-	-	-	
	PB2	-	-	LPTIM1_OUT	TSC_G3_IO4	-	-	-	I2C3_SMBA	
	PB3	SPI1_SCK	LCD_SEG7	TIM2_CH2	TSC_G5_IO1	EVENTOUT	USART1_RTS_DE	USART5_TX	-	
	PB4	SPI1_MISO	LCD_SEG8	TIM3_CH1	TSC_G5_IO2	TIM22_CH1	USART1_CTS	USART5_RX	I2C3_SDA	
	PB5	SPI1_MOSI	LCD_SEG9	LPTIM1_IN1	I2C1_SMBA	TIM3_CH2/ TIM22_CH2	USART1_CK	USART5_CK/ USART5_RTS_D E	-	
	PB6	USART1_TX	I2C1_SCL	LPTIM1_ETR	TSC_G5_IO3	-	-	-	-	
	PB7	USART1_RX	I2C1_SDA	LPTIM1_IN2	TSC_G5_IO4	-	-	USART4_CTS	-	
Port B	PB8	-	LCD_SEG16	-	TSC_SYNC	I2C1_SCL	-	-	-	
đ	PB9	-	LCD_COM3	EVENTOUT	-	I2C1_SDA	SPI2_NSS/ I2S2_WS	-	-	
	PB10	-	LCD_SEG10	TIM2_CH3	TSC_SYNC	LPUART1_TX	SPI2_SCK	I2C2_SCL	LPUART1_RX	
	PB11	EVENTOUT	LCD_SEG11	TIM2_CH4	TSC_G6_IO1	LPUART1_RX	-	I2C2_SDA	LPUART1_TX	
	PB12	SPI2_NSS/I2S2_WS	LCD_SEG12	LPUART1_RTS_ DE	TSC_G6_IO2		I2C2_SMBA	EVENTOUT	-	
	PB13	SPI2_SCK/I2S2_CK	LCD_SEG13	MCO	TSC_G6_IO3	LPUART1_CTS	I2C2_SCL	TIM21_CH1	-	
	PB14	SPI2_MISO/ I2S2_MCK	LCD_SEG14	RTC_OUT	TSC_G6_IO4	LPUART1_RTS_DE	I2C2_SDA	TIM21_CH2	-	
	PB15	SPI2_MOSI/ I2S2_SD	LCD_SEG15	RTC_REFIN	-	-	-	-	-	

Pin descriptions

STM32L073xx

5 Memory mapping

1. Refer to the STM32L073xx reference manual for details on the Flash memory organization for each memory size.

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in *Table 26*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		BOR detector enabled	0	-	∞	
+ (1)	V _{DD} rise time rate	BOR detector disabled	0	-	1000	μs/V
t _{VDD} ⁽¹⁾) (foll time rate	BOR detector enabled	20	-	x	μs/v
	V _{DD} fall time rate	BOR detector disabled	0	-	1000	
т (1)	Reset temporization	V _{DD} rising, BOR enabled	-	2	3.3	ma
RSTTEMPO ⁽¹⁾	Reset temponzation	V _{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6	ms
M	Power on/power down reset	Falling edge	1	1.5	1.65	
V _{POR/PDR}	threshold	Rising edge	1.3	1.5	1.65	
		Falling edge	1.67	1.7	1.74	
V _{BOR0}	Brown-out reset threshold 0	Rising edge	1.69	1.76	1.8	
	Drewe out react threaded 4	Falling edge	1.87	1.93	1.97	
V _{BOR1}	Brown-out reset threshold 1	Rising edge	1.96	2.03	2.07	
	Drewe out react threaded 2	Falling edge	2.22	2.30	2.35	
V _{BOR2}	Brown-out reset threshold 2	Rising edge	2.31	2.41	2.44	
		Falling edge	2.45	2.55	2.6	
V _{BOR3}	Brown-out reset threshold 3	Rising edge	2.54	2.66	2.7	
		Falling edge	2.68	2.8	2.85	
V _{BOR4}	Brown-out reset threshold 4	Rising edge	2.78	2.9	2.95	
	Programmable voltage detector	Falling edge	1.8	1.85	1.88	V
V _{PVD0}	threshold 0	Rising edge	1.88	1.94	1.99	
M	D) (D) there are a lot 4	Falling edge	1.98	2.04	2.09	
V _{PVD1}	PVD threshold 1	Rising edge	2.08	2.14	2.18	
	D) (D three held 2	Falling edge	2.20	2.24	2.28	1
V _{PVD2}	PVD threshold 2	Rising edge	2.28	2.34	2.38	1
N/	DVD threehold 2	Falling edge	2.39	2.44	2.48	
V _{PVD3}	PVD threshold 3	Rising edge	2.47	2.54	2.58	
	D) (D three held 4	Falling edge	2.57	2.64	2.69	
V _{PVD4}	PVD threshold 4	Rising edge	2.68	2.74	2.79	
		Falling edge	2.77	2.83	2.88	
V _{PVD5}	PVD threshold 5	Rising edge	2.87	2.94	2.99	

Table 27. Embedded reset and power control block characteristics
--

Symbol	parameter	System frequency	Current consumption during wakeup	Unit	
		HSI	1		
		HSI/4	0,7		
I _{DD} (Wakeup from Stop)	Supply current during Wakeup from Stop mode	MSI clock = 4,2 MHz	0,7		
etep)		MSI clock = 1,05 MHz	0,4		
		MSI clock = 65 KHz	0,1	mA	
I _{DD} (Reset)	Reset pin pulled down	-	0,21		
I _{DD} (Power-up)	BOR on	-	0,23		
I _{DD} (Wakeup from	With Fast wakeup set	MSI clock = 2,1 MHz	0,5		
StandBy)	With Fast wakeup disabled	MSI clock = 2,1 MHz	0,12		

Table 39. Average current consumption during Wakeup

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

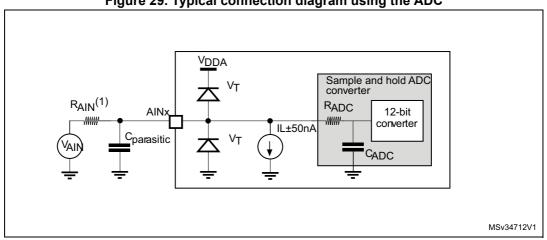
The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).


Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. frequency range at 32 MHz	Unit
		V	0.1 to 30 MHz	-7	
6	Peak level	$V_{DD} = 3.6 \text{ V},$ $T_{A} = 25 \text{ °C},$	30 to 130 MHz	14	dBµV
S _{EMI}	reak level	LQFP100 package 130 MHz to 1 GHz 9	9		
		compliant with IEC 61967-2	EMI Level	2	-

Table 56. EMI characteristics

- 1. Refer to Table 64: ADC characteristics for the values of RAIN, RADC and CADC.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 30 or Figure 31, depending on whether $V_{\text{REF+}}$ is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

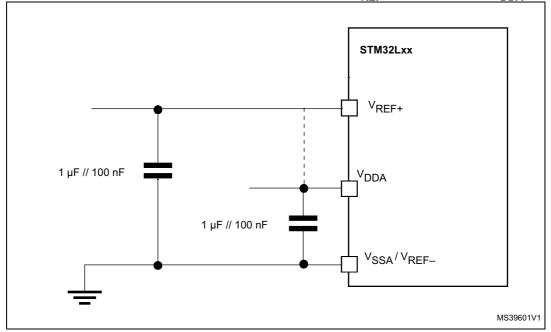


Figure 30. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

SPI characteristics

Unless otherwise specified, the parameters given in the following tables are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 26*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter Conditions Min		Min	Тур	Max	Unit	
f _{SCK} 1/t _{c(SCK)}		Master mode			16		
		Slave mode receiver	-	-	16		
	SPI clock frequency	Slave mode Transmitter 1.71 <v<sub>DD<3.6V</v<sub>	-	-	12 ⁽²⁾	MHz	
		Slave mode Transmitter 2.7 <v<sub>DD<3.6V</v<sub>	-	-	16 ⁽²⁾		
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%	
t _{su(NSS)}	NSS setup time Slave mode, SPI presc = 2 4*Tpclk		-	-			
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-		
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+ 2		
t _{su(MI)}	Data input setup time	Master mode	0	-	-		
t _{su(SI)}		Slave mode	3	-	-		
t _{h(MI)}	Data input hold time	Master mode	7	-	-		
t _{h(SI)}		Slave mode	3.5	-	-	ns	
t _{a(SO}	Data output access time	Slave mode	15	-	36		
t _{dis(SO)}	Data output disable time	Slave mode	10	-	30		
t _{v(SO)}		Slave mode 1.65 V <v<sub>DD<3.6 V</v<sub>	-	18	41		
	Data output valid time	Slave mode 2.7 V <v<sub>DD<3.6 V</v<sub>	-	18	25		
t _{v(MO)}		Master mode	-	4	7		
t _{h(SO)}	Data output hold time	Slave mode	10	-	-		
t _{h(MO)}		Master mode	0	-	-		

Table 75. SPI characteristics in	voltage Range 1 ⁽¹⁾
----------------------------------	--------------------------------

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

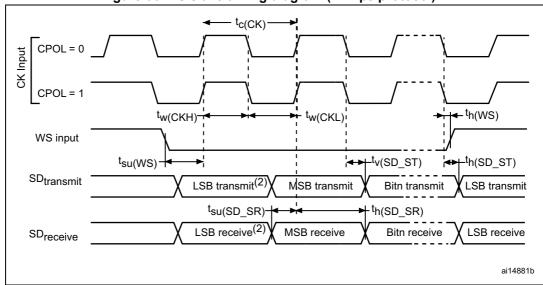
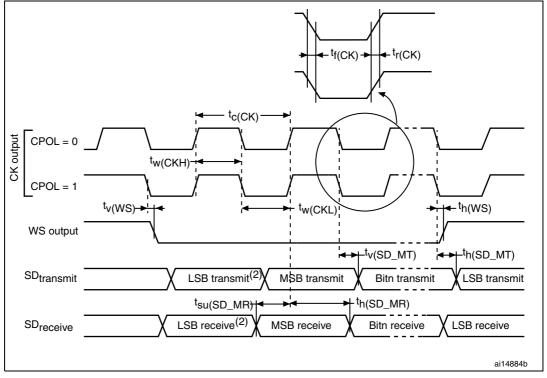



Figure 36. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at CMOS levels: $0.3 \times V_{DD}$ and $0.7 \times V_{DD}$.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 37. I²S master timing diagram (Philips protocol)⁽¹⁾

- 1. Guaranteed by characterization results.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

STM32L073xx

Symbol	Parameter		Тур	Max	Unit	
I _{LCD} ⁽¹⁾	Supply current at V_{DD} = 2.2 V		3.3	-		
LCD` ′	Supply current at V _{DD} = 3.0 V	-	3.1	-	μA	
R _{Htot} ⁽²⁾	Low drive resistive network overall value	5.28	6.6	7.92	MΩ	
R _L ⁽²⁾	High drive resistive network total value	192	240	288	kΩ	
V ₄₄	Segment/Common highest level voltage	-	-	V _{LCD}	V	
V ₃₄	Segment/Common 3/4 level voltage	-	3/4 V _{LCD}	-		
V ₂₃	Segment/Common 2/3 level voltage	-	2/3 V _{LCD}	-		
V ₁₂	Segment/Common 1/2 level voltage	-	1/2 V _{LCD}	-	v	
V ₁₃	Segment/Common 1/3 level voltage	-	1/3 V _{LCD}	-	v	
V ₁₄	Segment/Common 1/4 level voltage	-	1/4 V _{LCD}	-		
V ₀	Segment/Common lowest level voltage	0	-	-		
$\Delta Vxx^{(3)}$	Segment/Common level voltage error T _A = -40 to 85 °C		-	± 50	mV	

Table 82. LCD controller characteristics (continu	ed)
---	-----

LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD connected.

2. Guaranteed by design.

3. Guaranteed by characterization results.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status *are available at www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 package information

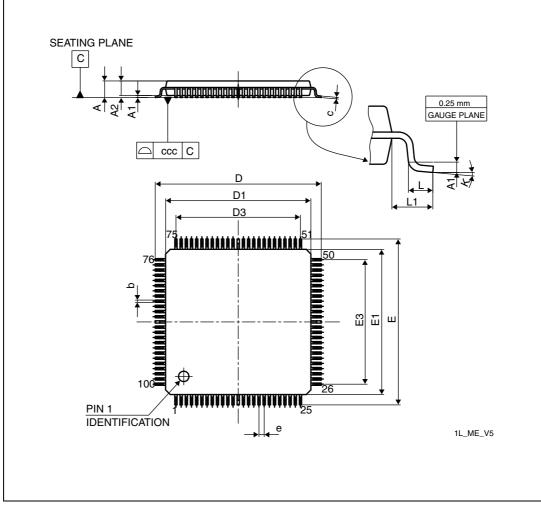


Figure 39. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale. Dimensions are in millimeters.

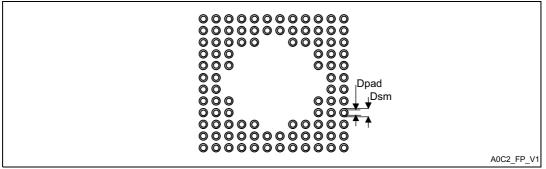


Table 84. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid arraypackage mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾					
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.			
ddd	-	-	0.080	-	-	0.0031			
eee	-	-	0.150	-	-	0.0059			
fff	-	-	0.050	-	-	0.0020			

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 43. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint

Table 85. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values					
Pitch	0.5					
Dpad	0.280 mm					
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)					
Stencil opening	0.280 mm					
Stencil thickness	Between 0.100 mm and 0.125 mm					

8 Part numbering

Table 91. STM32L073xx ord	lering ir	nforn	natio	n sc	her	ne			
Example:	STM3	2 L	07	3	R	8	т	6	D TR
Device family									
STM32 = ARM-based 32-bit microcontroller									
Product type									
L = Low power									
Device subfamily									
073 = USB + LCD									
Pin count									
C = 48/49 pins					1				
R = 64 pins									
V = 100 pins									
Flash memory size									
8 = 64 Kbytes									
B = 128 Kbytes									
Z = 192 Kbytes									
Package									
T = LQFP									
H = TFBGA									
I = UFBGA									
Temperature range									
6 = Industrial temperature range, -40 to 85 °C									
7 = Industrial temperature range, -40 to 105 °C									
3 = Industrial temperature range, –40 to 125 $^\circ$ C									
Options									
No character = V_{DD} range: 1.8 to 3.6 V and BOR enabled									-
D = V_{DD} range: 1.65 to 3.6 V and BOR disabled									
Packing									

TR = tape and reel

No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

