

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA
Supplier Device Package	100-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l073vzi6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

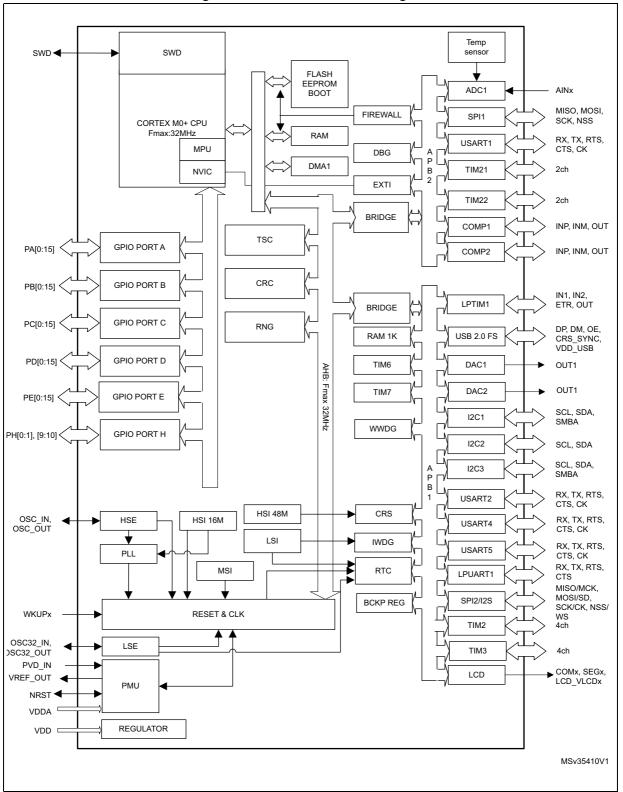


Figure 1. STM32L073xx block diagram

DocID027096 Rev 3

2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary core up to ARM[®] Cortex[®]-M4, including ARM[®] Cortex[®]-M3 and ARM[®] Cortex[®]-M0+. The STM32Lx series are the best choice to answer your needs in terms of ultra-low-power features. The STM32 ultra-low-power series are the best solution for applications such as gaz/water meter, keyboard/mouse or fitness and healthcare application. Several built-in features like LCD drivers, dual-bank memory, low-power run mode, operational amplifiers, 128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to respond to the latest market feature and efficiency requirements.

• Startup clock

After reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.

• Clock security system (CSS)

This feature can be enabled by software. If an HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.

Another clock security system can be enabled, in case of failure of the LSE it provides an interrupt or wakeup event which is generated if enabled.

• Clock-out capability (MCO: microcontroller clock output)

It outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

3.13.2 V_{LCD} voltage monitoring

This embedded hardware feature allows the application to measure the V_{LCD} supply voltage using the internal ADC channel ADC_IN16. As the V_{LCD} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the ADC input is connected to LCD_VLCD2 (which provides 1/3V_{LCD} when the LCD is configured 1/3Bias and 1/4V_{LCD} when the LCD is configured 1/4Bias or 1/2Bias).

3.14 Digital-to-analog converter (DAC)

Two 12-bit buffered DACs can be used to convert digital signal into analog voltage signal output. An optional amplifier can be used to reduce the output signal impedance.

This digital Interface supports the following features:

- One data holding register (for each channel)
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channels with independent or simultaneous conversions
- DMA capability (including the underrun interrupt)
- External triggers for conversion
- Input reference voltage V_{REF+}

Six DAC trigger inputs are used in the STM32L073xx. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.15 Ultra-low-power comparators and reference voltage

The STM32L073xx embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).

- One comparator with ultra low consumption
- One comparator with rail-to-rail inputs, fast or slow mode.
- The threshold can be one of the following:
 - DAC output
 - External I/O pins
 - Internal reference voltage (V_{REFINT})
 - submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail comparator.

Both comparators can wake up the devices from Stop mode, and be combined into a window comparator.

The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 μ A typical).

3.16 Touch sensing controller (TSC)

The STM32L073xx provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (such as glass, plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0		TSC_G5_IO1	PB3
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
1	TSC_G1_IO3	PA2	5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3		TSC_G5_IO4	PB7
	TSC_G2_IO1	PA4		TSC_G6_IO1	PB11
2	TSC_G2_IO2	PA5	6	TSC_G6_IO2	PB12
2	TSC_G2_IO3	PA6	0	TSC_G6_IO3	PB13
	TSC_G2_IO4	PA7		TSC_G6_IO4	PB14
	TSC_G3_IO1	PC5		TSC_G7_IO1	PC0
3	TSC_G3_IO2	PB0	7	TSC_G7_IO2	PC1
5	TSC_G3_IO3	PB1	1	TSC_G7_IO3	PC2
	TSC_G3_IO4	PB2		TSC_G7_IO4	PC3
	TSC_G4_IO1	PA9		TSC_G8_IO1	PC6
4	TSC_G4_IO2	PA10	8	TSC_G8_IO2	PC7
4	TSC_G4_IO3	PA11	0	TSC_G8_IO3	PC8
	TSC_G4_IO4	PA12		TSC_G8_IO4	PC9

 Table 9. Capacitive sensing GPIOs available on STM32L073xx devices

3.18.2 Universal synchronous/asynchronous receiver transmitter (USART)

The four USART interfaces (USART1, USART2, USART4 and USART5) are able to communicate at speeds of up to 4 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 driver enable (DE) signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 and USART2 also support SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto baud rate feature and has a clock domain independent from the CPU clock, allowing to wake up the MCU from Stop mode using baudrates up to 42 Kbaud.

All USART interfaces can be served by the DMA controller.

Table 13 for the supported modes and features of USART interfaces.

USART modes/features ⁽¹⁾	USART1 and USART2	USART4 and USART5
Hardware flow control for modem	Х	Х
Continuous communication using DMA	Х	Х
Multiprocessor communication	Х	Х
Synchronous mode ⁽²⁾	Х	Х
Smartcard mode	Х	-
Single-wire half-duplex communication	Х	Х
IrDA SIR ENDEC block	Х	-
LIN mode	Х	-
Dual clock domain and wakeup from Stop mode	Х	-
Receiver timeout interrupt	Х	-
Modbus communication	Х	-
Auto baud rate detection (4 modes)	Х	-
Driver Enable	Х	Х

Table 13. USART implementation

1. X = supported.

2. This mode allows using the USART as an SPI master.

3.18.3 Low-power universal asynchronous receiver transmitter (LPUART)

The devices embed one Low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock. It can wake up the system from Stop mode using baudrates up to 46 Kbaud. The Wakeup events from Stop mode are programmable and can be:

- Start bit detection
- Or any received data frame
- Or a specific programmed data frame

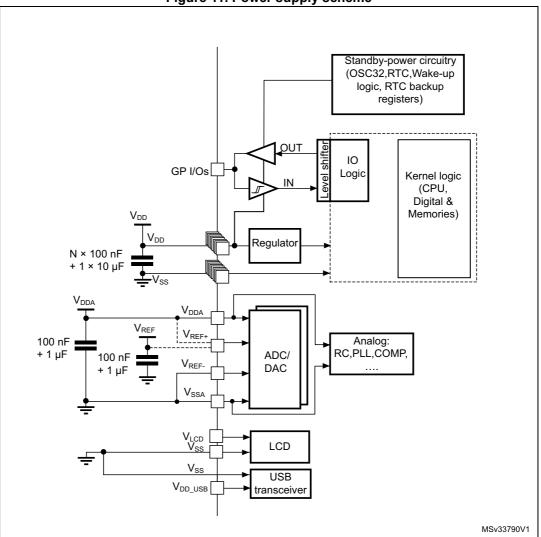
	i igule c					Danou	l - JX J	
	1	2	3	4	5	6	7	8
A	₽°C14- OSC32 `_41¥	(PC13)	(PB9)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)
В	アCT5- OSC32 OUオ	(VLCD)	(PB8)		(PD2)	(PC11)	(PC10)	(PA12)
С	(PHO-) osc_IN	(vss)	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)
D	(0SC) (0SC) \QUT		(PB6)	(vss)	(vss)	(vss)	(PA8)	(PC9)
E		(PC1)	(PC0)	(VDD)	(VDD)		(PC7)	(PC8)
F	(VSSA)	(PC2)	(PA2)	(PA5)	(PB0)	(PC6)	(PB15)	(PB14)
G		(PA0)	(PA3)	(PA6)	(PB1)	(PB2)	(PB10)	(PB13)
Н	(VDDA)	(PA1)	(PA4)	(PA7)	(PC4)	(PC5)	(PB11)	(PB12)
	L							

Figure 6. STM32L073xx TFBGA64 ballout - 5x 5 mm

1. The above figure shows the package top view.

2. I/O pin supplied by VDD_USB.

				Table 21.	Alternate fur	nctions port E			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Port		SPI1/SPI2/I2S2/ USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I2C1 /LCD/TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/USB/ LPTIM1/TIM2/3 /EVENTOUT/ SYS_AF	I2C1/TSC/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT	I2C3/LPUART1/ COMP1/2/TIM3
	PE0	-	LCD_SEG36	EVENTOUT	-	-	-	-	-
	PE1	-	LCD_SEG37	EVENTOUT	-	-	-	-	-
	PE2	-	LCD_SEG38	TIM3_ETR	-	-	-	-	-
	PE3	TIM22_CH1	LCD_SEG39	TIM3_CH1	-	-	-	-	-
	PE4	TIM22_CH2	-	TIM3_CH2	-	-	-	-	-
	PE5	TIM21_CH1	-	TIM3_CH3	-	-	-	-	-
	PE6	TIM21_CH2	-	TIM3_CH4	-	-	-	-	-
Port E	PE7	-	LCD_SEG45	-	-	-	-	USART5_CK/U SART5_RTS_D E	-
ш	PE8	-	LCD_SEG46	-	-	-	-	USART4_TX	-
	PE9	TIM2_CH1	LCD_SEG47	TIM2_ETR	-	-	-	USART4_RX	-
	PE10	TIM2_CH2	LCD_SEG40	-	-	-	-	USART5_TX	-
	PE11	TIM2_CH3	-	-	-	-	-	USART5_RX	-
	PE12	TIM2_CH4	-	SPI1_NSS	-	-	-	-	-
	PE13	-	LCD_SEG41	SPI1_SCK	-	-	-	-	-
	PE14	-	LCD_SEG42	SPI1_MISO	-	-	-	-	-
	PE15	-	LCD_SEG43	SPI1_MOSI	-	-	-	-	-


DocID027096 Rev 3

54/139

STM32L073xx

Pin descriptions

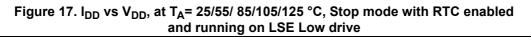
6.1.6 Power supply scheme

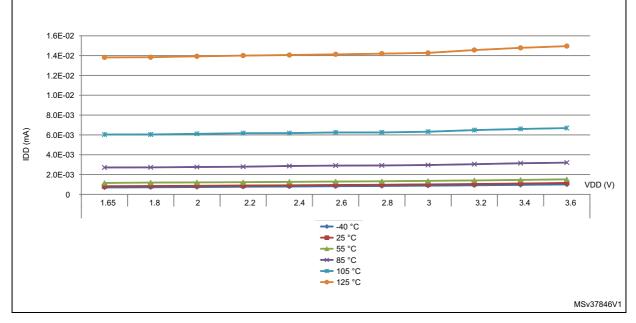
Figure 11. Power supply scheme

6.3 **Operating conditions**

6.3.1 General operating conditions

Table 26. General operating conditions

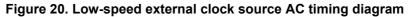

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	32		
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	32		
		BOR detector disabled	1.65	3.6		
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	v	
		BOR detector disabled, after power on	1.65	3.6		
V _{DDA}	Analog operating voltage (DAC not used)	Must be the same voltage as $V_{DD}^{(1)}$	1.65	3.6	V	
V _{DDA}	Analog operating voltage (all features)	Must be the same voltage as $V_{DD}^{(1)}$	1.8	3.6	V	
V _{DD_US}	Standard operating voltage, USB	USB peripheral used	3.0	3.6	- V	
В	domain ⁽²⁾	USB peripheral not used	1.65	3.6		
	Input voltage on FT, FTf and RST pins ⁽³⁾	$2.0~V \leq V_{DD} \leq 3.6~V$	-0.3	5.5		
V		$1.65~V \leq V_{DD} \leq 2.0~V$	-0.3	5.2	v	
V _{IN}	Input voltage on BOOT0 pin	-	0	5.5	v	
	Input voltage on TC pin	-	-0.3	V _{DD} +0.3		
		UFBGA100 package	-	351		
		LQFP100 package	-	488		
	Power dissipation at $T_A = 85 \degree C$ (range 6) or $T_A = 105 \degree C$ (range 7) ⁽⁴⁾	TFBGA64 package	-	313		
		LQFP64 package	-	435		
PD		LQFP48 package	-	370	mW	
ГD		UFBGA100 package	-	88	11100	
		LQFP100 package	-	122		
	Power dissipation at $T_A = 125 \degree C$ (range 3) ⁽⁴⁾	TFBGA64 package	-	78		
		LQFP64 package	-	109		
		LQFP48 package	-	93		

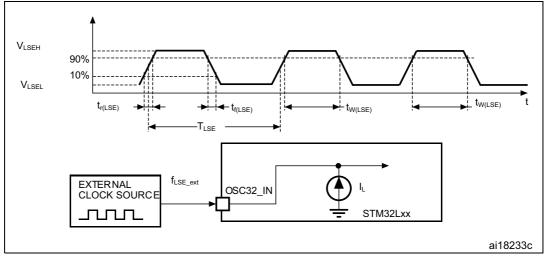


Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit			
	Supply current in Stop mode	$T_{A} = -40 \text{ to } 25^{\circ}\text{C}$	0,43	1,00				
		T _A = 55°C	0,735	2,50	μA			
I _{DD} (Stop)		T _A = 85°C	2,25	4,90				
		T _A = 105°C	5,3	13,00				
		T _A = 125°C	12,5	28,00				

Table 37. Typical and maximum current consumptions in Stop mode

1. Guaranteed by characterization results at 125 $^\circ\text{C},$ unless otherwise specified.


Low-speed external user clock generated from an external source


The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 26*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency		1	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	v
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time		465	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time		-	-	10	115
C _{IN(LSE)}	OSC32_IN input capacitance	-	-	0.6	-	pF
DuCy _(LSE)	Duty cycle	-	45	-	55	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

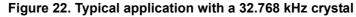
 Table 44. Low-speed external user clock characteristics⁽¹⁾

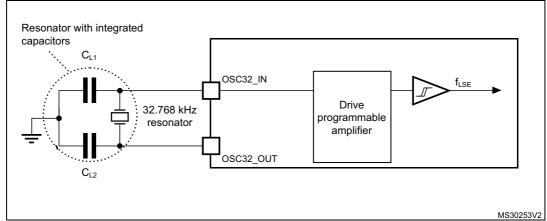
1. Guaranteed by design, not tested in production

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 46*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min ⁽²⁾	Тур	Max	Unit
f _{LSE}	LSE oscillator frequency		-	32.768	-	kHz
G _m		LSEDRV[1:0]=00 lower driving capability	-	-	0.5	
	Maximum critical crystal transconductance	LSEDRV[1:0]= 01 critical crystal medium low driving capability		-	0.75	uA/V
		LSEDRV[1:0] = 10 medium high driving capability	-	-	1.7	μΑνν
		LSEDRV[1:0]=11 higher driving capability	-	-	2.7	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	S


Table 46. LSE oscillator cha	racteristics ⁽¹⁾
------------------------------	-----------------------------


1. Guaranteed by design.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

3. Guaranteed by characterization results. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Note:

An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

Symbol	Parameter	Conditions	Value	Unit
Symbol	Farameter	Conditions	Min ⁽¹⁾	Unit
	Data retention (program memory) after 10 kcycles at T _A = 85 °C	T _{RFT} = +85 °C	30	
	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 85 \text{ °C}$	1 _{RET} - +65 C	30	
t _{RET} ⁽²⁾	Data retention (program memory) after 10 kcycles at T_A = 105 °C	T _{RFT} = +105 °C	10	
'RET`	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 105$ °C	TRET - FIUS C		years
	Data retention (program memory) after 200 cycles at T _A = 125 °C	T - +125 °C	10	
	Data retention (EEPROM data memory) after 2 kcycles at T _A = 125 °C	T _{RET} = +125 °C		

 Table 54. Flash memory and data EEPROM endurance and retention (continued)

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- **Electrostatic discharge (ESD)** (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 55*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, \text{ LQFP100}, \text{ T}_{\text{A}} = +25 \text{ °C},$ f _{HCLK} = 32 MHz conforms to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3$ V, LQFP100, T _A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-4	4A

Table 55. EMS characteristics

Symbol	Parameter	Parameter Conditions		Тур	Max	Unit
		Master mode			8	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode Transmitter 1.65 <v<sub>DD<3.6V</v<sub>	-	-	8	MHz
-C(SCR)		Slave mode Transmitter 2.7 <v<sub>DD<3.6V</v<sub>			8 ⁽²⁾	
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	
t _{su(MI)}	Data input setup time	Master mode	0	-	-	
t _{su(SI)}	Data input setup time	Slave mode	3	-	-	
t _{h(MI)}	Data input hold time	Master mode	11	-	-	
t _{h(SI)}		Slave mode	4.5	-	-	ns
t _{a(SO}	Data output access time	Slave mode	18	-	52	
t _{dis(SO)}	Data output disable time	Slave mode	12	-	42	
t _{v(SO)}	Data output valid time	Slave mode	-	20	56.5	
t _{v(MO)}		Master mode	-	5	9	
t _{h(SO)}	Data output hold time	Slave mode	13	-	-	
t _{h(MO)}		Master mode	3	-	-	

Table 76. SPI characteristics in	n voltage	Range 2 ⁽¹⁾
----------------------------------	-----------	------------------------

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{SCK}	SDI alaak fraguanay	Master mode			2	MHz
1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	-	2 ⁽²⁾	IVILL
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	
t _{su(MI)}	Data input setup time	Master mode	1.5	-	-	
t _{su(SI)}	Data input setup time	Slave mode	6	-	-	
t _{h(MI)}	Data input hold time	Master mode	13.5	-	-	
t _{h(SI)}		Slave mode	16	-	-	ns
t _{a(SO}	Data output access time	Slave mode	30	-	70	
t _{dis(SO)}	Data output disable time	Slave mode	40	-	80	
t _{v(SO)}	Data output valid time	Slave mode	-	30	70	
t _{v(MO)}		Master mode	-	7	9	
t _{h(SO)}	Data output hold time	Slave mode	25	-	-	
t _{h(MO)}	Data output hold time	Master mode	8	-	-	

Table 77. SPI characteristics in voltage F	Range 3 ⁽¹⁾
--	------------------------

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

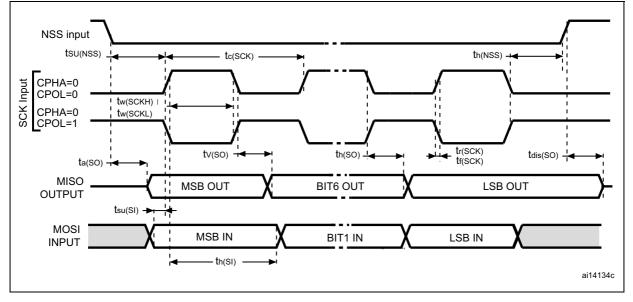


Figure 33. SPI timing diagram - slave mode and CPHA = 0

DocID027096 Rev 3

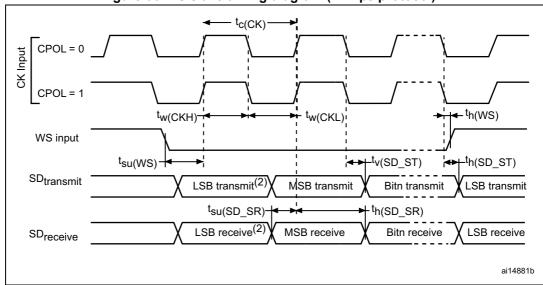
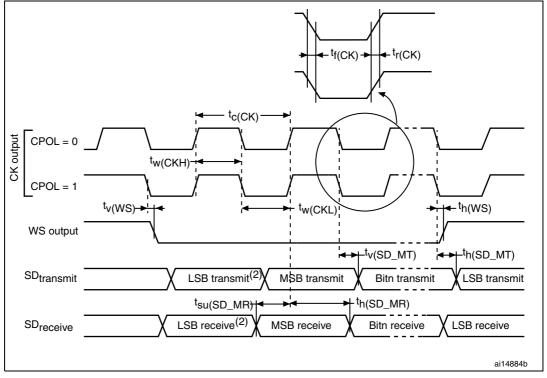
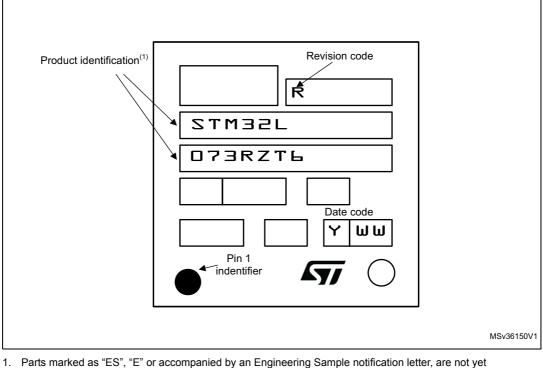
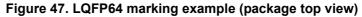



Figure 36. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at CMOS levels: $0.3 \times V_{DD}$ and $0.7 \times V_{DD}$.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 37. I²S master timing diagram (Philips protocol)⁽¹⁾


- 1. Guaranteed by characterization results.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.



STM32L073xx

Device marking for LQFP64

The following figure gives an example of topside marking versus pin 1 position identifier location.

I. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.4 **TFBGA64** package information

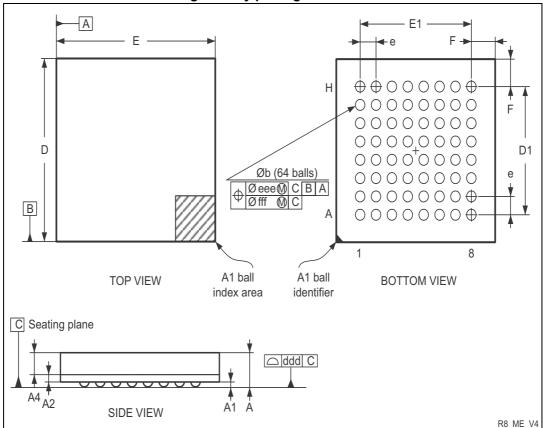


Figure 48. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 87. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
grid array package mechanical data

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.200	-	-	0.0472
A1	0.150	-	-	0.0059	-	-
A2	-	0.200	-	-	0.0079	-
A4	-	-	0.600	-	-	0.0236
b	0.250	0.300	0.350	0.0098	0.0118	0.0138
D	4.850	5.000	5.150	0.1909	0.1969	0.2028
D1	-	3.500	-	-	0.1378	-
E	4.850	5.000	5.150	0.1909	0.1969	0.2028
E1	-	3.500	-	-	0.1378	-

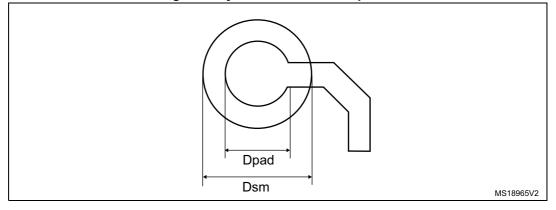


Table 87. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ballgrid array package mechanical data (continued)

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
е	-	0.500	-	-	0.0197	-
F	-	0.750	-	-	0.0295	-
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 49. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball ,grid array recommended footprint

Table 88. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5
Dpad	0.27 mm
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)
Solder paste	0.27 mm aperture diameter.

Note:Non solder mask defined (NSMD) pads are recommended.4 to 6 mils solder paste screen printing process.

