

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	XCore
Core Size	32-Bit 24-Core
Speed	4000MIPS
Connectivity	-
Peripherals	-
Number of I/O	176
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	0.95V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	374-LFBGA
Supplier Device Package	374-FBGA (18x18)
Purchase URL	https://www.e-xfl.com/product-detail/xmos/xlf232-512-fb374-i40

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

on events generated by hardware resources such as the I/O pins, communication channels and timers. Once triggered, a core runs independently and concurrently to other cores, until it pauses to wait for more events. Section 6.2

- Channels and channel ends Tasks running on logical cores communicate using channels formed between two channel ends. Data can be passed synchronously or asynchronously between the channel ends assigned to the communicating tasks. Section 6.5
- xCONNECT Switch and Links Between tiles, channel communications are implemented over a high performance network of xCONNECT Links and routed through a hardware xCONNECT Switch. Section 6.6
- ▶ **Ports** The I/O pins are connected to the processing cores by Hardware Response ports. The port logic can drive its pins high and low, or it can sample the value on its pins optionally waiting for a particular condition. Section 6.3
- Clock blocks xCORE devices include a set of programmable clock blocks that can be used to govern the rate at which ports execute. Section 6.4
- Memory Each xCORE Tile integrates a bank of SRAM for instructions and data, and a block of one-time programmable (OTP) memory that can be configured for system wide security features. Section 9
- PLL The PLL is used to create a high-speed processor clock given a low speed external oscillator. Section 7
- ▶ Flash The device has a built-in 2MBflash. Section 8
- ▶ JTAG The JTAG module can be used for loading programs, boundary scan testing, in-circuit source-level debugging and programming the OTP memory. Section 10

1.1 Software

Devices are programmed using C, C++ or xC (C with multicore extensions). XMOS provides tested and proven software libraries, which allow you to quickly add interface and processor functionality such as USB, Ethernet, PWM, graphics driver, and audio EQ to your applications.

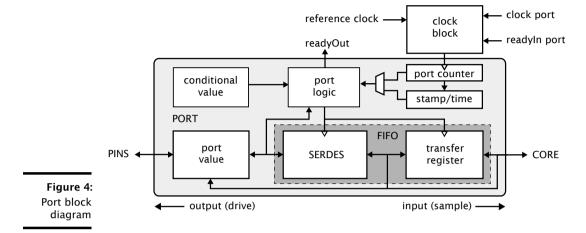
1.2 xTIMEcomposer Studio

The xTIMEcomposer Studio development environment provides all the tools you need to write and debug your programs, profile your application, and write images into flash memory or OTP memory on the device. Because xCORE devices operate deterministically, they can be simulated like hardware within xTIMEcomposer: uniquely in the embedded world, xTIMEcomposer Studio therefore includes a static timing analyzer, cycle-accurate simulator, and high-speed in-circuit instrumentation.

xTIMEcomposer can be driven from either a graphical development environment, or the command line. The tools are supported on Windows, Linux and MacOS X

4 Signal Description

This section lists the signals and I/O pins available on the XLF232-512-FB374. The device provides a combination of 1 bit, 4bit, 8bit and 16bit ports, as well as wider ports that are fully or partially (gray) bonded out. All pins of a port provide either output or input, but signals in different directions cannot be mapped onto the same port.


Pins may have one or more of the following properties:

- PD/PU: The IO pin has a weak pull-down or pull-up resistor. On GPIO pins this resistor can be enabled. This resistor is designed to ensure defined logic input state for unconnected pins. It should not be used to pull external circuitry. Note that the resistors are highly non-linear and only a maximum pull current is specified in Section 12.2.
- ST: The IO pin has a Schmitt Trigger on its input.
- ▶ IOT: The IO pin is powered from VDDIOT (X1) or VDDIOT_2 (X3), not VDDIO
- ▶ IO: the pin is powered from VDDIO

	Power pins (9)								
Signal	Function	Туре	Properties						
GND	Digital ground	GND							
OTP_VCC	OTP power supply	PWR							
PLL_AGND	Analog ground for PLL	PWR							
PLL_AVDD	Analog PLL power	PWR							
VDD	Digital tile power	PWR							
VDD33	Peripheral power	PWR							
VDDIO	Digital I/O power	PWR							
VDDIOT	Digital I/O power (top)	PWR							
VDDIOT_2	Digital I/O power (top, X3)	PWR							

	JTAG pins (6)							
Signal	Function	Туре	Properties					
RST_N	Global reset input	Input	IO, PU, ST					
ТСК	Test clock	Input	IO, PD, ST					
TDI	Test data input	Input	IO, PU					
TDO	Test data output	Output	IO, PD					
TMS	Test mode select	Input	IO, PU					
TRST_N	Test reset input	Input	IO, PU, ST					

-XM()S

ports are available. All pins of a port provide either output or input. Signals in different directions cannot be mapped onto the same port.

The port logic can drive its pins high or low, or it can sample the value on its pins, optionally waiting for a particular condition. Ports are accessed using dedicated instructions that are executed in a single processor cycle. xCORE-200 IO pins can be used as *open collector* outputs, where signals are driven low if a zero is output, but left high impedance if a one is output. This option is set on a per-port basis.

Data is transferred between the pins and core using a FIFO that comprises a SERDES and transfer register, providing options for serialization and buffered data.

Each port has a 16-bit counter that can be used to control the time at which data is transferred between the port value and transfer register. The counter values can be obtained at any time to find out when data was obtained, or used to delay I/O until some time in the future. The port counter value is automatically saved as a timestamp, that can be used to provide precise control of response times.

The ports and xCONNECT links are multiplexed onto the physical pins. If an xConnect Link is enabled, the pins of the underlying ports are disabled. If a port is enabled, it overrules ports with higher widths that share the same pins. The pins on the wider port that are not shared remain available for use when the narrower port is enabled. Ports always operate at their specified width, even if they share pins with another port.

6.4 Clock blocks

xCORE devices include a set of programmable clocks called clock blocks that can be used to govern the rate at which ports execute. Each xCORE tile has six clock blocks: the first clock block provides the tile reference clock and runs at a default frequency of 100MHz; the remaining clock blocks can be set to run at different frequencies.

12 DC and Switching Characteristics

Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
VDD	Tile DC supply voltage	0.95	1.00	1.05	V	
VDDIO	I/O supply voltage	2.30	3.30	3.60	V	
VDDIOT_0	I/O supply voltage	2.25	3.30	3.60	V	
VDDIOT_1	I/O supply voltage	2.25	3.30	3.60	V	
USB_VDD	USB tile DC supply voltage	0.95	1.00	1.05	V	
VDD33	Peripheral supply	3.135	3.30	3.465	V	
PLL_AVDD	PLL analog supply	0.95	1.00	1.05	V	
CI	xCORE Tile I/O load capacitance			25	pF	
Та	Ambient operating temperature (Commercial)	0		70	°C	
	Ambient operating temperature (Industrial)	-40		85	°C	
Tj	Junction temperature			125	°C	
Tstg	Storage temperature	-65		150	°C	

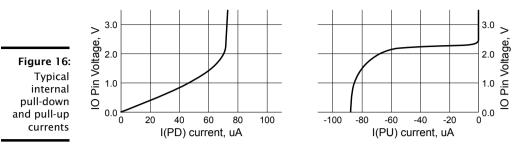
12.1 Operating Conditions

Figure 14: Operating conditions

12.2 DC Characteristics, VDDIO=3V3

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
V(IH)	Input high voltage	2.00		3.60	V	A
V(IL)	Input low voltage	-0.30		0.70	V	A
V(OH)	Output high voltage	2.20			V	B, C
V(OL)	Output low voltage			0.40	V	B, C
I(PU)	Internal pull-up current (Vin=0V)	-100			μA	D
I(PD)	Internal pull-down current (Vin=3.3V)			100	μA	D
I(LC)	Input leakage current	-10		10	μA	

Figure 15: DC characteristics


A All pins except power supply pins.

B Pins X1D40, X1D41, X1D42, X1D43, X1D26, X1D27, X3D40, X3D41, X3D42, X3D43, X3D26, and X3D27 are nominal 8 mA drivers, the remainder of the general-purpose I/Os are 4 mA.

C Measured with 4 mA drivers sourcing 4 mA, 8 mA drivers sourcing 8 mA.

D Used to guarantee logic state for an I/O when high impedance. The internal pull-ups/pull-downs should not be used to pull external circuitry. In order to pull the pin to the opposite state, a 4K7 resistor is recommended to overome the internal pull current.

12.3 ESD Stress Voltage

Figure 17 ESD stress voltage

17:	Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
ess	HBM	Human body model	-2.00		2.00	KV	
age	CDM	Charged Device Model	-500		500	V	

12.4 Reset Timing

	Symbol	Parameters	MIN	TYP	MAX	UNITS	Notes
Figure 18:	T(RST)	Reset pulse width	5			μs	
Reset timing	T(INIT)	Initialization time			150	μs	А
	A Chouse the	time taken to start beating after DCT N b		أمنعام			

A Shows the time taken to start booting after RST_N has gone high.

12.5 Power Consumption

	Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
	I(DDCQ)	Quiescent VDD current		45		mA	A, B, C
Figure 19: xCORE Tile	PD	Tile power dissipation		325		µW/MIPS	A, D, E, F
	IDD	Active VDD current		1140	1400	mA	A, G
currents	I(ADDPLL)	PLL_AVDD current		5	7	mA	Н

A Use for budgetary purposes only.

B Assumes typical tile and I/O voltages with no switching activity.

- C Includes PLL current.
- D Assumes typical tile and I/O voltages with nominal switching activity.
- E Assumes 1 MHz = 1 MIPS.
- F PD(TYP) value is the usage power consumption under typical operating conditions.
- G Measurement conditions: VDD = 1.0 V, VDDIO = 3.3 V, 25 °C, 500 MHz, average device resource usage.
- H PLL_AVDD = 1.0 V

The tile power consumption of the device is highly application dependent and should be used for budgetary purposes only.

More detailed power analysis can be found in the XS1-LF Power Consumption document,

12	2.6	Clock

Figure 20: Clock

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
f	Frequency	3.25	25	100	MHz	
SR	Slew rate	0.10			V/ns	
TJ(LT)	Long term jitter (pk-pk)			2	%	А
f(MAX)	Processor clock frequency			500	MHz	В

A Percentage of CLK period.

B Assumes typical tile and I/O voltages with nominal activity.

Further details can be found in the XS1-LF Clock Frequency Control document,

12.7 xCORE Tile I/O AC Characteristics

	Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
	T(XOVALID)	Input data valid window	8			ns	
Figure 21:	T(XOINVALID)	Output data invalid window	9			ns	
I/O AC char- acteristics	T(XIFMAX)	Rate at which data can be sampled with respect to an external clock			60	MHz	

The input valid window parameter relates to the capability of the device to capture data input to the chip with respect to an external clock source. It is calculated as the sum of the input setup time and input hold time with respect to the external clock as measured at the pins. The output invalid window specifies the time for which an output is invalid with respect to the external clock. Note that these parameters are specified as a window rather than absolute numbers since the device provides functionality to delay the incoming clock with respect to the incoming data.

Information on interfacing to high-speed synchronous interfaces can be found in the XS1 Port I/O Timing document, X5821.

12.8 xConnect Link Performance

	Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
	B(2blinkP)	2b link bandwidth (packetized)			87	MBit/s	А, В
Figure 22:	B(5blinkP)	5b link bandwidth (packetized)			217	MBit/s	А, В
Link	B(2blinkS)	2b link bandwidth (streaming)			100	MBit/s	В
performance	B(5blinkS)	5b link bandwidth (streaming)			250	MBit/s	В

A Assumes 32-byte packet in 3-byte header mode. Actual performance depends on size of the header and payload.

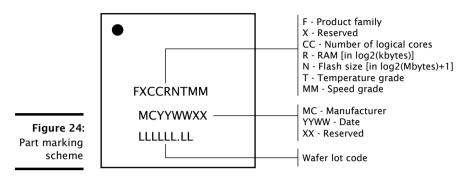
B 7.5 ns symbol time.

The asynchronous nature of links means that the relative phasing of CLK clocks is not important in a multi-clock system, providing each meets the required stability criteria.

Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
f(TCK_D)	TCK frequency (debug)			18	MHz	
f(TCK_B)	TCK frequency (boundary scan)			10	MHz	
T(SETUP)	TDO to TCK setup time	5			ns	А
T(HOLD)	TDO to TCK hold time	5			ns	А
T(DELAY)	TCK to output delay			15	ns	В

12.9 JTAG Timing

Figure 23: JTAG timing


A Timing applies to TMS and TDI inputs.

B Timing applies to TDO output from negative edge of TCK.

All JTAG operations are synchronous to TCK apart from the global asynchronous reset TRST_N.

13.1 Part Marking

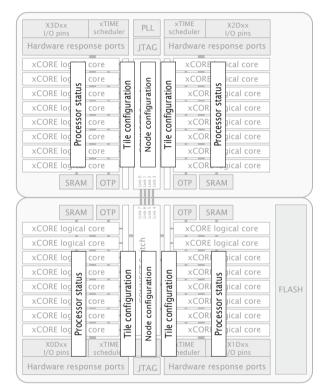

14 Ordering Information

Figure 25:	Product Code	Marking	Qualification	Speed Grade
Orderable	XLF232-512-FB374-C40	L13292C40	Commercial	2000 MIPS
part numbers	XLF232-512-FB374-I40	L13292C40	Industrial	2000 MIPS

Appendices

A Configuration of the XLF232-512-FB374

The device is configured through banks of registers, as shown in Figure 26.

Figure 26: Registers

The following communication sequences specify how to access those registers. Any messages transmitted contain the most significant 24 bits of the channel-end to which a response is to be sent. This comprises the node-identifier and the channel number within the node. if no response is required on a write operation, supply 24-bits with the last 8-bits set, which suppresses the reply message. Any multi-byte data is sent most significant byte first.

A.1 Accessing a processor status register

The processor status registers are accessed directly from the processor instruction set. The instructions GETPS and SETPS read and write a word. The register number should be translated into a processor-status resource identifier by shifting the register number left 8 places, and ORing it with 0x0B. Alternatively, the functions getps(reg) and setps(reg,value) can be used from XC.

A.2 Accessing an xCORE Tile configuration register

xCORE Tile configuration registers can be accessed through the interconnect using the functions write_tile_config_reg(tileref, ...) and read_tile_config_reg(tile \rightarrow ref, ...), where tileref is the name of the xCORE Tile, e.g. tile[1]. These functions implement the protocols described below.

Instead of using the functions above, a channel-end can be allocated to communicate with the xCORE tile configuration registers. The destination of the channel-end should be set to 0xnnnnC20C where nnnnn is the tile-identifier.

A write message comprises the following:

control-token	24-bit response	16-bit	32-bit	control-token
192	channel-end identifier	register number	data	1

The response to a write message comprises either control tokens 3 and 1 (for success), or control tokens 4 and 1 (for failure).

A read message comprises the following:

control-token	24-bit response	16-bit	control-token
193	channel-end identifier	register number	1

The response to the read message comprises either control token 3, 32-bit of data, and control-token 1 (for success), or control tokens 4 and 1 (for failure).

A.3 Accessing node configuration

Node configuration registers can be accessed through the interconnect using the functions write_node_config_reg(device, ...) and read_node_config_reg(device, ...), where device is the name of the node. These functions implement the protocols described below.

Instead of using the functions above, a channel-end can be allocated to communicate with the node configuration registers. The destination of the channel-end should be set to 0xnnnnC30C where nnnn is the node-identifier.

A write message comprises the following:

control-token	24-bit response	16-bit	32-bit	control-token
192	channel-end identifier	register number	data	1

The response to a write message comprises either control tokens 3 and 1 (for success), or control tokens 4 and 1 (for failure).

A read message comprises the following:

control-token	24-bit response	16-bit	control-token
193	channel-end identifier	register number	1

The response to a read message comprises either control token 3, 32-bit of data, and control-token 1 (for success), or control tokens 4 and 1 (for failure).

B.6 Ring Oscillator Control: 0x06

There are four free-running oscillators that clock four counters. The oscillators can be started and stopped using this register. The counters should only be read when the ring oscillator has been stopped for at least 10 core clock cycles (this can be achieved by inserting two nop instructions between the SETPS and GETPS). The counter values can be read using four subsequent registers. The ring oscillators are asynchronous to the xCORE tile clock and can be used as a source of random bits.

0x06: Ring Oscillator Control

_	Bits	Perm	Init	Description
6:	31:2	RO	-	Reserved
g or	1	RW	0	Core ring oscillator enable.
ol	0	RW	0	Peripheral ring oscillator enable.

B.7 Ring Oscillator Value: 0x07

This register contains the current count of the xCORE Tile Cell ring oscillator. This value is not reset on a system reset.

0x07 Ring Oscillator Value

: 07: ing	Bits	Perm	Init	Description
tor	31:16	RO	-	Reserved
lue	15:0	RO	0	Ring oscillator Counter data.

B.8 Ring Oscillator Value: 0x08

This register contains the current count of the xCORE Tile Wire ring oscillator. This value is not reset on a system reset.

0x08: Ring Oscillator Value

3: a	Bits	Perm	Init	Description
g or	31:16	RO	-	Reserved
e	15:0	RO	0	Ring oscillator Counter data.

B.9 Ring Oscillator Value: 0x09

This register contains the current count of the Peripheral Cell ring oscillator. This value is not reset on a system reset.

-XMOS[®]

Ox16:
Debug
interrupt dataBitsPermInitDescription31:0DRWValue.

B.19 Debug core control: 0x18

This register enables the debugger to temporarily disable logical cores. When returning from the debug interrupts, the cores set in this register will not execute. This enables single stepping to be implemented.

0x18: Debug core control

Bits	Perm	Init	Description
31:8	RO	-	Reserved
7:0	DRW		1-hot vector defining which threads are stopped when not in debug mode. Every bit which is set prevents the respective thread from running.

B.20 Debug scratch: 0x20 .. 0x27

A set of registers used by the debug ROM to communicate with an external debugger, for example over JTAG. This is the same set of registers as the Debug Scratch registers in the xCORE tile configuration.

0x20 .. 0x27: Debug scratch

0x27: ebug	Bits	Perm	Init	Description
ratch	31:0	DRW		Value.

B.21 Instruction breakpoint address: 0x30 .. 0x33

This register contains the address of the instruction breakpoint. If the PC matches this address, then a debug interrupt will be taken. There are four instruction breakpoints that are controlled individually.

0x30 .. 0x33: Instruction breakpoint address

tion oint	Bits	Perm	Init	Description
ress	31:0	DRW		Value.

C Tile Configuration

The xCORE Tile control registers can be accessed using configuration reads and writes (use write_tile_config_reg(tileref, ...) and read_tile_config_reg(tileref, \rightarrow ...) for reads and writes).

Number	Perm	Description		
0x00	CRO	Device identification		
0x01	CRO	xCORE Tile description 1		
0x02	CRO	xCORE Tile description 2		
0x04	CRW	Control PSwitch permissions to debug registers		
0x05	CRW	Cause debug interrupts		
0x06	CRW	xCORE Tile clock divider		
0x07	CRO	Security configuration		
0x20 0x27	CRW	Debug scratch		
0x40	CRO	PC of logical core 0		
0x41	CRO	PC of logical core 1		
0x42	CRO	PC of logical core 2		
0x43	CRO	PC of logical core 3		
0x44	CRO	PC of logical core 4		
0x45	CRO	PC of logical core 5		
0x46	CRO	PC of logical core 6		
0x47	CRO	PC of logical core 7		
0x60	CRO	SR of logical core 0		
0x61	CRO	SR of logical core 1		
0x62	CRO	SR of logical core 2		
0x63	CRO	SR of logical core 3		
0x64	CRO	SR of logical core 4		
0x65	CRO	SR of logical core 5		
0x66	CRO	SR of logical core 6		
0x67	CRO	SR of logical core 7		

Figure 28: Summary

C.1 Device identification: 0x00

This register identifies the xCORE Tile

-XMOS°

0x04: Control PSwitch permissions to debug registers

Bits	Perm	Init	Description	
31	CRW	0	When 1 the PSwitch is restricted to RO access to all CRW registers from SSwitch, XCore(PS_DBG_Scratch) and JTAG	
30:1	RO	-	Reserved	
0	CRW	0	When 1 the PSwitch is restricted to RO access to all CRW registers from SSwitch	

C.5 Cause debug interrupts: 0x05

This register can be used to raise a debug interrupt in this xCORE tile.

0x05: Cause debug interrupts

	Bits	Perm	Init	Description	
	31:2	RO	-	Reserved	
· (1	CRW	0	1 when the processor is in debug mode.	
	0	CRW	0	Request a debug interrupt on the processor.	

C.6 xCORE Tile clock divider: 0x06

This register contains the value used to divide the PLL clock to create the xCORE tile clock. The divider is enabled under control of the tile control register

0x06: xCORE Tile clock divider

Bits	Perm	Init	Description	
31	CRW	0	Clock disable. Writing '1' will remove the clock to the tile.	
30:16	RO	-	Reserved	
15:0	CRW	0	Clock divider.	

C.7 Security configuration: 0x07

Copy of the security register as read from OTP.

0x41: PC of logical core 1

Bits	Perm	Init	Description
31:0	CRO		Value.

C.11 PC of logical core 2: 0x42

Value of the PC of logical core 2.

0x42: PC of logical core 2

Bits	Perm	Init	Description
31:0	CRO		Value.

C.12 PC of logical core 3: 0x43

Value of the PC of logical core 3.

0x43:				
PC of logical	Bits	Perm	Init	Description
core 3	31:0	CRO		Value.

C.13 PC of logical core 4: 0x44

Value of the PC of logical core 4.

0x44 PC of logical core 4

0x44: logical core 4	Bits	Perm	Init	Description
	31:0	CRO		Value.

C.14 PC of logical core 5: 0x45

Value of the PC of logical core 5.

0x45: PC of logical core 5

•	Bits	Perm	Init	Description
	31:0	CRO		Value.

0x62: SR of logical core 2

Bits	Perm	Init	Description
31:0	CRO		Value.

C.20 SR of logical core 3: 0x63

Value of the SR of logical core 3

0x63: SR of logical core 3

Bits	Perm	Init	Description
31:0	CRO		Value.

C.21 SR of logical core 4: 0x64

Value of the SR of logical core 4

0x64:				
SR of logical core 4	Bits	Perm	Init	Description
	31:0	CRO		Value.

C.22 SR of logical core 5: 0x65

Value of the SR of logical core 5

0x65 SR of logical core 5

x65: jical	Bits	Perm	Init	Description
re 5	31:0	CRO		Value.

C.23 SR of logical core 6: 0x66

Value of the SR of logical core 6

0x66: SR of logical core 6

Bits	Perm	Init	Description
31:0	CRO		Value.

	Bits	Perm	Init	Description
	31:28	RW	0	The direction for packets whose dimension is F.
0x0D: ections	27:24	RW	0	The direction for packets whose dimension is E.
	23:20	RW	0	The direction for packets whose dimension is D.
	19:16	RW	0	The direction for packets whose dimension is C.
	15:12	RW	0	The direction for packets whose dimension is B.
	11:8	RW	0	The direction for packets whose dimension is A.
	7:4	RW	0	The direction for packets whose dimension is 9.
8-15	3:0	RW	0	The direction for packets whose dimension is 8.

D.12 DEBUG_N configuration, tile 0: 0x10

Configures the behavior of the DEBUG_N pin.

0x1 DEBUG_N con figuratio tile

Directions 8-15

	Bits	Perm	Init	Description
10: on-	31:2	RO	-	Reserved
on,	1	RW	0	Set 1 to enable GlobalDebug to generate debug request to XCore.
e 0	0	RW	0	Set 1 to enable inDebug bit to drive GlobalDebug.

D.13 DEBUG_N configuration, tile 1: 0x11

Configures the behavior of the DEBUG_N pin.

0x1 DEBUG_N co figuratio tile

	Bits	Perm	Init	Description	
1: on-	31:2	RO	-	Reserved	
on,	1	RW	0	Set 1 to enable GlobalDebug to generate debug request to XCore.	
1	0	RW	0	Set 1 to enable inDebug bit to drive GlobalDebug.	

D.14 Debug source: 0x1F

Contains the source of the most recent debug event.

 $\cdot X MOS$

Bits	Perm	Init	Description	
31:5	RO	-	Reserved	
4	RW		If set, external pin, is the source of last GlobalDebug event.	
3:2	RO	-	Reserved	
1	RW		If set, XCore1 is the source of last GlobalDebug event.	
0	RW		If set, XCore0 is the source of last GlobalDebug event.	

0x1F: Debug source

D.15 Link status, direction, and network: 0x20 .. 0x28

These registers contain status information for low level debugging (read-only), the network number that each link belongs to, and the direction that each link is part of. The registers control links 0..7.

Bits	Perm	Init	Description	
31:26	RO	-	Reserved	
25:24	RO		Identify the SRC_TARGET type 0 - SLink, 1 - PLink, 2 - SSCTL, 3 - Undefine.	
23:16	RO		When the link is in use, this is the destination link number to which all packets are sent.	
15:12	RO	-	Reserved	
11:8	RW	0	The direction that this link operates in.	
7:6	RO	-	Reserved	
5:4	RW	0	Determines the network to which this link belongs, reset as 0.	
3	RO	-	Reserved	
2	RO		1 when the current packet is considered junk and will be thrown away.	
1	RO		1 when the dest side of the link is in use.	
0	RO		1 when the source side of the link is in use.	

0x20 .. 0x28: Link status, direction, and network

D.16 PLink status and network: 0x40 .. 0x47

These registers contain status information and the network number that each processor-link belongs to.

Bits	Perm	Init	Description	
31:26	RO	-	Reserved	
25:24	RO		Identify the SRC_TARGET type 0 - SLink, 1 - PLink, 2 - SSCTL, 3 - Undefine.	
23:16	RO		When the link is in use, this is the destination link number to which all packets are sent.	
15:6	RO	-	Reserved	
5:4	RW	0	Determines the network to which this link belongs, reset as 0.	
3	RO	-	Reserved	
2	RO		1 when the current packet is considered junk and will be thrown away.	
1	RO		1 when the dest side of the link is in use.	
0	RO		1 when the source side of the link is in use.	

0x40 .. 0x47: PLink status and network

D.17 Link configuration and initialization: 0x80 .. 0x88

These registers contain configuration and debugging information specific to external links. The link speed and width can be set, the link can be initialized, and the link status can be monitored. The registers control links 0..7.

Bits	Perm	Init	Description
31	RW		Write to this bit with '1' will enable the XLink, writing '0' will disable it. This bit controls the muxing of ports with overlapping xlinks.
30	RW	0	0: operate in 2 wire mode; 1: operate in 5 wire mode
29:28	RO	-	Reserved
27	RO		Rx buffer overflow or illegal token encoding received.
26 RO 0	This end of the xlink has issued credit to allow the remote end to transmit		
25	RO	0	This end of the xlink has credit to allow it to transmit.
24 WO Clear this end of the xlink's credit a		Clear this end of the xlink's credit and issue a HELLO token.	
23	WO		Reset the receiver. The next symbol that is detected will be the first symbol in a token.
22	RO	-	Reserved
21:11	RW	0	Specify min. number of idle system clocks between two contin- uous symbols witin a transmit token -1.
10:0	RW	0	Specify min. number of idle system clocks between two contin- uous transmit tokens -1.

0x80 .. 0x88: Link configuration and initialization 57

H Associated Design Documentation

Document Title	Information	Document Number
Estimating Power Consumption For XS1-LF Devices	Power consumption	X4271
Programming XC on XMOS Devices	Timers, ports, clocks, cores and channels	X9577
xTIMEcomposer User Guide	Compilers, assembler and linker/mapper	X3766
	Timing analyzer, xScope, debugger	
	Flash and OTP programming utilities	

I Related Documentation

Document Title	Information	Document Number
The XMOS XS1 Architecture	ISA manual	X7879
XS1 Port I/O Timing	Port timings	X5821
xCONNECT Architecture	Link, switch and system information	X4249
XS1-LF Link Performance and Design Guidelines	Link timings	X2999
XS1-LF Clock Frequency Control	Advanced clock control	X1433
XS1-L Active Power Conservation	Low-power mode during idle	X7411

XS2-LF32A-512-FB374