

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l073rzt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

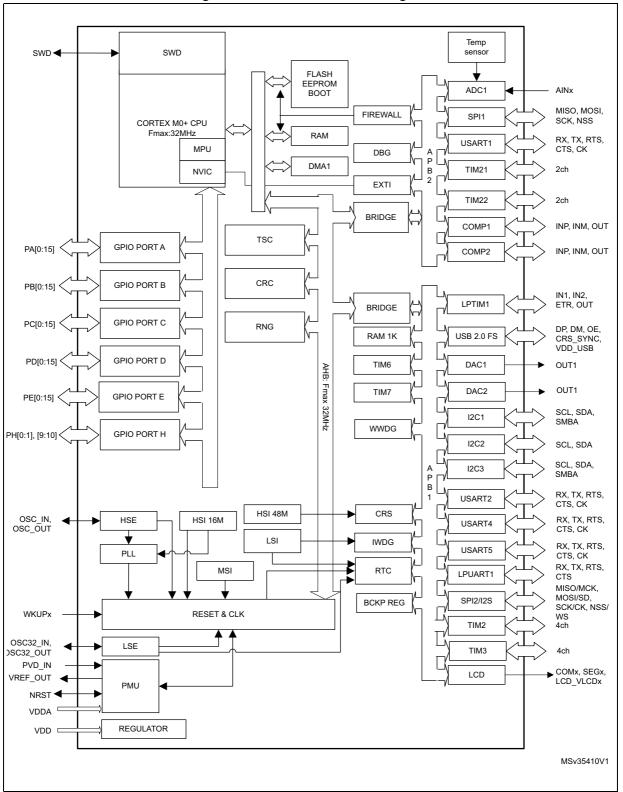


Figure 1. STM32L073xx block diagram

• Startup clock

After reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.

• Clock security system (CSS)

This feature can be enabled by software. If an HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.

Another clock security system can be enabled, in case of failure of the LSE it provides an interrupt or wakeup event which is generated if enabled.

• Clock-out capability (MCO: microcontroller clock output)

It outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

3.10 Direct memory access (DMA)

The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, LPUART, general-purpose timers, DAC, and ADC.

3.11 Liquid crystal display (LCD)

The LCD drives up to 8 common terminals and 48 segment terminals to drive up to 384 pixels.

- Internal step-up converter to guarantee functionality and contrast control irrespective of V_{DD}. This converter can be deactivated, in which case the V_{LCD} pin is used to provide the voltage to the LCD
- Supports static, 1/2, 1/3, 1/4 and 1/8 duty
- Supports static, 1/2, 1/3 and 1/4 bias
- Phase inversion to reduce power consumption and EMI
- Up to 8 pixels can be programmed to blink
- Unneeded segments and common pins can be used as general I/O pins
- LCD RAM can be updated at any time owing to a double-buffer
- The LCD controller can operate in Stop mode
- V_{LCD} rails decoupling capability

3.12 Analog-to-digital converter (ADC)

A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital converter is embedded into STM32L073xx device. It has up to 16 external channels and 3 internal channels (temperature sensor, voltage reference, V_{LCD} voltage measurement). Three channels, PA0, PA4 and PA5, are fast channels, while the others are standard channels.

The ADC performs conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC frequency is independent from the CPU frequency, allowing maximum sampling rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all frequencies (~25 μ A at 10 kSPS, ~240 μ A at 1MSPS). An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase.

The ADC can be served by the DMA controller. It can operate from a supply voltage down to 1.65 V.

The ADC features a hardware oversampler up to 256 samples, this improves the resolution to 16 bits (see AN2668).

3.16 Touch sensing controller (TSC)

The STM32L073xx provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (such as glass, plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0		TSC_G5_IO1	PB3
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
1	TSC_G1_IO3	PA2	5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3		TSC_G5_IO4	PB7
	TSC_G2_IO1	PA4		TSC_G6_IO1	PB11
2	TSC_G2_IO2	PA5	6	TSC_G6_IO2	PB12
2	TSC_G2_IO3	PA6	0	TSC_G6_IO3	PB13
	TSC_G2_IO4	PA7		TSC_G6_IO4	PB14
	TSC_G3_IO1	PC5		TSC_G7_IO1	PC0
3	TSC_G3_IO2	PB0	7	TSC_G7_IO2	PC1
5	TSC_G3_IO3	PB1	1	TSC_G7_IO3	PC2
	TSC_G3_IO4	PB2		TSC_G7_IO4	PC3
	TSC_G4_IO1	PA9		TSC_G8_IO1	PC6
4	TSC_G4_IO2	PA10	8	TSC_G8_IO2	PC7
-	TSC_G4_IO3	PA11	0	TSC_G8_IO3	PC8
	TSC_G4_IO4	PA12		TSC_G8_IO4	PC9

 Table 9. Capacitive sensing GPIOs available on STM32L073xx devices

3.18.2 Universal synchronous/asynchronous receiver transmitter (USART)

The four USART interfaces (USART1, USART2, USART4 and USART5) are able to communicate at speeds of up to 4 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 driver enable (DE) signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 and USART2 also support SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto baud rate feature and has a clock domain independent from the CPU clock, allowing to wake up the MCU from Stop mode using baudrates up to 42 Kbaud.

All USART interfaces can be served by the DMA controller.

Table 13 for the supported modes and features of USART interfaces.

USART modes/features ⁽¹⁾	USART1 and USART2	USART4 and USART5
Hardware flow control for modem	Х	Х
Continuous communication using DMA	Х	Х
Multiprocessor communication	Х	Х
Synchronous mode ⁽²⁾	Х	Х
Smartcard mode	Х	-
Single-wire half-duplex communication	Х	Х
IrDA SIR ENDEC block	Х	-
LIN mode	Х	-
Dual clock domain and wakeup from Stop mode	Х	-
Receiver timeout interrupt	Х	-
Modbus communication	Х	-
Auto baud rate detection (4 modes)	Х	-
Driver Enable	Х	Х

Table 13. USART implementation

1. X = supported.

2. This mode allows using the USART as an SPI master.

3.18.3 Low-power universal asynchronous receiver transmitter (LPUART)

The devices embed one Low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock. It can wake up the system from Stop mode using baudrates up to 46 Kbaud. The Wakeup events from Stop mode are programmable and can be:

- Start bit detection
- Or any received data frame
- Or a specific programmed data frame

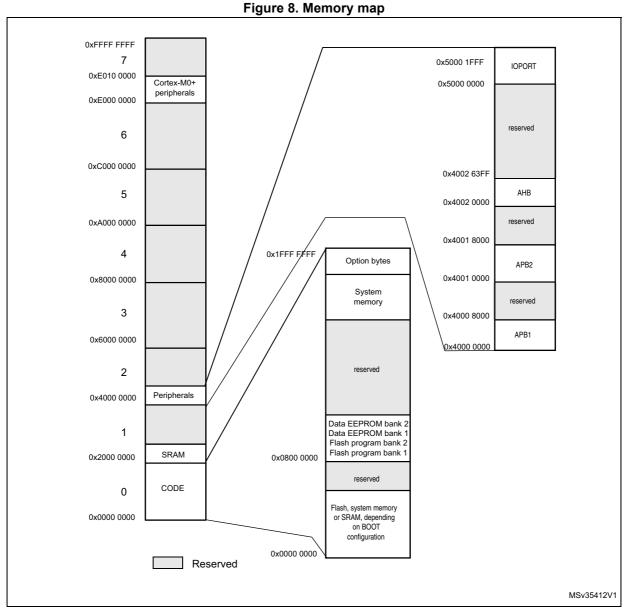
	Pi	n num	ber				_			
LQFP48	LQFP64	TFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	8	E3	15	H1	PC0	I/O	FTf	-	LPTIM1_IN1, LCD_SEG18, EVENTOUT, TSC_G7_IO1, LPUART1_RX, I2C3_SCL	ADC_IN10
-	9	E2	16	J2	PC1	I/O	FTf	-	LPTIM1_OUT, LCD_SEG19, EVENTOUT, TSC_G7_IO2, LPUART1_TX, I2C3_SDA	ADC_IN11
-	10	F2	17	J3	PC2	I/O	FTf	-	LPTIM1_IN2, LCD_SEG20, SPI2_MISO/I2S2_MCK, TSC_G7_IO3	ADC_IN12
-	11	-	18	K2	PC3	I/O	FT	-	LPTIM1_ETR, LCD_SEG21, SPI2_MOSI/I2S2_SD, TSC_G7_IO4	ADC_IN13
8	12	F1	19	J1	VSSA	S	-	-	-	-
-	-	-	20	K1	VREF-	S	-	-	-	-
-	-	G1	21	L1	VREF+	S	-	-	-	-
9	13	H1	22	M1	VDDA	S	-	-	-	-
10	14	G2	23	L2	PA0	I/O	тс	-	TIM2_CH1, TSC_G1_IO1, USART2_CTS, TIM2_ETR, USART4_TX, COMP1_OUT	COMP1_INM, ADC_IN0, RTC_TAMP2/WKUP1
11	15	H2	24	M2	PA1	I/O	FT	-	EVENTOUT, LCD_SEG0, TIM2_CH2, TSC_G1_IO2, USART2_RTS_DE, TIM21_ETR, USART4_RX	COMP1_INP, ADC_IN1
12	16	F3	25	КЗ	PA2	I/O	FT	-	TIM21_CH1, LCD_SEG1, TIM2_CH3, TSC_G1_IO3, USART2_TX, LPUART1_TX, COMP2_OUT	COMP2_INM, ADC_IN2
13	17	G3	26	L3	PA3	I/O	FT	-	TIM21_CH2, LCD_SEG2, TIM2_CH4, TSC_G1_IO4, USART2_RX, LPUART1_RX	COMP2_INP, ADC_IN3

Table 16.	STM32L	.073xx	pin (definition	(continued)
-----------	--------	--------	-------	------------	-------------

	Pi	n num	ber							
LQFP48	LQFP64	TFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	18	C2	27	E3	VSS	S	-	-	-	-
-	19	D2	28	H3	VDD	S	-	-	-	_
14	20	H3	29	M3	PA4	I/O	тс	(1)	SPI1_NSS, TSC_G2_IO1, USART2_CK, TIM22_ETR	COMP1_INM, COMP2_INM, ADC_IN4, DAC_OUT1
15	21	F4	30	K4	PA5	I/O	тс	-	SPI1_SCK, TIM2_ETR, TSC_G2_IO2, TIM2_CH1	COMP1_INM, COMP2_INM, ADC_IN5, DAC_OUT2
16	22	G4	31	L4	PA6	I/O	FT	-	SPI1_MISO, LCD_SEG3, TIM3_CH1, TSC_G2_IO3, LPUART1_CTS, TIM22_CH1, EVENTOUT, COMP1_OUT	ADC_IN6
17	23	H4	32	M4	PA7	I/O	FT	-	SPI1_MOSI, LCD_SEG4, TIM3_CH2, TSC_G2_IO4, TIM22_CH2, EVENTOUT, COMP2_OUT	ADC_IN7
-	24	H5	33	K5	PC4	I/O	FT	-	EVENTOUT, LCD_SEG22, LPUART1_TX	ADC_IN14
-	25	H6	34	L5	PC5	I/O	FT	-	LCD_SEG23, LPUART1_RX, TSC_G3_IO1	ADC_IN15
18	26	F5	35	M5	PB0	I/O	FT	-	EVENTOUT, LCD_SEG5, TIM3_CH3, TSC_G3_IO2	LCD_VLCD3, ADC_IN8, VREF_OUT
19	27	G5	36	M6	PB1	I/O	FT	-	LCD_SEG6, TIM3_CH4, TSC_G3_IO3, LPUART1_RTS_DE	ADC_IN9, VREF_OUT
20	28	G6	37	L6	PB2	I/O	FT	-	LPTIM1_OUT, TSC_G3_IO4, I2C3_SMBA	LCD_VLCD1
-	-	-	38	M7	PE7	I/O	FT	-	LCD_SEG45, USART5_CK/USART5_ RTS	-
-	-	-	39	L7	PE8	I/O	FT	-	LCD_SEG46, USART4_TX	-
-	-	-	40	M8	PE9	I/O	FT	-	TIM2_CH1, LCD_SEG47, TIM2_ETR, USART4_RX	_

51/139

DocID027096 Rev 3


5

		4.50	454			functions port B	455	450	457	
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	
Port		SPI1/SPI2/I2S2/ USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I 2C1/LCD/ TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/USB/L PTIM1/TIM2/3/E VENTOUT/ SYS_AF	I2C1/TSC/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2/I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT	I2C3/LPUART1/ COMP1/2/ TIM3	
	PB0	EVENTOUT	LCD_SEG5	TIM3_CH3	TSC_G3_IO2	-	-	-	-	
	PB1	-	LCD_SEG6	TIM3_CH4	TSC_G3_IO3	LPUART1_RTS_DE	-	-	-	
	PB2	-	-	LPTIM1_OUT	TSC_G3_IO4	-	-	-	I2C3_SMBA	
	PB3	SPI1_SCK	LCD_SEG7	TIM2_CH2	TSC_G5_IO1	EVENTOUT	USART1_RTS_DE	USART5_TX	-	
	PB4	SPI1_MISO	LCD_SEG8	TIM3_CH1	TSC_G5_IO2	TIM22_CH1	USART1_CTS	USART5_RX	I2C3_SDA	
	PB5	SPI1_MOSI	LCD_SEG9	LPTIM1_IN1	I2C1_SMBA	TIM3_CH2/ TIM22_CH2	USART1_CK	USART5_CK/ USART5_RTS_D E	-	
	PB6	USART1_TX	I2C1_SCL	LPTIM1_ETR	TSC_G5_IO3	-	-	-	-	
	PB7	USART1_RX	I2C1_SDA	LPTIM1_IN2	TSC_G5_IO4	-	-	USART4_CTS	-	
Port B	PB8	-	LCD_SEG16	-	TSC_SYNC	I2C1_SCL	-	-	-	
đ	PB9	-	LCD_COM3	EVENTOUT	-	I2C1_SDA	SPI2_NSS/ I2S2_WS	-	-	
	PB10	-	LCD_SEG10	TIM2_CH3	TSC_SYNC	LPUART1_TX	SPI2_SCK	I2C2_SCL	LPUART1_RX	
	PB11	EVENTOUT	LCD_SEG11	TIM2_CH4	TSC_G6_IO1	LPUART1_RX	-	I2C2_SDA	LPUART1_TX	
	PB12	SPI2_NSS/I2S2_WS	LCD_SEG12	LPUART1_RTS_ DE	TSC_G6_IO2		I2C2_SMBA	EVENTOUT	-	
	PB13	SPI2_SCK/I2S2_CK	LCD_SEG13	MCO	TSC_G6_IO3	LPUART1_CTS	I2C2_SCL	TIM21_CH1	-	
	PB14	SPI2_MISO/ I2S2_MCK	LCD_SEG14	RTC_OUT	TSC_G6_IO4	LPUART1_RTS_DE	I2C2_SDA	TIM21_CH2	-	
	PB15	SPI2_MOSI/ I2S2_SD	LCD_SEG15	RTC_REFIN	-	-	-	-	-	

Pin descriptions

STM32L073xx

5 Memory mapping

1. Refer to the STM32L073xx reference manual for details on the Flash memory organization for each memory size.

Symbol	Ratings	Max.	Unit
$\Sigma I_{VDD}^{(2)}$	Total current into sum of all V_{DD} power lines (source) ⁽¹⁾	105	
$\Sigma I_{VSS}^{(2)}$	Total current out of sum of all V_{SS} ground lines (sink) ⁽¹⁾	105	
ΣI_{VDD_USB}	Total current into V _{DD_USB} power lines (source)	25	
I _{VDD(PIN)}	Maximum current into each V _{DD} power pin (source) ⁽¹⁾	100	
I _{VSS(PIN)}	Maximum current out of each V_{SS} ground pin (sink) ⁽¹⁾	100	
	Output current sunk by any I/O and control pin except FTf pins	16	
Ι _{ΙΟ}	Output current sunk by FTf pins	22	
	Output current sourced by any I/O and control pin	-16	mA
	Total output current sunk by sum of all IOs and control pins except PA11 and PA12 ⁽²⁾	90	
ΣΙ _{ΙΟ(ΡΙΝ)}	Total output current sunk by PA11 and PA12	25	
	Total output current sourced by sum of all IOs and control $pins^{(2)}$	-90	
1	Injected current on FT, FFf, RST and B pins	-5/+0 ⁽³⁾	
I _{INJ(PIN)}	Injected current on TC pin	± 5 ⁽⁴⁾	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25	

Table 24. Current characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

 This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

 Positive current injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 23* for maximum allowed input voltage values.

A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 23: Voltage characteristics* for the maximum allowed input voltage values.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

Table 25. Thermal characteristics

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in *Table 26*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		BOR detector enabled	0	-	∞	
+ (1)	V _{DD} rise time rate	BOR detector disabled	0	-	1000	μs/V
t _{VDD} ⁽¹⁾) (foll time rate	ne rate BOR detector enabled 20 -				
	V _{DD} fall time rate	BOR detector disabled	0	-	1000	
т (1)	Reset temporization	V _{DD} rising, BOR enabled	-	2	3.3	ma
RSTTEMPO ⁽¹⁾	Reset temponzation	V _{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6	ms
M	Power on/power down reset	Falling edge	1	1.5	1.65	
V _{POR/PDR}	threshold	Rising edge	1.3	1.5	1.65	
		Falling edge	1.67	1.7	1.74	
V _{BOR0}	Brown-out reset threshold 0	Rising edge	1.69	1.76	1.8	
	Drewe out react threaded 4	Falling edge	1.87	1.93	1.97	
V _{BOR1}	Brown-out reset threshold 1	Rising edge	1.96	2.03	2.07	
	Drown out react threshold 2	Falling edge	2.22	2.30	2.35	
V _{BOR2}	Brown-out reset threshold 2	Rising edge	2.31	2.41	2.44	
	Drown out roact throohold 2	Falling edge	2.45	2.55	2.6	
V _{BOR3}	Brown-out reset threshold 3	Rising edge	2.54	2.66	2.7	
		Falling edge	2.68	2.8	2.85	
V _{BOR4}	Brown-out reset threshold 4	Rising edge	2.78	2.9	2.95	
	Programmable voltage detector	Falling edge	1.8	1.85	1.88	V
V _{PVD0}	threshold 0	Rising edge	1.88	1.94	1.99	
M	D) (D) there are a left 4	Falling edge	1.98	2.04	2.09	
V _{PVD1}	PVD threshold 1	Rising edge	2.08	2.14	2.18	
	D) (D three held 2	Falling edge	2.20	2.24	2.28	1
V _{PVD2}	PVD threshold 2	Rising edge	2.28	2.34	2.38	1
N/	DVD threehold 2	Falling edge	2.39	2.44	2.48	
V _{PVD3}	PVD threshold 3	Rising edge	2.47	2.54	2.58	
	D) (D three held 4	Falling edge	2.57	2.64	2.69	
V _{PVD4}	PVD threshold 4	Rising edge	2.68	2.74	2.79	
		Falling edge	2.77	2.83	2.88	
V _{PVD5}	PVD threshold 5	Rising edge	2.87	2.94	2.99	

Table 27. Embedded reset and power control block characteristics
--

Symbol	Parameter	Condition	-	f _{HCLK} (MHz)	Тур	Max ⁽¹⁾	Unit
			Range3,	1	43,5	110	
			Vcore=1.2 V	2	72	140	
			VOS[1:0]=11	4	130	200	
		f _{HSE} = f _{HCLK} up to	Range2,	4	160	220	
		16 MHz included, f _{HSE} = f _{HCLK} /2 above	Vcore=1.5 V	8	305	380	
		16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16	590	690	
			Range1,	8	370	460	
	Supply current in Sleep mode, Flash		Vcore=1.8 V	16	715	840	
	memory switched		VOS[1:0]=01	32	1650	2000	
	OFF		Range3,	0,065	18	93	
		MSI clock	Vcore=1.2 V	0,524	31,5	110	
			VOS[1:0]=11	4,2	140	230	
		HSI clock source (16 MHz)	Range2, Vcore=1.5 V VOS[1:0]=10	16	665	850	
I _{DD}			Range1, Vcore=1.8 V VOS[1:0]=01	32	1750	2100	
(Sleep)		f _{HSE} = f _{HCLK} up to 16MHz included, f _{HSE} = f _{HCLK} /2 above 16 MHz (PLL ON) ⁽²⁾	Range3, Vcore=1.2 V VOS[1:0]=11	1	57,5	130	μΑ
				2	84	160	
				4	150	220	
			Range2, Vcore=1.5 V VOS[1:0]=10	4	170	240	
				8	315	400	
				16	605	710	
			Range1,	8	380	470	
	Supply current in Sleep mode, Flash		Vcore=1.8 V	16	730	860	
	memory switched		VOS[1:0]=01	32	1650	2000	
	ON		Range3,	0,065	29,5	110	
		MSI clock	Vcore=1.2 V	0,524	44,5	120	
			VOS[1:0]=11	4,2	150	240	
		HSI clock source	Range2, Vcore=1.5 V VOS[1:0]=10	16	680	930	
		(16MHz)	Range1, Vcore=1.8 V VOS[1:0]=01	32	1750	2200	

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Figure 16. I_{DD} vs V_{DD}, at T_A= 25 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS

Symbol	Parameter			Тур	Max (1)	Unit	
			MSI clock = 65 kHz, f _{HCLK} = 32 kHz, T Flash memory OFF		4,7	-	
				$T_A = -40$ to $25^{\circ}C$	17	24	
		All peripherals OFF, code executed from	MSI clock = 65 kHz,	T _A = 85°C	19,5	30	
	Supply current in Low-power sleep mode		f _{HCLK} = 32 kHz	T _A = 105°C	23	47	
				T _A = 125°C	32,5	70	
			MSI clock = 65 kHz, f _{HCLK} = 65 kHz	T_A = - 40 to 25°C	17	24	
I _{DD} (LP Sleep)				T _A = 85°C	20	31	μA
		Flash memory, V _{DD} from 1.65 to 3.6 V		T _A = 105°C	23,5	47	
				T _A = 125°C	32,5	70	
				T_A = - 40 to 25°C	19,5	27	
				T _A = 55°C	20,5	28	
			MSI clock = 131kHz, f _{HCLK} = 131 kHz	T _A = 85°C	22,5	33	
			HOLK COLUMN	T _A = 105°C	26	50	
				T _A = 125°C	35	73	

Table 36. Current consumption in Low-power sleep mode

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

		Typical consumption, V _{DD} = 3.0 V, T _A = 25 °C				
Peripheral		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit
	ADC1 ⁽²⁾	5.5	5	3.5	4	
	SPI1	4	3	3	2.5	
	USART1	14.5	11.5	9.5	12	
APB2	TIM21	7.5	6	5	5.5	µA/MHz
AFDZ	TIM22	7	6	5	6	(f _{HCLK})
	FIREWALL	1.5	1	1	0.5	
	DBGMCU	1.5	1	1	0.5	
	SYSCFG	2.5	2	2	1.5	
	GPIOA	3.5	3	2.5	2.5	µA/MHz (f _{HCLK})
	GPIOB	3.5	2.5	2	2.5	
Cortex- M0+ core	GPIOC	8.5	6.5	5.5	7	
I/O port	GPIOD	1	0.5	0.5	0.5	
	GPIOE	8	6	5	6	
	GPIOH	1.5	1	1	0.5	
	CRC	1.5	1	1	1	
	FLASH	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	
AHB	DMA1	10	8	6.5	8.5	µA/MHz (f _{HCLK})
	RNG	5.5	1	0.5	0.5	VIICLK/
	TSC	3	2.5	2	3	
All e	enabled	204	162	130	202	µA/MHz (f _{HCLK})
PWR		2.5	2	2	1	µA/MHz (f _{HCLK})

Table 40. Peripheral current consumption in Run or Sleep mode ⁽¹⁾ (continued)	Table 40. Peripheral current consumpt	tion in Run or Sleep	o mode ⁽¹⁾ (continued)
--	---------------------------------------	----------------------	-----------------------------------

 Data based on differential I_{DD} measurement between all peripherals off an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (range 1), f_{HCLK} = 16 MHz (range 2), f_{HCLK} = 4 MHz (range 3), f_{HCLK} = 64kHz (Low-power run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production.

2. HSI oscillator is off for this measure.

3. Current consumption is negligible and close to 0 μ A.

Symbol	Parameter	Conditions	Value	Unit
Symbol	Farameter	Conditions	Min ⁽¹⁾	Unit
	Data retention (program memory) after 10 kcycles at T _A = 85 °C	T _{RFT} = +85 °C	30	
	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 85 \text{ °C}$	1 _{RET} - +65 C	30	years
t _{RET} ⁽²⁾	Data retention (program memory) after 10 kcycles at T_A = 105 °C	T _{RFT} = +105 °C	- 10	
'RET`	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 105$ °C	TRET - FIUS C		
	Data retention (program memory) after 200 cycles at T _A = 125 °C	T - +125 °C	10	
	Data retention (EEPROM data memory) after 2 kcycles at T _A = 125 °C	T _{RET} = +125 °C		

 Table 54. Flash memory and data EEPROM endurance and retention (continued)

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- **Electrostatic discharge (ESD)** (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 55*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, \text{ LQFP100}, \text{ T}_{\text{A}} = +25 \text{ °C},$ f _{HCLK} = 32 MHz conforms to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3$ V, LQFP100, T _A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-4	4A

Table 55. EMS characteristics

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

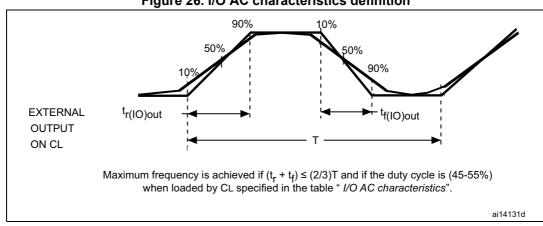
Symbol	Ratings	Conditions		Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \degree C$, conforming to ANSI/JEDEC JS-001	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \text{ °C},$ conforming to ANSI/ESD STM5.3.1.	C4	500	v

Table 57. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:


- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 58. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +125$ °C conforming to JESD78A	II level A

Figure 26. I/O AC characteristics definition

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} , except when it is internally driven low (see *Table 63*).

Unless otherwise specified, the parameters given in *Table 63* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 26*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	$V_{\rm SS}$	-	0.8	
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	-	1.4	-	V_{DD}	
V(1)	NRST output low level voltage	I _{OL} = 2 mA 2.7 V < V _{DD} < 3.6 V		-	0.4	V
♥OL(NRST)`´	voltage	I _{OL} = 1.5 mA 1.65 V < V _{DD} < 2.7 V	-	-	0.4	
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	10%V _{DD} ⁽²⁾	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	50	ns
V _{NF(NRST)} ⁽¹⁾	NRST input not filtered pulse	-	350	_	-	ns

Table	63.	NRST	nin	characteristics
Table	00.		pill	characteristics

1. Guaranteed by design.

2. 200 mV minimum value

3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
dOffset/dT ⁽²⁾	Offset error temperature	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer off	-20	-10	0	uV/°C	
	coefficient (code 0x800)	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer on	0	20	50	µV/°C	
Gain ⁽²⁾	Gain error ⁽⁸⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer on	-	+0.1 / -0.2%	+0.2 / -0.5%	0/2	
Gain		No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	+0 / -0.2%	+0 / -0.4%	- %	
dGain/dT ⁽²⁾	Gain error temperature	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer off	-10	-2	0	- μV/°C	
	coefficient	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_A = 0$ to 50 °C DAC output buffer on	-40	-8	0	μv/ C	
TUE ⁽²⁾	Total unadjusted error	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer on	-	12	30	- LSB	
		No R_{LOAD} , $C_L \le 50 \text{ pF}$ DAC output buffer off	-	8	12		
t _{SETTLING}	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till DAC_OUT reaches final value ±1LSB	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	7	12	μs	
Update rate	Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-	1	Msps	
t _{WAKEUP}	Wakeup time from off state (setting the ENx bit in the DAC Control register) ⁽⁹⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	9	15	μs	
PSRR+	V _{DDA} supply rejection ratio (static DC measurement)	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-60	-35	dB	

Table 67. DAC characteristics (continued)

1. Guaranteed by characterization results.

2. Guaranteed by design, not tested in production.

3. Connected between DAC_OUT and V_{SSA} .

4. Difference between two consecutive codes - 1 LSB.

5. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.

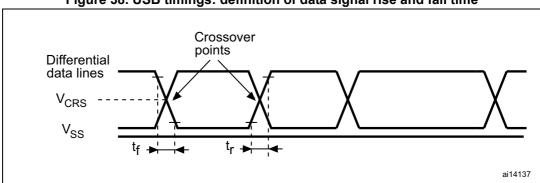


Figure 38. USB timings: definition of data signal rise and fall time

Table 81. USB: full speed electrical characteristics
--

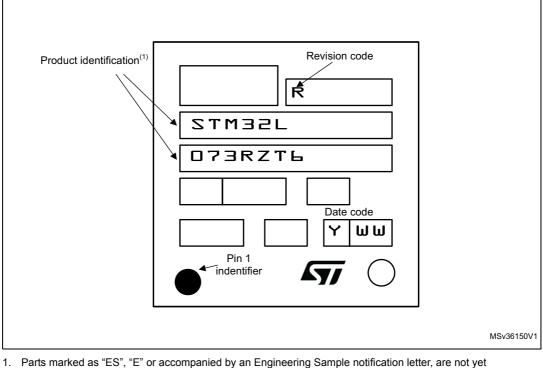
Driver characteristics ⁽¹⁾										
Symbol	Parameter	Conditions	Min	Max	Unit					
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns					
t _f	Fall Time ⁽²⁾	C _L = 50 pF	4	20	ns					
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%					
V _{CRS}	Output signal crossover voltage		1.3	2.0	V					

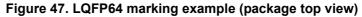
1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

6.3.21 LCD controller

The devices embed a built-in step-up converter to provide a constant LCD reference voltage independently from the V_{DD} voltage. An external capacitor C_{ext} must be connected to the V_{LCD} pin to decouple this converter.


Symbol	Parameter	Min	Тур	Max	Unit
V _{LCD}	LCD external voltage	-	-	3.6	
V _{LCD0}	LCD internal reference voltage 0	-	2.6	-	
V _{LCD1}	LCD internal reference voltage 1	-	2.73	-	
V _{LCD2}	LCD internal reference voltage 2	-	2.86	-	
V _{LCD3}	LCD internal reference voltage 3	-	2.98	-	V
V _{LCD4}	LCD internal reference voltage 4	-	3.12	-	
V _{LCD5}	LCD internal reference voltage 5	-	3.26	-	
V _{LCD6}	LCD internal reference voltage 6	-	3.4	-	
V _{LCD7}	LCD internal reference voltage 7	-	3.55	-	
C _{ext}	V _{LCD} external capacitance	0.1	-	2	μF


Table 82. LCD controller characteristics

Device marking for LQFP64

The following figure gives an example of topside marking versus pin 1 position identifier location.

I. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

