E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20К х 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l073vzt6d

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Device overview

Table 2. Ultra-low	v-power STM32L073xxx	device features and	peripheral of	counts
		active realance and	peripricial	,0unto

P	eripheral	STM32L073 V8	STM32L073 CB	STM32L073 VB	STM32L073 RB	STM32L073 CZ	STM32L073 VZ	STM32L073 RZ	
Flash (Kby	tes)	64 Kbytes		128 Kbytes			192 Kbytes		
Data EEPR	OM (Kbytes)	3 Kbytes			6 Kt	oytes			
RAM (Kbyt	es)				20 Kbytes				
	General- purpose				4				
Timers	Basic				2				
	LPTIMER				1				
RTC/SYST	ICK/IWDG/WWDG				1/1/1/1				
	SPI/I2S				6(4) ⁽¹⁾ /1				
Commu-	l ² C				3				
nication interfaces	USART				4				
interfaces	LPUART		1						
	USB/(VDD_USB)	1/(1)							
GPIOs		84	37	84	51 ⁽²⁾	37	84	51 ⁽²⁾	
Clocks: HSE/LSE/H	ISI/MSI/LSI	1/1/1/1							
12-bit sync Number of	hronized ADC channels	1 16	1 10	16	l (2)	1 10	1 16 ⁽²⁾		
12-bit DAC Number of	channels				2 2				
LCD COM x SEC	3	1 4x52 or 8x48	1 4x18	1 4x52 or 8x48	1 4x32 or 8x28 ⁽²⁾	1 4x18	1 4x52 or 8x48	1 4x32 or 8x28 ⁽²⁾	
Comparato	ors				2				
Capacitive channels	sensing	24	17	24	24 ⁽²⁾	17	24	24 ⁽²⁾	
Max. CPU f	requency				32 MHz				
Operating	voltage	1.8 V to 3.6 V	V (down to 1.6	5 V at power-c	lown) with BO	R option 1.65	to 3.6 V withou	t BOR option	
Operating	temperatures			Ambient ter Junction ter	mperature: –40 mperature: –40	0 to +125 °C 0 to +130 °C	-		
Packages		LQFP100 UFBGA100	LQFP48	LQFP100 UFBGA100	LQFP64, TFBGA64	LQFP48	LQFP100 UFBGA100	LQFP64, TFBGA64	

1. 4 SPI interfaces are USARTs operating in SPI master mode.

2. TFBGA64 has one GPIO, one ADC input, one capacitive sensing channel and one COMxSEG (4x31 or 8x27) less than LQFP64.

3 Functional overview

3.1 Low-power modes

The ultra-low-power STM32L073xx support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply.

There are three power consumption ranges:

- Range 1 (V_{DD} range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz
- Range 2 (full V_{DD} range), with a maximum CPU frequency of 16 MHz
- Range 3 (full V_{DD} range), with a maximum CPU frequency limited to 4.2 MHz

Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off.

Low-power run mode

This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both limited.

Low-power sleep mode

This mode is achieved by entering Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator's operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.

When wakeup is triggered by an event or an interrupt, the system reverts to the Run mode with the regulator on.

Stop mode with RTC

The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V_{CORE} domain are stopped, the PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.

The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup events, the USB/USART/I2C/LPUART/LPTIMER wakeup events.

• Stop mode without RTC

The Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are disabled.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.

The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 μ s, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB/USART/I2C/LPUART/LPTIMER wakeup events.

• Standby mode with RTC

The Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

Standby mode without RTC

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).

The device exits Standby mode in 60 μ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode. The LCD is not stopped automatically by entering Stop mode.

• Startup clock

After reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.

• Clock security system (CSS)

This feature can be enabled by software. If an HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.

Another clock security system can be enabled, in case of failure of the LSE it provides an interrupt or wakeup event which is generated if enabled.

• Clock-out capability (MCO: microcontroller clock output)

It outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

Table 16.	STM32L	.073xx	pin	definition	(continued)
-----------	--------	--------	-----	------------	-------------

	Pi	n num	ber							
LQFP48	LQFP64	TFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	8	E3	15	H1	PC0	I/O	FTf	-	LPTIM1_IN1, LCD_SEG18, EVENTOUT, TSC_G7_IO1, LPUART1_RX, I2C3_SCL	ADC_IN10
-	9	E2	16	J2	PC1	I/O	FTf	-	LPTIM1_OUT, LCD_SEG19, EVENTOUT, TSC_G7_IO2, LPUART1_TX, I2C3_SDA	ADC_IN11
-	10	F2	17	J3	PC2	I/O	FTf	-	LPTIM1_IN2, LCD_SEG20, SPI2_MISO/I2S2_MCK, TSC_G7_IO3	ADC_IN12
-	11	-	18	K2	PC3	I/O	FT	-	LPTIM1_ETR, LCD_SEG21, SPI2_MOSI/I2S2_SD, TSC_G7_IO4	ADC_IN13
8	12	F1	19	J1	VSSA	S	-	-	-	-
-	-	-	20	K1	VREF-	S	-	-	-	-
-	-	G1	21	L1	VREF+	S	-	-	-	-
9	13	H1	22	M1	VDDA	S	-	-	-	-
10	14	G2	23	L2	PA0	I/O	тс	-	TIM2_CH1, TSC_G1_IO1, USART2_CTS, TIM2_ETR, USART4_TX, COMP1_OUT	COMP1_INM, ADC_IN0, RTC_TAMP2/WKUP1
11	15	H2	24	M2	PA1	I/O	FT	-	EVENTOUT, LCD_SEG0, TIM2_CH2, TSC_G1_IO2, USART2_RTS_DE, TIM21_ETR, USART4_RX	COMP1_INP, ADC_IN1
12	16	F3	25	K3	PA2	I/O	FT	-	TIM21_CH1, LCD_SEG1, TIM2_CH3, TSC_G1_IO3, USART2_TX, LPUART1_TX, COMP2_OUT	COMP2_INM, ADC_IN2
13	17	G3	26	L3	PA3	I/O	FT	-	TIM21_CH2, LCD_SEG2, TIM2_CH4, TSC_G1_IO4, USART2_RX, LPUART1_RX	COMP2_INP, ADC_IN3

DocID027096 Rev 3

Table 16.	STM32L	.073xx p	oin defin	ition (co	ntinued)
-----------	--------	----------	-----------	-----------	----------

	Pi	n num	ber							
LQFP48	LQFP64	TFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	18	C2	27	E3	VSS	S	-	-	-	-
-	19	D2	28	H3	VDD	S	-	-	-	-
14	20	H3	29	M3	PA4	I/O	тс	(1)	SPI1_NSS, TSC_G2_IO1, USART2_CK, TIM22_ETR	COMP1_INM, COMP2_INM, ADC_IN4, DAC_OUT1
15	21	F4	30	K4	PA5	I/O	тс	-	SPI1_SCK, TIM2_ETR, TSC_G2_IO2, TIM2_CH1	COMP1_INM, COMP2_INM, ADC_IN5, DAC_OUT2
16	22	G4	31	L4	PA6	I/O	FT	-	SPI1_MISO, LCD_SEG3, TIM3_CH1, TSC_G2_IO3, LPUART1_CTS, TIM22_CH1, EVENTOUT, COMP1_OUT	ADC_IN6
17	23	H4	32	M4	PA7	I/O	FT	-	SPI1_MOSI, LCD_SEG4, TIM3_CH2, TSC_G2_IO4, TIM22_CH2, EVENTOUT, COMP2_OUT	ADC_IN7
-	24	H5	33	K5	PC4	I/O	FT	-	EVENTOUT, LCD_SEG22, LPUART1_TX	ADC_IN14
-	25	H6	34	L5	PC5	I/O	FT	-	LCD_SEG23, LPUART1_RX, TSC_G3_IO1	ADC_IN15
18	26	F5	35	M5	PB0	I/O	FT	-	EVENTOUT, LCD_SEG5, TIM3_CH3, TSC_G3_IO2	LCD_VLCD3, ADC_IN8, VREF_OUT
19	27	G5	36	M6	PB1	I/O	FT	-	LCD_SEG6, TIM3_CH4, TSC_G3_IO3, LPUART1_RTS_DE	ADC_IN9, VREF_OUT
20	28	G6	37	L6	PB2	I/O	FT	-	LPTIM1_OUT, TSC_G3_IO4, I2C3_SMBA	LCD_VLCD1
-	-	-	38	M7	PE7	I/O	FT	-	LCD_SEG45, USART5_CK/USART5_ RTS	-
-	-	-	39	L7	PE8	I/O	FT	-	LCD_SEG46, USART4_TX	-
-	-	-	40	M8	PE9	I/O	FT	-	TIM2_CH1, LCD_SEG47, TIM2_ETR, USART4_RX	-

55/12					Table 22. Alto	ernate functior	ns port H			
õ			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port PH0		SPI1/SPI2/ I2S2/USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2 /I2C1/LCD/TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/USB/ LPTIM1/TIM2/3/ EVENTOUT/ SYS_AF	I2C1/TSC/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2/I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT	I2C3/ LPUART1/ COMP1/2/ TIM3
		PH0	USB_CRS_SYNC	-	-	-	-	-	-	-
	Ť	PH1	-	-	-	-	-	-	-	-
	Por	PH9	-	-	-	-	-	-	-	-
		PH10	-	-	-	-	-	-	-	-

DocID027096 Rev 3

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_Amax$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.6 V (for the 1.65 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 9*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 10.

Symbol	Parameter	Conditions	Min	Max	Unit
TA		Maximum power dissipation (range 6)		85	
	Temperature range	Maximum power dissipation (range 7)	-40	105	
		Maximum power dissipation (range 3)	-40	125	°C
	Junction temperature range (range 6)	-40 °C \leq T _A \leq 85 °	-40	105	
TJ	Junction temperature range (range 7)	-40 °C \leq T _A \leq 105 °C	-40	125	
	Junction temperature range (range 3)	-40 °C \leq T _A \leq 125 °C	-40	130	

 Table 26. General operating conditions (continued)

1. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and normal operation.

2. V_{DD_USB} must respect the following conditions:

- When V_DD is powered on (V_DD < V_DD_min), V_DD_USB should be always lower than V_DD.

- When V_{DD} is powered down (V_{DD} < V_{DD_min}), V_{DD_USB} should be always lower than V_{DD}.

- In operating mode, V_{DD_USB} could be lower or higher $V_{DD.}$

- If the USB is not used, V_{DD} USB must range from V_{DD} min to V_{DD} max to be able to use PA11 and PA12 as standard I/Os.

3. To sustain a voltage higher than V_{DD} +0.3V, the internal pull-up/pull-down resistors must be disabled.

 If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see *Table 90: Thermal characteristics* on page 134).

Symbol	Parameter	Condition		f _{HCLK} (MHz)	Тур	Max ⁽¹⁾	Unit
			Range3.	1	43,5	110	
			Vcore=1.2 V	2	72	140	
			VOS[1:0]=11	4	130	200	
		$f_{HSE} = f_{HCLK}$ up to	Range2.	4	160	220	
		16 MHz included, fuse = fucur/2 above	Vcore=1.5 V	8	305	380	
		16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16	590	690	
			Range1.	8	370	460	
	Supply current in		Vcore=1.8 V	16	715	840	
	memory switched		VOS[1:0]=01	32	1650	2000	
	OFF		Range3.	0,065	18	93	
		MSI clock	Vcore=1.2 V	0,524	31,5	110	
			VOS[1:0]=11	4,2	140	230	
		HSI clock source	Range2, Vcore=1.5 V VOS[1:0]=10	16	665	850	
مما		(16 MHz)	Range1, Vcore=1.8 V VOS[1:0]=01	32	1750	2100	
(Sleep)			Range3	1	57,5	130	- μΑ -
		f _{HSE} = f _{HCLK} up to	Vcore=1.2 V VOS[1:0]=11	2	84	160	
				4	150	220	
			Range2, Vcore=1.5 V	4	170	240	
		16MHz included,		8	315	400	1
		16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16	605	710	
			Range1.	8	380	470	
	Supply current in		Vcore=1.8 V	16	730	860	
	memory switched		VOS[1:0]=01	32	1650	2000	
	ON		Range3.	0,065	29,5	110	
		MSI clock	Vcore=1.2 V	0,524	44,5	120	-
			VOS[1:0]=11	4,2	150	240	
		HSI clock source	Range2, Vcore=1.5 V VOS[1:0]=10	16	680	930	
		(16MHz)	Range1, Vcore=1.8 V VOS[1:0]=01	32	1750	2200	

Table 34.	Current	consumption	in	Sleep	mode
-----------	---------	-------------	----	-------	------

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Figure 16. I_{DD} vs V_{DD}, at T_A= 25 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS

Symbol	Parameter			Тур	Max (1)	Unit		
			MSI clock = 65 kHz, f _{HCLK} = 32 kHz, Flash memory OFF	$T_{A} = -40$ to 25°C	4,7	-		
				$T_A = -40$ to $25^{\circ}C$	17	24		
			MSI clock = 65 kHz,	T _A = 85°C	19,5	30		
	Supply current in Low-power sleep	All peripherals OFF, code executed from Flash memory, V _{DD} from 1.65 to 3.6 V	f _{HCLK} = 32 kHz	T _A = 105°C	23	47	μΑ	
				T _A = 125°C	32,5	70		
			MSI clock = 65 kHz, f _{HCLK} = 65 kHz	T_A = - 40 to 25°C	17	24		
(LP Sleep)				T _A = 85°C	20	31		
	mode			T _A = 105°C	23,5	47		
				T _A = 125°C	32,5	70		
				T_A = - 40 to 25°C	19,5	27		
				T _A = 55°C	20,5	28		
			MSI clock = 131kHz, f _{HCLK} = 131 kHz	T _A = 85°C	22,5	33		
			HOLK	T _A = 105°C	26	50		
				T _A = 125°C	35	73		

Table 36. Current consumption in Low-power sleep mode

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
		$T_A = -40$ to 25°C	0,43	1,00	
I _{DD} (Stop)	Supply current in Stop mode	T _A = 55°C	0,735	2,50	
		T _A = 85°C	2,25	4,90	μA
		T _A = 105°C	5,3	13,00	
		T _A = 125°C	12,5	28,00	

Table 37. Typical and maximum current consumptions in Stop mode

1. Guaranteed by characterization results at 125 $^\circ\text{C},$ unless otherwise specified.

High-speed internal 48 MHz (HSI48) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI48}	Frequency		-	48	-	MHz
TRIM	HSI48 user-trimming step		0.09 ⁽²⁾	0.14	0.2 ⁽²⁾	%
DuCy _(HSI48)	Duty cycle		45 ⁽²⁾	-	55 ⁽²⁾	%
ACC _{HSI48}	Accuracy of the HSI48 oscillator (factory calibrated before CRS calibration)	T _A = 25 °C	-4 ⁽³⁾	-	4 ⁽³⁾	%
t _{su(HSI48)}	HSI48 oscillator startup time		-	-	6 ⁽²⁾	μs
I _{DDA(HSI48)}	HSI48 oscillator power consumption		-	330	380 ⁽²⁾	μA

Table 48. HSI48 oscillator characteristics	eristics ⁽¹	character	oscillator	HSI48	48.	Table
--	------------------------	-----------	------------	-------	-----	-------

1. V_{DDA} = 3.3 V, T_A = -40 to 125 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

Low-speed internal (LSI) RC oscillator

Table 49. LSI oscillator characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
D _{LSI} ⁽²⁾	LSI oscillator frequency drift $0^{\circ}C \leq T_A \leq 85^{\circ}C$	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	_	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

Multi-speed internal (MSI) RC oscillator

Table 50. MSI oscillator characteristics

Symbol	Parameter	Condition	Тур	Max	Unit
		MSI range 0	65.5	-	
f _{MSI}		MSI range 1	131	-	レ니ㅋ
	Frequency after factory calibration, done at V _{DD} = 3.3 V and T _A = 25 °C	MSI range 2	262	-	KIIZ
		MSI range 3	524	-	
		MSI range 4	1.05	-	
		MSI range 5	2.1	-	MHz
		MSI range 6	4.2	-	

6.3.13 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 60* are derived from tests performed under the conditions summarized in *Table 26*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
VIL	Input low level voltage	TC, FT, FTf, RST I/Os	-	-	0.3V _{DD}	
		BOOT0 pin	-	-	0.14V _{DD} ⁽¹⁾	
V _{IH}	Input high level voltage	All I/Os	0.7 V _{DD}	-	-	
V.	I/O Schmitt trigger voltage hysteresis	Standard I/Os	-	10% V _{DD} ⁽³⁾	-	
♥ hys	(2)	BOOT0 pin	-	0.01	-	
		$\label{eq:VSS} \begin{array}{l} V_{SS} \leq V_{IN} \leq V_{DD} \\ \mbox{All I/Os except for} \\ \mbox{PA11, PA12, BOOT0} \\ \mbox{and FTf I/Os} \end{array}$	-	-	±50	
l _{lkg}	Input leakage current ⁽⁴⁾	$V_{SS} \le V_{IN} \le V_{DD}$, PA11 and PA12 I/Os	-	-	-50/+250	nA
		V _{SS} ≤ V _{IN} ≤ V _{DD} FTf I/Os	-	-	±100	
		$\label{eq:VDD} \begin{array}{l} V_{DD}{}^{\leq}V_{IN}{}^{\leq}5V\\ \mbox{All I/Os except for}\\ \mbox{PA11, PA12, BOOT0}\\ \mbox{and FTf I/Os} \end{array}$	-	-	200	nA
		V _{DD} ≤ V _{IN} ≤ 5 V FTf I/Os	-	-	500	
		$V_{DD} \le V_{IN} \le 5 V$ PA11, PA12 and BOOT0	-	-	10	μA
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	30	45	60	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 60. I/O static characteris	stics
----------------------------------	-------

1. Guaranteed by characterization.

2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.

3. With a minimum of 200 mV. Guaranteed by characterization results.

4. The max. value may be exceeded if negative current is injected on adjacent pins.

 Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).

6.3.18 Comparators

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V _{DDA}	Analog supply voltage	-	1.65		3.6	V
R _{400K}	R _{400K} value	-	-	400	-	kO
R _{10K}	R _{10K} value	-	-	10	-	K22
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	V
t _{START}	Comparator startup time	-	-	7	10	110
td	Propagation delay ⁽²⁾	-	-	3	10	μο
Voffset	Comparator offset	-	-	±3	±10	mV
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions	$V_{DDA} = 3.6 V, V_{IN+} = 0 V,$ $V_{IN-} = V_{REFINT}, T_A = 25 °C$	0	1.5	10	mV/1000 h
I _{COMP1}	Current consumption ⁽³⁾	-	-	160	260	nA

|--|

1. Guaranteed by characterization.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
V _{DDA}	Analog supply voltage	-	1.65	-	3.6	V	
V _{IN}	Comparator 2 input voltage range	-	0	-	V _{DDA}	V	
t	Comparator startup time	Fast mode	-	15	20		
START		Slow mode	-	20	25		
t	Propagation delay (2) in slow mode	$1.65~V \le V_{DDA} \le 2.7~V$	-	1.8	3.5	- µs	
^L d slow	Topagation delay with slow mode	$2.7~V \leq V_{DDA} \leq 3.6~V$	-	2.5	6		
+	Propagation dolay ⁽²⁾ in fact mode	$1.65~V \leq V_{DDA} \leq 2.7~V$	-	0.8	2		
^L d fast	Propagation delay in fast mode	$2.7~V \leq V_{DDA} \leq 3.6~V$	-	1.2	4		
V _{offset}	Comparator offset error		-	±4	±20	mV	
dThreshold/ dt	Threshold voltage temperature coefficient	$\begin{split} V_{DDA} &= 3.3 \text{V}, \text{T}_{\text{A}} = 0 \text{ to } 50 \ ^{\circ}\text{C}, \\ V- &= V_{\text{REFINT}}, \\ 3/4 \ V_{\text{REFINT}}, \\ 1/2 \ V_{\text{REFINT}}, \\ 1/4 \ V_{\text{REFINT}}. \end{split}$	-	15	30	ppm /°C	
	Current consumption ⁽³⁾	Fast mode	-	3.5	5		
'COMP2		Slow mode	-	0.5	2	μA	

Table 71. Comparator 2 characteristics

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (required for comparator operation) is not included.

Figure 34. SPI timing diagram - slave mode and CPHA = $1^{(1)}$

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Figure 35. SPI timing diagram - master mode⁽¹⁾

^{1.} Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

Figure 38. USB timings: definition of data signal rise and fall time

	Table 81.	USB: full	speed	electrical	characteristics
--	-----------	-----------	-------	------------	-----------------

	Driver characteristics ⁽¹⁾							
Symbol	Parameter	Conditions	Min	Max	Unit			
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns			
t _f	Fall Time ⁽²⁾	C _L = 50 pF	4	20	ns			
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%			
V _{CRS}	Output signal crossover voltage		1.3	2.0	V			

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

6.3.21 LCD controller

The devices embed a built-in step-up converter to provide a constant LCD reference voltage independently from the V_{DD} voltage. An external capacitor C_{ext} must be connected to the V_{LCD} pin to decouple this converter.

Symbol	Parameter	Min	Тур	Мах	Unit
V _{LCD}	LCD external voltage	-	-	3.6	
V _{LCD0}	LCD internal reference voltage 0	-	2.6	-	
V _{LCD1}	LCD internal reference voltage 1	-	2.73	-	
V _{LCD2}	LCD internal reference voltage 2	-	2.86	-	
V _{LCD3}	LCD internal reference voltage 3	-	2.98	-	V
V _{LCD4}	LCD internal reference voltage 4	-	3.12	-	
V _{LCD5}	LCD internal reference voltage 5	-	3.26	-	
V _{LCD6}	LCD internal reference voltage 6	-	3.4	-	
V _{LCD7}	LCD internal reference voltage 7	-	3.55	-	
C _{ext}	V _{LCD} external capacitance	0.1	-	2	μF

Table 82. LCD controller characteristics

Device marking for UFBGA100

The following figure gives an example of topside marking versus ball A 1 position identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Figure 52. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

Device marking for LQFP48

The following figure gives an example of topside marking versus pin 1 position identifier location.

Figure 53. LQFP48 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Figure 54. Thermal resistance

7.6.1 **Reference document**

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

