

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	XCore
Core Size	32-Bit 24-Core
Speed	4000MIPS
Connectivity	-
Peripherals	-
Number of I/O	176
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	0.95V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	374-LFBGA
Supplier Device Package	374-FBGA (18x18)
Purchase URL	https://www.e-xfl.com/product-detail/xmos/xlf232-512-fb374-c40

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	-X	M	0	S	
--	-----------	---	---	---	--

(continued)

X2D53 $\chi_2 L_9^{L_0}$ $32A^4$ I/O IO, PD X2D54 $\chi_2 L_9^{L_0}$ $32A^5$ I/O IO, PD X2D55 $\chi_2 L_9^{L_0}$ $32A^5$ I/O IO, PD X2D55 $\chi_2 L_9^{L_0}$ $32A^7$ I/O IO, PD X2D57 $\chi_2 L_9^{L_0}$ $32A^7$ I/O IO, PD X2D58 $\chi_2 L_9^{L_0}$ $32A^7$ I/O IO, PD X2D61 $\chi_2 L_9^{L_0}$ $32A^{10}$ I/O IO, PD X2D62 $\chi_2 L_9^{L_0}$ $32A^{11}$ I/O IO, PD X2D64 $\chi_2 L_9^{L_0}$ $32A^{11}$ I/O IO, PD X2D65 $\chi_2 L_9^{L_0}$ $32A^{11}$ I/O IO, PD X2D66 $\chi_2 L_9^{L_0}$ $32A^{11}$ I/O IO, PD X2D67 $\chi_2 L_9^{L_0}$ $32A^{11}$ I/O IO, PD X2D68 $\chi_2 L_9^{L_0}$ $32A^{11}$ I/O IO, PD X3D01 $\chi_2 L_1^{T_0}$ $1A^0$ $32A^{21}$ I/O IO, PD X3D02 $\chi_2 L_9^{L_0}$ $4A^0$ $8A^$	Signal	Function		Туре	Properties
X2D54 $x_2 LS_{out}^0$ $32A^5$ $1/0$ $10, PD$ X2D55 $x_2 LS_{out}^0$ $32A^6$ $1/0$ $10, PD$ X2D56 $x_2 LS_{out}^0$ $32A^8$ $1/0$ $10, PD$ X2D57 $x_2 LS_{out}^0$ $32A^8$ $1/0$ $10, PD$ X2D58 $x_2 LS_{out}^0$ $32A^2$ $1/0$ $10, PD$ X2D51 $x_2 LS_{out}^0$ $32A^{10}$ $1/0$ $10, PD$ X2D62 $x_2 LS_{0ut}^0$ $32A^{11}$ $1/0$ $10, PD$ X2D64 $x_2 LS_{0ut}^0$ $32A^{11}$ $1/0$ $10, PD$ X2D65 $x_2 LS_{0ut}^0$ $32A^{11}$ $1/0$ $10, PD$ X2D66 $x_2 LS_{0ut}^0$ $32A^{11}$ $1/0$ $10, PD$ X2D67 $x_2 LS_{0ut}^0$ $32A^{11}$ $1/0$ $10, PD$ X2D68 $x_2 LS_{0ut}^0$ $32A^{11}$ $1/0$ $10, PD$ X2D64 $x_2 LS_{0ut}^0$ $32A^{11}$ $1/0$ $10, PD$ X2D65 $x_2 LS_{0ut}^0$ $32A^{11}$ $1/0$ $10, PD$ X2D66 $x_2 L$	X2D53	X ₂ L5 ⁰ _{in}	32A ⁴	I/O	IO, PD
X2D55 $x_2 LS_{out}^1$ $32A^6$ I/O IO, PD X2D56 $x_2 LS_{out}^2$ $32A^7$ I/O IO, PD X2D57 $x_2 LS_{out}^2$ $32A^8$ I/O IO, PD X2D58 $x_2 LS_{out}^4$ $32A^2$ I/O IO, PD X2D51 $x_2 LS_{out}^4$ $32A^{10}$ I/O IO, PD X2D62 $x_2 LS_{out}^3$ $32A^{11}$ I/O IO, PD X2D63 $x_2 LS_{out}^6$ $32A^{14}$ I/O IO, PD X2D64 $x_2 LS_{out}^6$ $32A^{14}$ I/O IO, PD X2D65 $x_2 LS_{out}^6$ $32A^{14}$ I/O IO, PD X2D66 $x_2 LS_{out}^6$ $32A^{14}$ I/O IO, PD X2D67 $x_2 LS_{out}^6$ $32A^{14}$ I/O IO, PD X2D68 $x_2 LS_{out}^6$ $32A^{14}$ I/O IO, PD X2D69 $x_2 LS_{out}^6$ $32A^{14}$ I/O IO, PD X3D00 $x_2 LT_{in}^2$ $1A^0$ $8A^0$ $16A^0$ $32A^{21}$ I/O IO, PD X3D01	X2D54	X ₂ L5 ⁰ _{out}	32A ⁵	I/O	IO, PD
X2D56 $x_2 L S_{out}^2$ $32A^7$ I/O IO, PD X2D57 $x_2 L S_{out}^2$ $32A^8$ I/O IO, PD X2D58 $x_2 L S_{out}^4$ $32A^9$ I/O IO, PD X2D61 $x_2 L S_{0u}^4$ $32A^{10}$ I/O IO, PD X2D62 $x_2 L S_{0u}^4$ $32A^{11}$ I/O IO, PD X2D63 $x_2 L S_{0u}^4$ $32A^{12}$ I/O IO, PD X2D64 $x_2 L S_{0u}^4$ $32A^{13}$ I/O IO, PD X2D65 $x_2 L S_{0ut}^4$ $32A^{13}$ I/O IO, PD X2D66 $x_2 L S_{0ut}^4$ $32A^{17}$ I/O IO, PD X2D67 $x_2 L S_{0ut}^4$ $32A^{17}$ I/O IO, PD X2D68 $x_2 L S_{0ut}^4$ $32A^{18}$ I/O IO, PD X2D69 $x_2 L S_{0ut}^4$ $32A^{18}$ I/O IO, PD X3D01 $x_2 L T_{0ut}^1$ 180° $16A^0$ $32A^{20}$ I/O IO, PD X3D03 $x_2 L 4_{0ut}^4$ 4A^0 8A^1 16A^1 $32A^{21}$ I/O IO	X2D55	X ₂ L5 ¹	32A ⁶	I/O	IO, PD
X2D57 $x_2 L S_{out}^2$ $32A^8$ I/O IO, PD X2D51 $x_2 L S_{out}^4$ $32A^9$ I/O IO, PD X2D61 $x_2 L S_{out}^4$ $32A^{10}$ I/O IO, PD X2D62 $x_2 L S_{out}^3$ $32A^{11}$ I/O IO, PD X2D63 $x_2 L S_{out}^3$ $32A^{11}$ I/O IO, PD X2D64 $x_2 L S_{out}^3$ $32A^{11}$ I/O IO, PD X2D65 $x_2 L S_{out}^3$ $32A^{11}$ I/O IO, PD X2D66 $x_2 L S_{out}^3$ $32A^{11}$ I/O IO, PD X2D67 $x_2 L S_{out}^3$ $32A^{11}$ I/O IO, PD X2D68 $x_2 L S_{out}^3$ $32A^{11}$ I/O IO, PD X2D69 $x_2 L S_{out}^3$ $32A^{11}$ I/O IO, PD X3D00 $x_2 L T_{out}^3$ A^0 $8A^0$ 16A^0 $32A^{20}$ I/O IO, PD X3D01 $x_2 L T_{out}^3$ A^0 $8A^0$ 16A^0 $32A^{21}$ I/O IO, PD X3D03 $x_2 L A_{out}^2$ $4A^0$	X2D56	X ₂ L5 ² _{out}	32A ⁷	I/O	IO, PD
X2D58 $x_2L5_{out}^4$ $32A^9$ I/O IO, PD X2D61 $x_2L6_{in}^4$ $32A^{10}$ I/O IO, PD X2D62 $x_2L6_{in}^4$ $32A^{11}$ I/O IO, PD X2D63 $x_2L6_{in}^4$ $32A^{12}$ I/O IO, PD X2D64 $x_2L6_{in}^4$ $32A^{12}$ I/O IO, PD X2D65 $x_2L6_{in}^4$ $32A^{15}$ I/O IO, PD X2D66 $x_2L6_{out}^4$ $32A^{15}$ I/O IO, PD X2D67 $x_2L6_{out}^4$ $32A^{16}$ I/O IO, PD X2D68 $x_2L6_{out}^4$ $32A^{19}$ I/O IO, PD X2D69 $x_2L6_{out}^4$ $32A^{19}$ I/O IO, PD X3D01 $x_2L7_{in}^2$ 1A ⁰ I/O IO, PD X3D02 $x_2L4_{out}^4$ 4A ⁰ 8A ⁰ 16A ⁰ $32A^{22}$ I/O IO, PD X3D03 $x_2L4_{out}^4$ 4A ⁰ 8A ⁰ 16A ² $32A^{22}$ I/O IO, PD X3D04 $x_2L4_{out}^4$ 4A ⁰ 8A ⁰ 16A ²	X2D57	X ₂ L5 ³ _{out}	32A ⁸	I/O	IO, PD
X2D61 $x_2 L6_{in}^{4}$ $32A^{10}$ I/O IO, PD X2D62 $x_2 L6_{in}^{2}$ $32A^{11}$ I/O IO, PD X2D63 $x_2 L6_{in}^{2}$ $32A^{12}$ I/O IO, PD X2D64 $x_2 L6_{in}^{4}$ $32A^{13}$ I/O IO, PD X2D65 $x_2 L6_{0at}^{4}$ $32A^{14}$ I/O IO, PD X2D66 $x_2 L6_{0at}^{4}$ $32A^{15}$ I/O IO, PD X2D67 $x_2 L6_{0at}^{2}$ $32A^{17}$ I/O IO, PD X2D68 $x_2 L6_{0at}^{2}$ $32A^{19}$ I/O IO, PD X2D69 $x_2 L6_{0at}^{2}$ $32A^{19}$ I/O IO, PD X3D01 $x_2 L7_{in}^{2}$ IA ⁰ I/O IO, PD X3D02 $x_2 L4_{0at}^{4}$ 4A ⁰ 8A ⁰ I6A ⁰ $32A^{20}$ I/O IO, PD X3D03 $x_2 L4_{0at}^{4}$ 4A ⁰ 8A ⁰ I6A ⁰ $32A^{22}$ I/O IO, PD X3D04 $x_2 L4_{0at}^{4}$ 4A ¹ 8A ¹ I6A ¹ $32A^{25}$ I/O IO, PD <td< td=""><td>X2D58</td><td>X₂L5⁴_{out}</td><td>32A⁹</td><td>I/O</td><td>IO, PD</td></td<>	X2D58	X ₂ L5 ⁴ _{out}	32A ⁹	I/O	IO, PD
X2D62 $x_2 L6_{in}^3$ $32A^{11}$ I/O IO, PD X2D63 $x_2 L6_{in}^6$ $32A^{12}$ I/O IO, PD X2D64 $x_2 L6_{in}^6$ $32A^{13}$ I/O IO, PD X2D65 $x_2 L6_{out}^6$ $32A^{14}$ I/O IO, PD X2D66 $x_2 L6_{out}^6$ $32A^{14}$ I/O IO, PD X2D67 $x_2 L6_{out}^6$ $32A^{15}$ I/O IO, PD X2D68 $x_2 L6_{out}^6$ $32A^{17}$ I/O IO, PD X2D69 $x_2 L6_{out}^6$ $32A^{19}$ I/O IO, PD X3D00 $x_2 Lr_{in}^4$ IA ⁰ $32A^{19}$ I/O IO, PD X3D01 $x_2 Lr_{in}^4$ IA ⁰ $32A^{20}$ I/O IO, PD X3D01 $x_2 Lr_{in}^4$ IA ⁰ $32A^{21}$ I/O IO, PD X3D01 $x_2 Lr_{out}^4$ 4A ⁰ 8A ⁰ 16A ⁰ $32A^{22}$ I/O IO, PD X3D03 $x_2 Lr_{out}^4$ 4A ¹ 8A ¹ 16A ¹ $32A^{23}$ I/O IO, PD X3D04	X2D61	X ₂ L6 ⁴ _{in}	32A ¹⁰	I/O	IO, PD
X2D63 $x_2L6_{in}^2$ $32A^{12}$ I/O IO, PD X2D64 $x_2L6_{in}^0$ $32A^{13}$ I/O IO, PD X2D65 $x_2L6_{out}^0$ $32A^{14}$ I/O IO, PD X2D66 $x_2L6_{out}^0$ $32A^{15}$ I/O IO, PD X2D67 $x_2L6_{out}^0$ $32A^{15}$ I/O IO, PD X2D68 $x_2L6_{out}^2$ $32A^{17}$ I/O IO, PD X2D69 $x_2L6_{out}^3$ $32A^{18}$ I/O IO, PD X2D70 $x_2L6_{out}^2$ $32A^{18}$ I/O IO, PD X3D01 $x_2L7_{in}^2$ 1A ⁰ I/O IO, PD X3D02 $x_2L4_{out}^0$ 4A ⁰ 8A ⁰ 16A ⁰ 32A ²¹ I/O IO, PD X3D03 $x_2L4_{out}^0$ 4A ¹ 8A ¹ 16A ¹ 32A ²² I/O IO, PD X3D04 $x_2L4_{out}^1$ 4B ⁰ 8A ² 16A ² 32A ²² I/O IO, PD X3D05 $x_2L4_{out}^1$ 4B ³ 8A ⁵ 16A ⁵ 32A ²² I/O IO, PD	X2D62	X ₂ L6 ³ _{in}	32A ¹¹	I/O	IO, PD
X2D64 $x_2L6_{0n}^1$ $32A^{13}$ I/O IO, PD X2D65 $x_2L6_{0n}^0$ $32A^{14}$ I/O IO, PD X2D66 $x_2L6_{out}^0$ $32A^{15}$ I/O IO, PD X2D67 $x_2L6_{out}^0$ $32A^{16}$ I/O IO, PD X2D68 $x_2L6_{out}^2$ $32A^{17}$ I/O IO, PD X2D69 $x_2L6_{out}^2$ $32A^{17}$ I/O IO, PD X2D69 $x_2L6_{out}^2$ $32A^{17}$ I/O IO, PD X3D00 $x_2L7_{in}^2$ IA ⁰ $1/O$ IO, PD X3D01 $x_2L7_{in}^2$ IA ⁰ $1/O$ IO, PD X3D02 $x_2L4_{out}^2$ 4A ⁰ 8A ⁰ 16A ⁰ $32A^{22}$ I/O IO, PD X3D03 $x_2L4_{out}^2$ 4A ⁰ 8A ² 16A ³ $32A^{22}$ I/O IO, PD X3D04 $x_2L4_{out}^4$ 4B ³ 8A ³ 16A ³ $32A^{23}$ I/O IO, PD X3D05 $x_2L4_{out}^4$ 4B ³ 8A ⁵ 16A ⁵ $32A^{24}$ I/O IO, PD	X2D63	X ₂ L6 ² _{in}	32A ¹²	I/O	IO, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X2D64	X ₂ L6 ¹ _{in}	32A ¹³	I/O	IO, PD
X2D66 $X_2L6_{out}^2$ $32A^{15}$ I/O IO, PD X2D67 $X_2L6_{out}^2$ $32A^{16}$ I/O IO, PD X2D68 $X_2L6_{out}^2$ $32A^{17}$ I/O IO, PD X2D69 $X_2L6_{out}^2$ $32A^{18}$ I/O IO, PD X2D70 $X_2L6_{out}^2$ $32A^{19}$ I/O IO, PD X3D00 $X_2L7_{in}^2$ $1A^0$ I/O IO, PD X3D01 $X_2L7_{in}^2$ $1A^0$ I/O IO, PD X3D02 $X_2L4_{out}^0$ $4A^0$ $8A^0$ $16A^0$ $32A^{20}$ I/O IO, PD X3D01 $X_2L4_{out}^0$ $4A^1$ $8A^1$ $16A^1$ $32A^{21}$ I/O IO, PD X3D03 $X_2L4_{out}^0$ $4A^1$ $8A^1$ $16A^3$ $32A^{221}$ I/O IO, PD X3D04 $X_2L4_{out}^0$ $4A^1$ $8A^1$ $16A^2$ $32A^2^2$ I/O IO, PD X3D05 $X_2L4_{out}^0$ $4B^2$ $8A^4$ $16A^4$ $32A^2^2$ I/O IO, PD X3D06 <t< td=""><td>X2D65</td><td>X₂L6⁰_{in}</td><td>32A¹⁴</td><td>I/O</td><td>IO, PD</td></t<>	X2D65	X ₂ L6 ⁰ _{in}	32A ¹⁴	I/O	IO, PD
X2D67 X2L6 $_{out}^{0}$ 32A^{16} I/O IO, PD X2D68 X2L6 $_{out}^{0}$ 32A^{17} I/O IO, PD X2D69 X2L6 $_{out}^{0}$ 32A^{18} I/O IO, PD X2D70 X2L6 $_{out}^{0}$ 32A^{19} I/O IO, PD X3D00 X2L7 $_{n}^{2}$ 1A ⁰ I/O IO, PD X3D01 X2L7 $_{n}^{1}$ 1B ⁰ I/O IO, PD X3D02 X2L4 $_{out}^{0}$ 4A ⁰ 8A ⁰ 16A ⁰ 32A ²¹ I/O IO, PD X3D03 X2L4 $_{out}^{0}$ 4A ¹ 8A ¹ 16A ¹ 32A ²² I/O IO, PD X3D04 X2L4 $_{out}^{0}$ 4B ¹ 8A ³ 16A ³ 32A ²² I/O IO, PD X3D05 X2L4 $_{out}^{0}$ 4B ² 8A ³ 16A ³ 32A ²² I/O IO, PD X3D06 X2L4 $_{out}^{0}$ 4B ² 8A ⁴ 16A ⁴ 32A ²² I/O IO, PD X3D07 X2L4 $_{out}^{0}$ 4B ³ 8A ⁵ 16A ⁵ 32A ²⁵ I/O IO, PD X3	X2D66	X ₂ L6 ⁰ _{out}	32A ¹⁵	I/O	IO, PD
X2D68 $X_2L6_{out}^2$ $32A^{17}$ I/O IO, PD X2D69 $X_2L6_{out}^3$ $32A^{18}$ I/O IO, PD X2D70 $X_2L6_{out}^4$ $32A^{19}$ I/O IO, PD X3D00 $X_2L7_{in}^1$ $1A^0$ $32A^{19}$ I/O IO, PD X3D01 $X_2L7_{in}^1$ $1B^0$ I/O IO, PD X3D02 $X_2L4_{in}^0$ $4A^0$ $8A^0$ $16A^0$ $32A^{20}$ I/O IO, PD X3D03 $X_2L4_{out}^0$ $4A^1$ $8A^1$ $16A^1$ $32A^{22}$ I/O IO, PD X3D04 $X_2L4_{out}^0$ $4A^1$ $8A^1$ $16A^3$ $32A^{22}$ I/O IO, PD X3D05 $X_2L4_{out}^2$ $4B^1$ $8A^3$ $16A^3$ $32A^{23}$ I/O IO, PD X3D06 $X_2L4_{out}^4$ $4B^0$ $8A^2$ $16A^2$ $32A^{24}$ I/O IO, PD X3D07 $X_2L4_{out}^4$ $4B^3$ $8A^5$ $16A^5$ $32A^{27}$ I/O IO, PD X3D08 $X_2L7_{in}^1$ $4A^2$ $8A^6$	X2D67	X ₂ L6 ¹ _{out}	32A ¹⁶	I/O	IO, PD
X2D69 $X_2L6_{out}^3$ $32A^{18}$ I/O IO, PD X2D70 $X_2L6_{out}^2$ $32A^{19}$ I/O IO, PD X3D00 $X_2L7_{in}^2$ $1A^0$ I/O IO, PD X3D01 $X_2L7_{in}^1$ $1B^0$ I/O IO, PD X3D02 $X_2L4_{0u}^1$ $4A^0$ $8A^0$ $16A^0$ $32A^{20}$ I/O IO, PD X3D03 $X_2L4_{0u}^1$ $4A^0$ $8A^0$ $16A^0$ $32A^{22}$ I/O IO, PD X3D04 $X_2L4_{0ut}^2$ $4A^1$ $8A^1$ $16A^3$ $32A^{22}$ I/O IO, PD X3D05 $X_2L4_{0ut}^2$ $4B^1$ $8A^3$ $16A^3$ $32A^{23}$ I/O IO, PD X3D06 $X_2L4_{0u}^4$ $4B^3$ $8A^5$ $16A^5$ $32A^{27}$ I/O IO, PD X3D08 $X_2L_{1n}^{in}$ $4A^3$ $8A^5$ $16A^5$ $32A^{27}$ I/O IO, PD X3D08 $X_2L7_{in}^{in}$ $4A^3$ $8A^7$ $16A^7$ $32A^{27}$ I/O IO, PD X3D10 $1C^0$	X2D68	X ₂ L6 ² _{out}	32A ¹⁷	I/O	IO, PD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X2D69	X ₂ L6 ³ _{out}	32A ¹⁸	I/O	IO, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X2D70	X ₂ L6 ⁴ _{out}	32A ¹⁹	I/O	IO, PD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X3D00	X ₂ L7 ² _{in} 1A ⁰		I/O	IO, PD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X3D01	$X_{2}L7_{in}^{1}$ 1B ⁰		I/O	IO, PD
X3D03 $X_2L4_{0ut}^0$ 4A1 8A1 16A1 32A ²¹ I/O IO, PD X3D04 $X_2L4_{0ut}^1$ 4B0 8A ² 16A ² 32A ²² I/O IO, PD X3D05 $X_2L4_{0ut}^2$ 4B1 8A ³ 16A ³ 32A ²³ I/O IO, PD X3D06 $X_2L4_{0ut}^2$ 4B ³ 8A ⁵ 16A ⁵ 32A ²⁴ I/O IO, PD X3D07 $X_2L4_{0ut}^4$ 4B ³ 8A ⁵ 16A ⁵ 32A ²⁵ I/O IO, PD X3D08 $X_2L7_{1n}^4$ 4A ² 8A ⁶ 16A ⁶ 32A ²⁷ I/O IO, PD X3D10 $X_2L7_{1n}^4$ 4A ³ 8A ⁷ 16A ⁷ 32A ²⁷ I/O IO, PD X3D10 $1C^0$ I/O IOT, PD X3D1 X3D1 ² I/O IO, PD X3D11 $1D^0$ I/O IO, PD X3D1 X3D1 ³ I/O IO, PD X3D13 $1F^0$ I/O IO, PD X3D1 X3D1 X4C ¹ 88 ¹ 16A ⁹ 32A ²⁹	X3D02	X ₂ L4 ⁰ 4A ⁰ 8A ⁰ 16A ⁰	32A ²⁰	I/O	IO, PD
X3D04 $X_2L4_{out}^1$ 480 $8A^2$ $16A^2$ $32A^{22}$ $1/O$ IO, PD X3D05 $X_2L4_{out}^2$ 481 $8A^3$ $16A^3$ $32A^{23}$ $1/O$ IO, PD X3D06 $X_2L4_{out}^3$ 482 $8A^4$ $16A^4$ $32A^{24}$ $1/O$ IO, PD X3D07 $X_2L4_{out}^4$ 483 $8A^5$ $16A^5$ $32A^{25}$ $1/O$ IO, PD X3D08 $X_2L7_{in}^4$ $4A^2$ $8A^6$ $16A^6$ $32A^{27}$ $1/O$ IO, PD X3D10 $X_2L7_{in}^4$ $4A^3$ $8A^7$ $16A^7$ $32A^{27}$ $1/O$ IO, PD X3D10 $1C^0$ $1/O$ IOT, PD X3D11 $1D^0$ $1/O$ IOT, PD X3D12 $1E^0$ $1/O$ IO, PD $X3D12$ $1C^0$ $1/O$ IO, PD X3D13 $1F^0$ $1/O$ IO, PD $X3D12$ $1/O$ IO, PD X3D14 $4C^2$ $8B^6$ $16A^8$ $32A^{29}$ $1/O$ IO, PD X3D20 $4C^2$ $8B^6$ <td>X3D03</td> <td>X₂L4⁰_{out} 4A¹ 8A¹ 16A¹</td> <td>32A²¹</td> <td>I/O</td> <td>IO, PD</td>	X3D03	X ₂ L4 ⁰ _{out} 4A ¹ 8A ¹ 16A ¹	32A ²¹	I/O	IO, PD
X3D05 $X_2 L4^2_{out}$ 4B ¹ 8A ³ 16A ³ 32A ²³ I/O IO, PD X3D06 $X_2 L4^2_{out}$ 4B ² 8A ⁴ 16A ⁴ 32A ²³ I/O IO, PD X3D07 $X_2 L4^2_{out}$ 4B ³ 8A ⁵ 16A ⁵ 32A ²⁵ I/O IO, PD X3D08 $X_2 L7^4_{in}$ 4A ² 8A ⁶ 16A ⁶ 32A ²⁶ I/O IO, PD X3D09 $X_2 L7^4_{in}$ 4A ² 8A ⁶ 16A ⁶ 32A ²⁷ I/O IO, PD X3D10 1C ⁰ I/O IO, PD IO, PD X3D1 IO, PD X3D1 X3D11 1D ⁰ I/O IO, PD I/O IO, PD X3D1 X3D12 1E ⁰ I/O IO, PD X3D1 IPO I/O IO, PD X3D13 1F ⁰ I/O IO, PD X3D1 IPO I/O IO, PD X3D14 4C ⁰ 8B ⁰ 16A ⁸ 32A ²⁹ I/O IO, PD X3D20 4C ² 8B ⁶ 16A ¹⁴ 32A ³¹ I/O IO, PD<	X3D04	$X_2L4^1_{out}$ $4B^0$ $8A^2$ $16A^2$	32A ²²	I/O	IO, PD
X3D06 $X_2L4_{out}^3$ $4B^2$ $8A^4$ $16A^4$ $32A^{24}$ I/O IO, PD X3D07 $X_2L4_{out}^4$ $4B^3$ $8A^5$ $16A^5$ $32A^{25}$ I/O IO, PD X3D08 $X_2L7_{in}^4$ $4A^2$ $8A^6$ $16A^6$ $32A^{26}$ I/O IO, PD X3D09 $X_2L7_{in}^3$ $4A^3$ $8A^7$ $16A^7$ $32A^{27}$ I/O IO, PD X3D10 $1C^0$ I/O IOT, PD IOT, PD IOT, PD X3D11 $1D^0$ I/O IOT, PD $IOOT, PD$ X3D12 $1E^0$ I/O IO, PD X3D13 $1F^0$ I/O IO, PD X3D14 $4C^0$ $8B^0$ $16A^8$ $32A^{29}$ I/O IO, PD X3D13 $1F^0$ I/O IO, PD IO, PD IO_1 IO_1 IO_1 IO_1 X3D14 $4C^2$ $8B^6$ $16A^8$ $32A^{29}$ I/O IO, PD IO, PD IO_1 IO_1 IO_1 IO_1 IO_1	X3D05	$X_2L4_{out}^2$ $4B^1$ $8A^3$ $16A^3$	32A ²³	I/O	IO, PD
X3D07 $X_2L4_{0ut}^4$ $4B^3$ $8A^5$ $16A^5$ $32A^{25}$ I/O IO, PD X3D08 $X_2L7_{in}^4$ $4A^2$ $8A^6$ $16A^6$ $32A^{26}$ I/O IO, PD X3D09 $X_2L7_{in}^3$ $4A^3$ $8A^7$ $16A^7$ $32A^{27}$ I/O IO, PD X3D10 $1C^0$ I/O IOT, PD X3D11 $1D^0$ I/O IOT, PD X3D12 $1E^0$ I/O IO, PD X3D13 $1F^0$ I/O IO, PD X3D14 $4C^0$ $8B^0$ $16A^8$ $32A^{28}$ I/O X3D15 $4C^1$ $8B^1$ $16A^9$ $32A^{29}$ I/O IO, PD X3D20 $4C^2$ $8B^6$ $16A^{14}$ $32A^{30}$ I/O IO, PD X3D21 $4C^3$ $8B^7$ $16A^{15}$ $32A^{21}$ I/O IO, PD X3D23 $1H^0$ I/O IO, PD I/O IO, PD X3D24 $1I^0$ I/O IO, PD I/O IO, PD X3D25 $1J^0$ I/O IO, PD I/O IO, PD X3D26 $4E^0$ $8C^0$ $16B^0$ I/O IOT, PD X3D27 $4E^1$ $8C^3$ $16B^3$ I/O IOT, PD X3D28 $4F^0$ $8C^2$ $16B^2$ I/O IOT, PD X3D29 $4F^1$ $8C^3$ $16B^4$ I/O IOT, PD X3D30 $4F^2$ $8C^4$ $16B^4$ I/O IOT, PD	X3D06	$X_2L4_{out}^3$ $4B^2$ $8A^4$ $16A^4$	32A ²⁴	I/O	IO, PD
X3D08 $X_2L7_{in}^4$ $4A^2$ $8A^6$ $16A^6$ $32A^{26}$ I/O IO, PD X3D09 $X_2L7_{in}^3$ $4A^3$ $8A^7$ $16A^7$ $32A^{27}$ I/O IO, PD X3D10 $1C^0$ I/O IOT, PD I/O IOT, PD X3D11 $1D^0$ I/O IOT, PD X3D12 $1E^0$ I/O IOT, PD X3D13 $1F^0$ I/O IO, PD X3D14 $4C^0$ $8B^0$ $16A^8$ $32A^{28}$ I/O X3D15 $4C^1$ $8B^1$ $16A^9$ $32A^{29}$ I/O IO, PD X3D20 $4C^2$ $8B^6$ $16A^{14}$ $32A^{30}$ I/O IO, PD X3D21 $4C^3$ $8B^7$ $16A^{15}$ $32A^{31}$ I/O IO, PD X3D23 $1H^0$ I/O IO, PD I/O IO, PD X3D24 $1I^0$ I/O IO, PD I/O IO, PD X3D25 $1J^0$ I/O IO, PD I/O IO, PD X3D26 $4E^0$ $8C^0$ $16B^0$ I/O IOT, PD X3D27 $4E^1$ $8C^1$ $16B^1$ I/O IOT, PD X3D28 $4F^0$ $8C^2$ $16B^2$ I/O IOT, PD X3D30 $4F^2$ $8C^4$ $16B^4$ I/O IOT, PD	X3D07	X ₂ L4 ⁴ _{out} 4B ³ 8A ⁵ 16A ⁵	32A ²⁵	I/O	IO, PD
X3D09 $X_2L7_{in}^3$ $4A^3$ $8A^7$ $16A^7$ $32A^{27}$ I/O IO, PD X3D10 $1C^0$ I/O IOT, PD X3D11 $1D^0$ I/O IOT, PD X3D12 $1E^0$ I/O IOT, PD X3D13 $1F^0$ I/O IO, PD X3D14 $4C^0$ $8B^0$ $16A^8$ $32A^{28}$ I/O X3D15 $4C^1$ $8B^1$ $16A^9$ $32A^{29}$ I/O IO, PD X3D20 $4C^2$ $8B^6$ $16A^{14}$ $32A^{30}$ I/O IO, PD X3D21 $4C^3$ $8B^7$ $16A^{15}$ $32A^{31}$ I/O IO, PD X3D23 $1H^0$ I/O IO, PD IO, PD IO, PD X3D24 $1I^0$ I/O IO, PD I/O IO, PD X3D25 $1J^0$ I/O IO, PD IO, PD X3D26 $4E^0$ $8C^0$ $16B^0$ I/O IOT, PD X3D27 $4E^1$ $8C^1$ $16B^1$ I/O IOT, PD X3D28 $4F^0$ $8C^2$ $16B^3$ I/O IOT, PD X3D29 $4F^1$ $8C^3$ $16B^3$ I/O IOT, PD X3D30 $4F^2$ $8C^4$ $16B^4$ I/O IOT, PD	X3D08	$X_2 L7_{in}^4$ $4A^2 8A^6 16A^6$	32A ²⁶	I/O	IO, PD
X3D10 $1C^0$ I/OIOT, PDX3D11 $1D^0$ I/OIOT, PDX3D12 $1E^0$ I/OIO, PDX3D13 $1F^0$ I/OIO, PDX3D14 $4C^0$ $8B^0$ $16A^8$ $32A^{28}$ I/OX3D15 $4C^1$ $8B^1$ $16A^9$ $32A^{29}$ I/OIO, PDX3D20 $4C^2$ $8B^6$ $16A^{14}$ $32A^{30}$ I/OIO, PDX3D21 $4C^3$ $8B^7$ $16A^{15}$ $32A^{31}$ I/OIO, PDX3D23 $1H^0$ I/OIO, PDX3D24 $1I^0$ I/OIO, PDX3D24 $1I^0$ I/OIO, PDX3D25 $1J^0$ I/OIOT, PDX3D26 $4E^0$ $8C^0$ $16B^0$ I/OIOT, PDX3D28 $4F^0$ $8C^2$ $16B^3$ I/OIOT, PDX3D29 $4F^1$ $8C^3$ $16B^3$ I/OIOT, PDX3D30 $4F^2$ $8C^4$ $16B^4$ I/OIOT, PD	X3D09	X ₂ L7 ³ _{in} 4A ³ 8A ⁷ 16A ⁷	32A ²⁷	I/O	IO, PD
X3D11 $1D^0$ I/O IOT, PD X3D12 $1E^0$ I/O IO, PD X3D13 $1F^0$ I/O IO, PD X3D14 $4C^0$ $8B^0$ $16A^8$ $32A^{28}$ I/O IO, PD X3D15 $4C^1$ $8B^1$ $16A^9$ $32A^{29}$ I/O IO, PD X3D20 $4C^2$ $8B^6$ $16A^{14}$ $32A^{29}$ I/O IO, PD X3D20 $4C^2$ $8B^6$ $16A^{14}$ $32A^{29}$ I/O IO, PD X3D20 $4C^2$ $8B^6$ $16A^{14}$ $32A^{23}$ I/O IO, PD X3D21 $4C^3$ $8B^7$ $16A^{15}$ $32A^{31}$ I/O IO, PD X3D23 $1H^0$ I/O IO, PD X3D23 $1H^0$ I/O IO, PD X3D24 $1I^0$ I/O IO, PD X3D26 $4E^0$ $8C^0$ $16B^0$ I/O IOT, PD X3D26 $4E^0$ $8C^0$ $16B^1$ I/O IOT, PD X3D28 $4F^0$ $8C^2$ $16B^2$ I/O	X3D10	1C ⁰		I/O	IOT, PD
X3D12 $1E^0$ I/OIO, PDX3D13 $1F^0$ I/OIO, PDX3D14 $4C^0$ $8B^0$ $16A^8$ $32A^{28}$ I/OIO, PDX3D15 $4C^1$ $8B^1$ $16A^9$ $32A^{29}$ I/OIO, PDX3D20 $4C^2$ $8B^6$ $16A^{14}$ $32A^{30}$ I/OIO, PDX3D21 $4C^3$ $8B^7$ $16A^{15}$ $32A^{31}$ I/OIO, PDX3D23 $1H^0$ I/OIO, PDX3D24II/OIO, PDX3D24 $1I^0$ I/OIO, PDX3D25IJ/OIO, PDX3D26 $4E^0$ $8C^0$ $16B^0$ I/OIOT, PDX3D27 $4E^1$ $8C^1$ $16B^1$ I/OIOT, PDX3D28 $4F^0$ $8C^2$ $16B^3$ I/OIOT, PDX3D29 $4F^1$ $8C^3$ $16B^3$ I/OIOT, PDX3D30 $4F^2$ $8C^4$ $16B^4$ I/OIOT, PD	X3D11	1D ⁰		I/O	IOT, PD
X3D13 $1F^0$ I/OIO, PDX3D14 $4C^0$ $8B^0$ $16A^8$ $32A^{28}$ I/O IO, PDX3D15 $4C^1$ $8B^1$ $16A^9$ $32A^{29}$ I/O IO, PDX3D20 $4C^2$ $8B^6$ $16A^{14}$ $32A^{30}$ I/O IO, PDX3D21 $4C^3$ $8B^7$ $16A^{15}$ $32A^{31}$ I/O IO, PDX3D23 $1H^0$ I/OIO, PDIO, PDX3D24 $1I^0$ I/OIO, PDX3D25 $1J^0$ I/OIO, PDX3D26 $4E^0$ $8C^0$ $16B^0$ I/OIOT, PDX3D27 $4E^1$ $8C^1$ $16B^1$ I/OIOT, PDX3D28 $4F^0$ $8C^2$ $16B^3$ I/OIOT, PDX3D29 $4F^1$ $8C^3$ $16B^3$ I/OIOT, PDX3D30 $4F^2$ $8C^4$ $16B^4$ I/OIOT, PD	X3D12	1E ⁰		I/O	IO, PD
X3D14 $4C^0 \ 8B^0 \ 16A^8 \ 32A^{28}$ I/OIO, PDX3D15 $4C^1 \ 8B^1 \ 16A^9 \ 32A^{29}$ I/OIO, PDX3D20 $4C^2 \ 8B^6 \ 16A^{14} \ 32A^{30}$ I/OIO, PDX3D21 $4C^3 \ 8B^7 \ 16A^{15} \ 32A^{31}$ I/OIO, PDX3D23 $1H^0$ I/OIO, PDX3D24 $1I^0$ I/OIO, PDX3D25 $1J^0$ I/OIO, PDX3D26 $4E^0 \ 8C^0 \ 16B^0$ I/OIO, PDX3D27 $4E^1 \ 8C^1 \ 16B^1$ I/OIOT, PDX3D28 $4F^0 \ 8C^2 \ 16B^2$ I/OIOT, PDX3D29 $4F^1 \ 8C^3 \ 16B^3$ I/OIOT, PDX3D30 $4F^2 \ 8C^4 \ 16B^4$ I/OIOT, PD	X3D13	1F ⁰		I/O	IO, PD
X3D15 $4C^1 8B^1 16A^9 32A^{29}$ I/OIO, PDX3D20 $4C^2 8B^6 16A^{14} 32A^{30}$ I/OIO, PDX3D21 $4C^3 8B^7 16A^{15} 32A^{31}$ I/OIO, PDX3D23 $1H^0$ I/OIO, PDX3D24 $1I^0$ I/OIO, PDX3D25 $1J^0$ I/OIO, PDX3D26 $4E^0 8C^0 16B^0$ I/OIOT, PDX3D27 $4E^1 8C^1 16B^1$ I/OIOT, PDX3D28 $4F^0 8C^2 16B^2$ I/OIOT, PDX3D29 $4F^1 8C^3 16B^3$ I/OIOT, PDX3D30 $4F^2 8C^4 16B^4$ I/OIOT, PD	X3D14	4C ⁰ 8B ⁰ 16A ⁸	32A ²⁸	I/O	IO, PD
X3D20 $4C^2$ $8B^6$ $16A^{14}$ $32A^{30}$ I/O IO , PD X3D21 $4C^3$ $8B^7$ $16A^{15}$ $32A^{31}$ I/O IO , PD X3D23 $1H^0$ I/O IO , PD IO , PD X3D24 $1I^0$ I/O IO , PD X3D25 $1J^0$ I/O IO , PD X3D26 $4E^0$ $8C^0$ $16B^0$ I/O IOT , PD X3D27 $4E^1$ $8C^1$ $16B^1$ I/O IOT , PD X3D28 $4F^0$ $8C^2$ $16B^2$ I/O IOT , PD X3D29 $4F^1$ $8C^3$ $16B^3$ I/O IOT , PD X3D30 $4F^2$ $8C^4$ $16B^4$ I/O IOT , PD	X3D15	4C ¹ 8B ¹ 16A ⁹	32A ²⁹	I/O	IO, PD
X3D21 $4C^3 8B^7 16A^{15} 32A^{31}$ I/O IO, PD X3D23 $1H^0$ I/O IO, PD X3D24 $1I^0$ I/O IO, PD X3D25 $1J^0$ I/O IO, PD X3D26 $4E^0 8C^0 16B^0$ I/O IOT, PD X3D27 $4E^1 8C^1 16B^1$ I/O IOT, PD X3D28 $4F^0 8C^2 16B^2$ I/O IOT, PD X3D29 $4F^1 8C^3 16B^3$ I/O IOT, PD X3D30 $4F^2 8C^4 16B^4$ I/O IOT, PD	X3D20	4C ² 8B ⁶ 16A ¹⁴	32A ³⁰	I/O	IO, PD
X3D23 $1H^0$ I/O IO, PD X3D24 $1I^0$ I/O IO, PD X3D25 $1J^0$ I/O IO, PD X3D26 $4E^0$ $8C^0$ $16B^0$ I/O IOT, PD X3D27 $4E^1$ $8C^1$ $16B^1$ I/O IOT, PD X3D28 $4F^0$ $8C^2$ $16B^2$ I/O IOT, PD X3D29 $4F^1$ $8C^3$ $16B^3$ I/O IOT, PD X3D30 $4F^2$ $8C^4$ $16B^4$ I/O IOT, PD	X3D21	4C ³ 8B ⁷ 16A ¹⁵	32A ³¹	I/O	IO, PD
X3D24 11^0 $1/O$ IO, PD X3D25 11^0 $1/O$ IO, PD X3D26 $4E^0$ $8C^0$ $16B^0$ $1/O$ IOT, PD X3D27 $4E^1$ $8C^1$ $16B^1$ $1/O$ IOT, PD X3D28 $4F^0$ $8C^2$ $16B^2$ $1/O$ IOT, PD X3D29 $4F^1$ $8C^3$ $16B^3$ $1/O$ IOT, PD X3D30 $4F^2$ $8C^4$ $16B^4$ $1/O$ IOT, PD	X3D23	1H ⁰		I/O	IO, PD
X3D25 $1J^0$ I/O IO, PD X3D26 $4E^0$ $8C^0$ $16B^0$ I/O IOT, PD X3D27 $4E^1$ $8C^1$ $16B^1$ I/O IOT, PD X3D28 $4F^0$ $8C^2$ $16B^2$ I/O IOT, PD X3D29 $4F^1$ $8C^3$ $16B^3$ I/O IOT, PD X3D30 $4F^2$ $8C^4$ $16B^4$ I/O IOT, PD	X3D24	110		I/O	IO, PD
X3D26 $4E^0$ $8C^0$ $16B^0$ I/O IOT, PD X3D27 $4E^1$ $8C^1$ $16B^1$ I/O IOT, PD X3D28 $4F^0$ $8C^2$ $16B^2$ I/O IOT, PD X3D29 $4F^1$ $8C^3$ $16B^3$ I/O IOT, PD X3D30 $4F^2$ $8C^4$ $16B^4$ I/O IOT, PD	X3D25	۱J ⁰		I/O	IO, PD
X3D27 $4E^1 \ 8C^1 \ 16B^1$ I/O IOT, PD X3D28 $4F^0 \ 8C^2 \ 16B^2$ I/O IOT, PD X3D29 $4F^1 \ 8C^3 \ 16B^3$ I/O IOT, PD X3D30 $4F^2 \ 8C^4 \ 16B^4$ I/O IOT, PD	X3D26	4E ⁰ 8C ⁰ 16B ⁰		I/0	IOT, PD
X3D28 $4F^0$ $8C^2$ $16B^2$ I/O IOT, PD X3D29 $4F^1$ $8C^3$ $16B^3$ I/O IOT, PD X3D30 $4F^2$ $8C^4$ $16B^4$ I/O IOT, PD	X3D27	4E ¹ 8C ¹ 16B ¹		I/0	IOT, PD
X3D29 4F ¹ 8C ³ 16B ³ I/O IOT, PD X3D30 4F ² 8C ⁴ 16B ⁴ I/O IOT, PD	X3D28	4F ⁰ 8C ² 16B ²		I/O	IOT, PD
X3D30 4F ² 8C ⁴ 16B ⁴ I/O IOT, PD	X3D29	4F ¹ 8C ³ 16B ³		I/O	IOT, PD
	X3D30	4F ² 8C ⁴ 16B ⁴		I/O	IOT, PD
X3D31 4F ³ 8C ³ 1/O IO1, PD	X3D31	4F ³ 8C ⁵ 16B ⁵		I/O	IOT, PD

The boot image has the following format:

- A 32-bit program size *s* in words.
- Program consisting of $s \times 4$ bytes.
- A 32-bit CRC, or the value 0x0D15AB1E to indicate that no CRC check should be performed.

The program size and CRC are stored least significant byte first. The program is loaded into the lowest memory address of RAM, and the program is started from that address. The CRC is calculated over the byte stream represented by the program size and the program itself. The polynomial used is 0xEDB88320 (IEEE 802.3); the CRC register is initialized with 0xFFFFFFFF and the residue is inverted to produce the CRC.

8.1 Security register

The security register enables security features on the xCORE tile. The features shown in Figure 10 provide a strong level of protection and are sufficient for providing strong IP security.

9 Memory

9.1 OTP

Each xCORE Tile integrates 8 KB one-time programmable (OTP) memory along with a security register that configures system wide security features. The OTP holds data in four sectors each containing 512 rows of 32 bits which can be used to implement secure bootloaders and store encryption keys. Data for the security

19

Feature	Bit	Description
Disable JTAG	0	The JTAG interface is disabled, making it impossible for the tile state or memory content to be accessed via the JTAG interface.
Disable Link access	1	Other tiles are forbidden access to the processor state via the system switch. Disabling both JTAG and Link access transforms an xCORE Tile into a "secure island" with other tiles free for non-secure user application code.
Secure Boot	5	The xCORE Tile is forced to boot from address 0 of the OTP, allowing the xCORE Tile boot ROM to be bypassed (see \S 8).
Redundant rows	7	Enables redundant rows in OTP.
Sector Lock 0	8	Disable programming of OTP sector 0.
Sector Lock 1	9	Disable programming of OTP sector 1.
Sector Lock 2	10	Disable programming of OTP sector 2.
Sector Lock 3	11	Disable programming of OTP sector 3.
OTP Master Lock	12	Disable OTP programming completely: disables up- dates to all sectors and security register.
Disable JTAG-OTP	13	Disable all (read & write) access from the JTAG inter- face to this OTP.
Disable Global Debug	14	Disables access to the DEBUG_N pin.
	2115	General purpose software accessable security register available to end-users.
	3122	General purpose user programmable JTAG UserID code extension.

Figure 10: Security register features

register is loaded from the OTP on power up. All additional data in OTP is copied from the OTP to SRAM and executed first on the processor.

The OTP memory is programmed using three special I/O ports: the OTP address port is a 16-bit port with resource ID 0x100200, the OTP data is written via a 32-bit port with resource ID 0x200100, and the OTP control is on a 16-bit port with ID 0x100300. Programming is performed through libotp and xburn.

9.2 SRAM

Each xCORE Tile integrates a single 128KBSRAM bank for both instructions and data. All internal memory is 32 bits wide, and instructions are either 16-bit or 32-bit. Byte (8-bit), half-word (16-bit) or word (32-bit) accesses are supported and are executed within one tile clock cycle. There is no dedicated external memory interface, although data memory can be expanded through appropriate use of the ports.

-XMOS-

The JTAG usercode register can be read by using the USERCODE instruction. Its contents are specified in Figure 13. The OTP User ID field is read from bits [22:31] of the security register on xCORE Tile 0, *see* §9.1 (all zero on unprogrammed devices).

Figure 13: USERCODE return value

	Bit31 Usercode Register E							it0																								
): -				0	TP U	lser	ID					Unu	ised									Silio	on I	Revis	sion							
E .	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2		()			()			()			2	2			8	3			()			()			()	

11 Board Integration

The device has the following power supply pins:

- ▶ VDD pins for the xCORE Tile
- ▶ VDDIO pins for the I/O lines
- PLL_AVDD pins for the PLL
- OTP_VCC pins for the OTP

Several pins of each type are provided to minimize the effect of inductance within the package, all of which must be connected. The power supplies must be brought up monotonically and input voltages must not exceed specification at any time.

The VDD supply must ramp from 0V to its final value within 10 ms to ensure correct startup.

The VDDIO and OTP_VCC supply must ramp to its final value before VDD reaches 0.4 V.

The PLL_AVDD supply should be separated from the other noisier supplies on the board. The PLL requires a very clean power supply, and a low pass filter (for example, a 2.2Ω resistor and 100 nF multi-layer ceramic capacitor) is recommended on this pin.

The following ground pins are provided:

- PLL_AGND for PLL_AVDD
- ► GND for all other supplies

All ground pins must be connected directly to the board ground.

The VDD and VDDIO supplies should be decoupled close to the chip by several 100 nF low inductance multi-layer ceramic capacitors between the supplies and GND (for example, 100nF 0402 for every other supply pin). The ground side of the decoupling capacitors should have as short a path back to the GND pins as possible. A bulk decoupling capacitor of at least 10 uF should be placed on each of these supplies.

12 DC and Switching Characteristics

Symbol	Parameter	MIN	ΤΥΡ	MAX	UNITS	Notes
VDD	Tile DC supply voltage	0.95	1.00	1.05	V	
VDDIO	I/O supply voltage	2.30	3.30	3.60	V	
VDDIOT_0	I/O supply voltage	2.25	3.30	3.60	V	
VDDIOT_1	I/O supply voltage	2.25	3.30	3.60	V	
USB_VDD	USB tile DC supply voltage	0.95	1.00	1.05	V	
VDD33	Peripheral supply	3.135	3.30	3.465	V	
PLL_AVDD	PLL analog supply	0.95	1.00	1.05	V	
Cl	xCORE Tile I/O load capacitance			25	pF	
Та	Ambient operating temperature (Commercial)	0		70	°C	
	Ambient operating temperature (Industrial)	-40		85	°C	
Tj	Junction temperature			125	°C	
Tsta	Storage temperature	-65		150	°C	

12.1 Operating Conditions

Figure 14: Operating conditions

12.2 DC Characteristics, VDDIO=3V3

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
V(IH)	Input high voltage	2.00		3.60	V	А
V(IL)	Input low voltage	-0.30		0.70	V	A
V(OH)	Output high voltage	2.20			V	B, C
V(OL)	Output low voltage			0.40	V	B, C
I(PU)	Internal pull-up current (Vin=0V)	-100			μA	D
I(PD)	Internal pull-down current (Vin=3.3V)			100	μA	D
I(LC)	Input leakage current	-10		10	μA	

Figure 15: DC characteristics

A All pins except power supply pins.

B Pins X1D40, X1D41, X1D42, X1D43, X1D26, X1D27, X3D40, X3D41, X3D42, X3D43, X3D26, and X3D27 are nominal 8 mA drivers, the remainder of the general-purpose I/Os are 4 mA.

C Measured with 4 mA drivers sourcing 4 mA, 8 mA drivers sourcing 8 mA.

D Used to guarantee logic state for an I/O when high impedance. The internal pull-ups/pull-downs should not be used to pull external circuitry. In order to pull the pin to the opposite state, a 4K7 resistor is recommended to overome the internal pull current.

XS2-LF32A-512-FB374

More detailed power analysis can be found in the XS1-LF Power Consumption document,

12.6 C	lock
--------	------

Figure 20: Clock

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
f	Frequency	3.25	25	100	MHz	
SR	Slew rate	0.10			V/ns	
TJ(LT)	Long term jitter (pk-pk)			2	%	А
f(MAX)	Processor clock frequency			500	MHz	В

A Percentage of CLK period.

B Assumes typical tile and I/O voltages with nominal activity.

Further details can be found in the XS1-LF Clock Frequency Control document,

12.7 xCORE Tile I/O AC Characteristics

	Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
	T(XOVALID)	Input data valid window	8			ns	
Figure 21:	T(XOINVALID)	Output data invalid window	9			ns	
I/O AC char- acteristics	T(XIFMAX)	Rate at which data can be sampled with respect to an external clock			60	MHz	

The input valid window parameter relates to the capability of the device to capture data input to the chip with respect to an external clock source. It is calculated as the sum of the input setup time and input hold time with respect to the external clock as measured at the pins. The output invalid window specifies the time for which an output is invalid with respect to the external clock. Note that these parameters are specified as a window rather than absolute numbers since the device provides functionality to delay the incoming clock with respect to the incoming data.

Information on interfacing to high-speed synchronous interfaces can be found in the XS1 Port I/O Timing document, X5821.

12.8 xConnect Link Performance

	Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
	B(2blinkP)	2b link bandwidth (packetized)			87	MBit/s	А, В
Figure 22:	B(5blinkP)	5b link bandwidth (packetized)			217	MBit/s	А, В
Link	B(2blinkS)	2b link bandwidth (streaming)			100	MBit/s	В
performance	B(5blinkS)	5b link bandwidth (streaming)			250	MBit/s	В

A Assumes 32-byte packet in 3-byte header mode. Actual performance depends on size of the header and payload.

B 7.5 ns symbol time.

A.2 Accessing an xCORE Tile configuration register

xCORE Tile configuration registers can be accessed through the interconnect using the functions write_tile_config_reg(tileref, ...) and read_tile_config_reg(tile \rightarrow ref, ...), where tileref is the name of the xCORE Tile, e.g. tile[1]. These functions implement the protocols described below.

Instead of using the functions above, a channel-end can be allocated to communicate with the xCORE tile configuration registers. The destination of the channel-end should be set to 0xnnnnC20C where nnnnn is the tile-identifier.

A write message comprises the following:

control-token	24-bit response	16-bit	32-bit	control-token
192	channel-end identifier	register number	data	1

The response to a write message comprises either control tokens 3 and 1 (for success), or control tokens 4 and 1 (for failure).

A read message comprises the following:

control-token	24-bit response	16-bit	control-token
193	channel-end identifier	register number	1

The response to the read message comprises either control token 3, 32-bit of data, and control-token 1 (for success), or control tokens 4 and 1 (for failure).

A.3 Accessing node configuration

Node configuration registers can be accessed through the interconnect using the functions write_node_config_reg(device, ...) and read_node_config_reg(device, ...), where device is the name of the node. These functions implement the protocols described below.

Instead of using the functions above, a channel-end can be allocated to communicate with the node configuration registers. The destination of the channel-end should be set to 0xnnnnC30C where nnnn is the node-identifier.

A write message comprises the following:

control-token	24-bit response	16-bit	32-bit	control-token
192	channel-end identifier	register number	data	1

The response to a write message comprises either control tokens 3 and 1 (for success), or control tokens 4 and 1 (for failure).

A read message comprises the following:

control-token	24-bit response	16-bit	control-token
193	channel-end identifier	register number	1

The response to a read message comprises either control token 3, 32-bit of data, and control-token 1 (for success), or control tokens 4 and 1 (for failure).

B Processor Status Configuration

The processor status control registers can be accessed directly by the processor using processor status reads and writes (use getps(reg) and setps(reg,value) for reads and writes).

Number	Perm	Description	
0x00	RW	RAM base address	
0x01	RW	Vector base address	
0x02	RW	xCORE Tile control	
0x03	RO	xCORE Tile boot status	
0x05	RW	Security configuration	
0x06	RW	Ring Oscillator Control	
0x07	RO	Ring Oscillator Value	
0x08	RO	Ring Oscillator Value	
0x09	RO	Ring Oscillator Value	
0x0A	RO	Ring Oscillator Value	
0x0C	RO	RAM size	
0x10	DRW	Debug SSR	
0x11	DRW	Debug SPC	
0x12	DRW	Debug SSP	
0x13	DRW	DGETREG operand 1	
0x14	DRW	DGETREG operand 2	
0x15	DRW	Debug interrupt type	
0x16	DRW	Debug interrupt data	
0x18	DRW	Debug core control	
0x20 0x27	DRW	Debug scratch	
0x30 0x33	DRW	Instruction breakpoint address	
0x40 0x43	DRW	Instruction breakpoint control	
0x50 0x53	DRW	Data watchpoint address 1	
0x60 0x63	DRW	Data watchpoint address 2	
0x70 0x73	DRW	Data breakpoint control register	
0x80 0x83	DRW	Resources breakpoint mask	
0x90 0x93	DRW	Resources breakpoint value	
0x9C 0x9F	DRW	Resources breakpoint control register	

-XMOS

Figure 27:

Summary

B.1 RAM base address: 0x00

This register contains the base address of the RAM. It is initialized to 0x00040000.

0x00: RAM base address

<u>_</u>	Bits	Perm	Init	Description
e.	31:2	RW		Most significant 16 bits of all addresses.
s	1:0	RO	-	Reserved

B.2 Vector base address: 0x01

Base address of event vectors in each resource. On an interrupt or event, the 16 most significant bits of the destination address are provided by this register; the least significant 16 bits come from the event vector.

0x01: Vector base address

Bits	Perm	Init	Description	
31:18	RW		The event and interrupt vectors.	
17:0	RO	-	Reserved	

B.3 xCORE Tile control: 0x02

Register to control features in the xCORE tile

Bits	Perm	Init	Description	
31:26	RO	-	Reserved	
25:18	RW	0	RGMII TX data delay value (in PLL output cycle increments)	
17:9	RW	0	RGMII TX clock divider value. TX clk rises when counter (clocked by PLL output) reaches this value and falls when counter reache (value»1). Value programmed into this field should be actua divide value required minus 1	
8	RW	0	Enable RGMII interface periph ports	
7:6	RO	-	Reserved	
5	RW	0	Select the dynamic mode (1) for the clock divider when the cloc divider is enabled. In dynamic mode the clock divider is on activated when all active threads are paused. In static mode the clock divider is always enabled.	
4	RW	0	Enable the clock divider. This divides the output of the PLL to facilitate one of the low power modes.	
3:0	RO	-	Reserved	

-XMOS⁻

0x02: xCORE Tile control

	Bits	Perm	Init	Description
	31:24	RO	-	Reserved
	23:16	DRW	0	A bit for each thread in the machine allowing the breakpoint to be enabled individually for each thread.
0x70 0x73:	15:3	RO	-	Reserved
Data breakpoint	2	DRW	0	When 1 the breakpoints will be be triggered on loads.
control	1	DRW	0	Determines the break condition: $0 = A AND B$, $1 = A OR B$.
register	0	DRW	0	When 1 the instruction breakpoint is enabled.

B.26 Resources breakpoint mask: 0x80 .. 0x83

This set of registers contains the mask for the four resource watchpoints.

0x80 0x83:				
breakpoint	Bits	Perm	Init	Description
mask	31:0	DRW		Value.

B.27 Resources breakpoint value: 0x90 .. 0x93

This set of registers contains the value for the four resource watchpoints.

0x90 0x93:				
breakpoint	Bits	Perm	Init	Description
value	31:0	DRW		Value.

B.28 Resources breakpoint control register: 0x9C .. 0x9F

This set of registers controls each of the four resource watchpoints.

-XMOS

41

XS2-LF32A-512-FB374

0x04: Control PSwitch permissions to debug registers

Bits	Perm	Init	Description	
31	CRW	0	When 1 the PSwitch is restricted to RO access to all CRW registers from SSwitch, XCore(PS_DBG_Scratch) and JTAG	
30:1	RO	-	Reserved	
0	CRW	0	When 1 the PSwitch is restricted to RO access to all CRW registers from SSwitch	

C.5 Cause debug interrupts: 0x05

This register can be used to raise a debug interrupt in this xCORE tile.

0x05: Cause debug interrupts

Bits	Perm	Init	Description	
31:2	RO	-	Reserved	
1	CRW	0	1 when the processor is in debug mode.	
0	CRW	0	Request a debug interrupt on the processor.	

C.6 xCORE Tile clock divider: 0x06

This register contains the value used to divide the PLL clock to create the xCORE tile clock. The divider is enabled under control of the tile control register

0x06: xCORE Tile clock divider

Bits	Perm	Init	Description
31	CRW	0	Clock disable. Writing '1' will remove the clock to the tile.
30:16	RO	-	Reserved
15:0	CRW	0	Clock divider.

C.7 Security configuration: 0x07

Copy of the security register as read from OTP.

D Node Configuration

The digital node control registers can be accessed using configuration reads and writes (use write_node_config_reg(device, ...) and read_node_config_reg(device, \rightarrow ...) for reads and writes).

Number	Perm	Description
0x00	RO	Device identification
0x01	RO	System switch description
0x04	RW	Switch configuration
0x05	RW	Switch node identifier
0x06	RW	PLL settings
0x07	RW	System switch clock divider
0x08	RW	Reference clock
0x09	R	System JTAG device ID register
0x0A	R	System USERCODE register
0x0C	RW	Directions 0-7
0x0D	RW	Directions 8-15
0x10	RW	DEBUG_N configuration, tile 0
0x11	RW	DEBUG_N configuration, tile 1
0x1F	RO	Debug source
0x20 0x28	RW	Link status, direction, and network
0x40 0x47	RO	PLink status and network
0x80 0x88	RW	Link configuration and initialization
0xA0 0xA7	RW	Static link configuration

Figure 29: Summary

D.1 Device identification: 0x00

This register contains version and revision identifiers and the mode-pins as sampled at boot-time.

	Bits	Perm	Init	Description
	31:24	RO	-	Reserved
0×00	23:16	RO		Sampled values of BootCtl pins on Power On Reset.
Device	15:8	RO		SSwitch revision.
ification	7:0	RO		SSwitch version.

-XMOS[®]

identi

D.2 System switch description: 0x01

This register specifies the number of processors and links that are connected to this switch.

0x01: System switch description

Bits	Perm	Init	Description
31:24	RO	-	Reserved
23:16	RO		Number of SLinks on the SSwitch.
15:8	RO		Number of processors on the SSwitch.
7:0	RO		Number of processors on the device.

D.3 Switch configuration: 0x04

This register enables the setting of two security modes (that disable updates to the PLL or any other registers) and the header-mode.

Bits	Perm	Init	Description
31	RW	0	0 = SSCTL registers have write access. 1 = SSCTL registers can not be written to.
30:9	RO	-	Reserved
8	RW	0	0 = PLL_CTL_REG has write access. 1 = PLL_CTL_REG can not be written to.
7:1	RO	-	Reserved
0	RW	0	0 = 2-byte headers, 1 = 1-byte headers (reset as 0).

0x04: Switch configuration

D.4 Switch node identifier: 0x05

This register contains the node identifier.

0x05
Switch node
identifier

x05: node	Bits	Perm	Init	Description
	31:16	RO	-	Reserved
tifier	15:0	RW	0	The unique ID of this node.

D.5 PLL settings: 0x06

An on-chip PLL multiplies the input clock up to a higher frequency clock, used to clock the I/O, processor, and switch, see Oscillator. Note: a write to this register will cause the tile to be reset.

Bits	Perm	Init	Description
31	RW		If set to 1, the chip will not be reset
30	RW		If set to 1, the chip will not wait for the PLL to re-lock. Only use this if a gradual change is made to the PLL
29	DW		If set to 1, set the PLL to be bypassed
28	DW		If set to 1, set the boot mode to boot from JTAG
27:26	RO	-	Reserved
25:23	RW		Output divider value range from 1 (8'h0) to 250 (8'hF9). P value.
22:21	RO	-	Reserved
20:8	RW		Feedback multiplication ratio, range from 1 (8'h0) to 255 (8'hFE). M value.
7	RO	-	Reserved
6:0	RW		Oscilator input divider value range from 1 (8'h0) to 32 (8'h0F). N value.

0x06: PLL settings

D.6 System switch clock divider: 0x07

Sets the ratio of the PLL clock and the switch clock.

0x07 System switch clock divider

7: n	Bits	Perm	Init	Description
k	31:16	RO	-	Reserved
er	15:0	RW	0	SSwitch clock generation

D.7 Reference clock: 0x08

Sets the ratio of the PLL clock and the reference clock used by the node.

0,08.	Bits	Perm	Init	Description
Reference	31:16	RO	-	Reserved
clock	15:0	RW	3	Software ref. clock divider

Bits	Perm	Init	Description
31:26	RO	-	Reserved
25:24	RO		Identify the SRC_TARGET type 0 - SLink, 1 - PLink, 2 - SSCTL, 3 - Undefine.
23:16	RO		When the link is in use, this is the destination link number to which all packets are sent.
15:6	RO	-	Reserved
5:4	RW	0	Determines the network to which this link belongs, reset as 0.
3	RO	-	Reserved
2	RO		1 when the current packet is considered junk and will be thrown away.
1	RO		1 when the dest side of the link is in use.
0	RO		1 when the source side of the link is in use.

0x40 .. 0x47: PLink status and network

D.17 Link configuration and initialization: 0x80 .. 0x88

These registers contain configuration and debugging information specific to external links. The link speed and width can be set, the link can be initialized, and the link status can be monitored. The registers control links 0..7.

	Bits	Perm	Init	Description
	31	RW		Write to this bit with '1' will enable the XLink, writing '0' will disable it. This bit controls the muxing of ports with overlapping xlinks.
	30	RW	0	0: operate in 2 wire mode; 1: operate in 5 wire mode
	29:28	RO	-	Reserved
	27	RO		Rx buffer overflow or illegal token encoding received.
	26	RO	0	This end of the xlink has issued credit to allow the remote end to transmit
	25	RO	0	This end of the xlink has credit to allow it to transmit.
	24	WO		Clear this end of the xlink's credit and issue a HELLO token.
	23	WO		Reset the receiver. The next symbol that is detected will be the first symbol in a token.
	22	RO	-	Reserved
י. ג ו	21:11	RW	0	Specify min. number of idle system clocks between two contin- uous symbols witin a transmit token -1.
1	10:0	RW	0	Specify min. number of idle system clocks between two contin- uous transmit tokens -1.

0x80 .. 0x88: Link configuration and initialization 57

D.18 Static link configuration: 0xA0 .. 0xA7

These registers are used for static (ie, non-routed) links. When a link is made static, all traffic is forwarded to the designated channel end and no routing is attempted. The registers control links C, D, A, B, G, H, E, and F in that order.

Bits	Perm	Init	Description
31	RW	0	Enable static forwarding.
30:9	RO	-	Reserved
8	RW	0	The destination processor on this node that packets received in static mode are forwarded to.
7:5	RO	-	Reserved
4:0	RW	0	The destination channel end on this node that packets received in static mode are forwarded to.

0xA0 .. 0xA7: Static link configuration

F Schematics Design Check List

✓ This section is a checklist for use by schematics designers using the XLF232-512-FB374. Each of the following sections contains items to check for each design.

F.1 Power supplies

- □ VDDIO and OTP_VCC supply is within specification before the VDD (core) supply is turned on. Specifically, the VDDIO and OTP_VCC supply is within specification before VDD (core) reaches 0.4V (Section 11).
- The VDD (core) supply ramps monotonically (rises constantly) from 0V to its final value (0.95V 1.05V) within 10ms (Section 11).
- The VDD (core) supply is capable of supplying 1400 mA (Section 11 and Figure 15).
- PLL_AVDD is filtered with a low pass filter, for example an RC filter, see Section 11

F.2 Power supply decoupling

- The design has multiple decoupling capacitors per supply, for example at least four0402 or 0603 size surface mount capacitors of 100nF in value, per supply (Section 11).
- A bulk decoupling capacitor of at least 10uF is placed on each supply (Section 11).

F.3 Power on reset

□ The RST_N and TRST_N pins are asserted (low) during or after power up. The device is not used until these resets have taken place.

F.4 Clock

- The CLK input pin is supplied with a clock with monotonic rising edges and low jitter.
- Pins MODE0 and MODE1 are set to the correct value for the chosen oscillator frequency. The MODE settings are shown in the Oscillator section, Section 7. If you have a choice between two values, choose the value with the highest multiplier ratio since that will boot faster.

F.5 Boot

- \square X0D01 has a 1K pull-up to VDDIO (Section 8).
- The device is kept in reset for at least 1 ms after VDDIO has reached its minimum level (Section 8).

F.6 JTAG, XScope, and debugging

- \Box You have decided as to whether you need an XSYS header or not (Section E)
- \Box If you have not included an XSYS header, you have devised a method to program the SPI-flash or OTP (Section E).

F.7 GPIO

- \Box You have not mapped both inputs and outputs to the same multi-bit port.
- Pins X0D04, X0D05, X0D06, and X0D07 are output only and are, during and after reset, pulled low or not connected (Section 8)
- Pins X2D04, X2D05, X2D06 and X2D07 are output only and during and after reset, X2D06 is pulled high and X2D04, X2D05, and X2D07 are pulled low (Section 8)

F.8 Multi device designs

Skip this section if your design only includes a single XMOS device.

- \Box One device is connected to a QSPI or SPI flash for booting.
- Devices that boot from link have, for example, X0D06 pulled high and have link XL0 connected to a device to boot from (Section 8).

G PCB Layout Design Check List

✓ This section is a checklist for use by PCB designers using the XS2-LF32A-512-FB374. Each of the following sections contains items to check for each design.

G.1 Ground Plane

- Each ground ball has a via to minimize impedance and conduct heat away from the device. (Section 11.2)
- Other than ground vias, there are no (or only a few) vias underneath or closely around the device. This create a good, solid, ground plane.

G.2 Power supply decoupling

- The decoupling capacitors are all placed close to a supply pin (Section 11).
- \Box The decoupling capacitors are spaced around the device (Section 11).
- The ground side of each decoupling capacitor has a direct path back to the center ground of the device.

G.3 PLL_AVDD

The PLL_AVDD filter (especially the capacitor) is placed close to the PLL_AVDD pin (Section 11).

H Associated Design Documentation

Document Title	Information	Document Number
Estimating Power Consumption For XS1-LF Devices	Power consumption	X4271
Programming XC on XMOS Devices	Timers, ports, clocks, cores and channels	X9577
xTIMEcomposer User Guide	Compilers, assembler and linker/mapper	X3766
	Timing analyzer, xScope, debugger	
	Flash and OTP programming utilities	

I Related Documentation

Document Title	Information	Document Number
The XMOS XS1 Architecture	ISA manual	X7879
XS1 Port I/O Timing	Port timings	X5821
xCONNECT Architecture	Link, switch and system information	X4249
XS1-LF Link Performance and Design Guidelines	Link timings	X2999
XS1-LF Clock Frequency Control	Advanced clock control	X1433
XS1-L Active Power Conservation	Low-power mode during idle	X7411

XS2-LF32A-512-FB374