

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	109
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 40x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	132-UFBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l162qch6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of cores and features. From proprietary 8bit to up to Cortex-M3, including the Cortex-M0+, the STM32Lx series are the best choice to answer the user needs, in terms of ultra-low-power features. The STM32 ultra-low-power series are the best fit, for instance, for gas/water meter, keyboard/mouse or fitness and healthcare, wearable applications. Several built-in features like LCD drivers, dual-bank memory, Low-power run mode, op-amp, AES 128-bit, DAC, USB crystal-less and many others will clearly allow to build very cost-optimized applications by reducing BOM.

Note: STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible the pin-to-pin compatibility between any STM8Lxxxxx and STM32Lxxxxx devices and between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented scalability, the old applications can be upgraded to respond to the latest market features and efficiency demand.

2.2.1 **Performance**

All the families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM Cortex-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.

This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.

2.2.2 Shared peripherals

STM8L15xxx, STM32L15xxx and STM32L162xx share identical peripherals which ensure a very easy migration from one family to another:

- Analog peripherals: ADC, DAC and comparators
- Digital peripherals: RTC and some communication interfaces

2.2.3 Common system strategy.

To offer flexibility and optimize performance, the STM8L15xxx, STM32L15xxx and STM32L162xx family uses a common architecture:

- Same power supply range from 1.65 V to 3.6 V
- Architecture optimized to reach ultra-low consumption both in low-power modes and Run mode
- Fast startup strategy from low-power modes
- Flexible system clock
- Ultrasafe reset: same reset strategy including power-on reset, power-down reset, brownout reset and programmable voltage detector

2.2.4 Features

ST ultra-low-power continuum also lies in feature compatibility:

- More than 15 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
- Memory density ranging from 2 to 512 Kbytes

	Functionalities depending on the operating power supply range								
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation					
$V_{DD}=V_{DDA}=2.0$ to 2.4 V	Conversion time up to 500 Ksps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation					
$V_{DD} = V_{DDA} = 2.4$ to 3.6 V	Conversion time up to 1 Msps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation					

Table 3. Functionalities depending on the operating power supply range (continued)

 CPU frequency changes from initial to final must respect "F_{CPU} initial < 4*F_{CPU} final" to limit V_{CORE} drop due to current consumption peak when frequency increases. It must also respect 5 μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, the user can switch from 4.2 MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz.

2. Should be USB compliant from I/O voltage standpoint, the minimum $\rm V_{DD}$ is 3.0 V.

Table 4. CPU frequency range depending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
2.1MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws)	Range 3

Table 5. Functionalities depending on the working mode (from Run/active down to
standby)

		Sta	andby)						
			Low-	Low-		Stop	Standby		
lps	Run/Active	Sleep	power Run	power Sleep		Wakeup capability		Wakeup capability	
CPU	Y		Y						
Flash	Y	Y	Y	Y					
RAM	Y	Y	Y	Y	Y				
Backup Registers	Y	Y	Y	Y	Y		Y		
EEPROM	Y	Y	Y	Y	Y				
Brown-out rest (BOR)	Y	Y	Y	Y	Y	Y	Y		
DMA	Y	Y	Y	Y					
Programmable Voltage Detector (PVD)	Y	Y	Y	Y	Y	Y	Y		
Power On Reset (POR)	Y	Y	Y	Y	Y	Y	Y		
Power Down Rest (PDR)	Y	Y	Y	Y	Y		Y		
High Speed Internal (HSI)	Y	Y							
High Speed External (HSE)	Y	Y							
Low Speed Internal (LSI)	Y	Y	Y	Y	Y		Y		
Low Speed External (LSE)	Y	Y	Y	Y	Y		Y		
Multi-Speed Internal (MSI)	Y	Y	Y	Y					
Inter-Connect Controller	Y	Y	Y	Y					
RTC	Y	Y	Y	Y	Y	Y	Y		
RTC Tamper	Y	Y	Y	Y	Y	Y	Y	Y	
Auto WakeUp (AWU)	Y	Y	Y	Y	Y	Y	Y	Y	
LCD	Y	Y	Y	Y	Y				
USB	Y	Y				Y			
USART	Y	Y	Y	Y	Y	(1)			
SPI	Y	Y	Y	Y					
I2C	Y	Y	Y	Y		(1)			

3.7 Memories

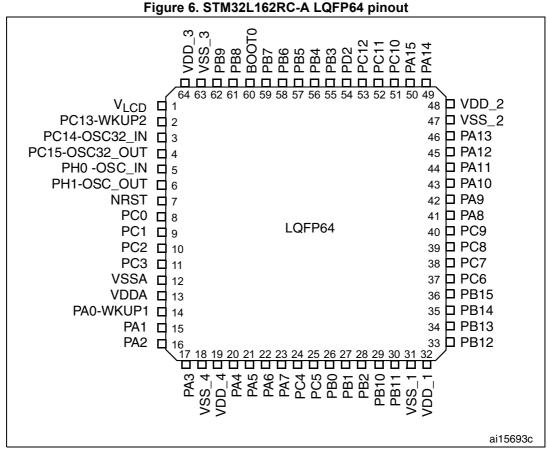
The STM32L162xC/C-A devices have the following features:

- 32 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses).
- The non-volatile memory is divided into three arrays:
 - 256 Kbytes of embedded Flash program memory
 - 8 Kbytes of data EEPROM
 - Options bytes

The options bytes are used to write-protect or read-out protect the memory (with 4 Kbytes granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (ARM Cortex-M3 JTAG and serial wire) and boot in RAM selection disabled (JTAG fuse)

The whole non-volatile memory embeds the error correction code (ECC) feature.


3.8 DMA (direct memory access)

The flexible 12-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: AES, SPI, I²C, USART, general-purpose timers, DAC and ADC.

1. This figure shows the package top view.

Na	me	Abbreviation	Definition				
Pin r	name		e specified in brackets below the pin name, the pin function reset is the same as the actual pin name				
		S	Supply pin				
Pin	type	I	Input only pin				
		I/O	Input / output pin				
		FT	5 V tolerant I/O				
I/O etr	ucture	TC Standard 3.3 V I/O					
1/O Sti	ucluie	В	B Dedicated BOOT0 pin				
		RST	Bidirectional reset pin with embedded weak pull-up resistor				
No	tes	Unless otherwis and after reset	e specified by a note, all I/Os are set as floating inputs during				
	Alternate functions	Functions select	Functions selected through GPIOx_AFR registers				
Pin functions	Additional functions	Functions direct	ly selected/enabled through peripheral registers				

Table 7. Legend/abbreviations	used in the pinout table

Table 8. STM32L162xC/C-A pin definitions

	F	Pins							Pin functions		
LQFP144	UFBGA132	LQFP100	LQFP64	WLCSP64	Pin name	Pin Type ⁽¹⁾	I / O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions	
1	B2	1	-	-	PE2	I/O	FT	PE2	TIM3_ETR/LCD_SEG38/ TRACECLK	-	
2	A1	2	-	-	PE3	I/O	FT	PE3	TIM3_CH1/LCD_SEG39/ TRACED0	-	
3	B1	3	-	-	PE4	I/O	FT	PE4	TIM3_CH2/TRACED1	-	
4	C2	4	-	-	PE5	I/O	FT	PE5	TIM9_CH1/TRACED2	-	
5	D2	5	-	-	PE6- WKUP3	I/O	FT	PE6	TIM9_CH2/TRACED3	WKUP3/ RTC_TAMP3	
6	E2	6	1	C6	$V_{LCD}^{(3)}$	S	-	V _{LCD}	-	-	

	F	Pins					_	•	Pin functions			
LQFP144	UFBGA132	LQFP100	LQFP64	WLCSP64	Pin name	Pin Type ⁽¹⁾	I / O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions		
53	K7	-	-	-	PF13	I/O	FT	PF13	-	ADC_IN3b		
54	J8	-	-	-	PF14	I/O	FT	PF14	-	ADC_IN6b		
55	J9	-	-	-	PF15	I/O	FT	PF15	-	ADC_IN7b		
56	H9	-	-	-	PG0	I/O	FT	PG0	-	ADC_IN8b		
57	G9	-	-	-	PG1	I/O	FT	PG1	-	ADC_IN9b		
58	M7	38	-	-	PE7	I/O	тс	PE7	-	ADC_IN22/ COMP1_INP		
59	L7	39	-	-	PE8	I/O	тс	PE8	-	ADC_IN23/ COMP1_INP		
60	M8	40	-	-	PE9	I/O	тс	PE9	TIM2_CH1_ETR	ADC_IN24/ COMP1_INP		
61	-	-	-	-	V _{SS_7}	S	-	V _{SS_7}	-	-		
62	-	-	-	-	V _{DD_7}	S	-	V _{DD_7}	-	-		
63	L8	41	-	-	PE10	I/O	тс	PE10	TIM2_CH2	ADC_IN25/ COMP1_INP		
64	M9	42	-	-	PE11	I/O	FT	PE11	TIM2_CH3	-		
65	L9	43	-	-	PE12	I/O	FT	PE12	TIM2_CH4/SPI1_NSS	-		
66	M10	44	-	-	PE13	I/O	FT	PE13	SPI1_SCK	-		
67	M11	45	-	-	PE14	I/O	FT	PE14	SPI1_MISO	-		
68	M12	46	-	-	PE15	I/O	FT	PE15	SPI1_MOSI	-		
69	L10	47	29	G3	PB10	I/O	FT	PB10	TIM2_CH3/I2C2_SCL/ USART3_TX/ LCD_SEG10	-		
70	L11	48	30	F3	PB11	I/O	FT	PB11	TIM2_CH4/ I2C2_SDA/ USART3_RX/ LCD_SEG11	-		
71	F12	49	31	H2	V _{SS_1}	S	-	V _{SS_1}	-	-		
72	G12	50	32	H1	V _{DD_1}	S	-	V _{DD_1}	-	-		
73	L12	51	33	G2	PB12	I/O	FT	PB12	TIM10_CH1/I2C2_SMBA/ SPI2_NSS/ I2S2_WS/ USART3_CK/ LCD_SEG12	ADC_IN18/ COMP1_INP		

Table 8. STM32L162xC/C-A pin definitions (continued)

					[Digital alte	ernate fui	nction numbe	er				
	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO8	AFIO11	AFIO12	AFIO14	AFIO15
Port name			-	•		Alt	ernate fu	inction		-	I		
	SYSTEM	TIM2	TIM3/4/5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/3	-	LCD	-	CPRI	SYSTEM
PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	USART3_RX	-	SEG11	-	-	EVENT OUT
PB12	-	-	-	TIM10_CH1	I2C2_SMBA	SPI2_NSS I2S2_WS	-	USART3_CK	-	SEG12	-	-	EVENT OUT
PB13	-	-	-	TIM9_CH1	-	SPI2_SCK I2S2_CK	-	USART3_CTS	-	SEG13	-	-	EVENT OUT
PB14	-	-	-	TIM9_CH2	-	SPI2_MISO	-	USART3_RTS	-	SEG14	-	-	EVENT OUT
PB15	-	-	-	TIM11_CH1	-	SPI2_MOSI I2S2_SD	-	-	-	SEG15	-	-	EVENT OUT
PC0	-	-	-	-	-		-	-	-	SEG18	-	TIMx_IC1	EVENT OUT
PC1	-	-	-	-	-	-	-	-	-	SEG19	-	TIMx_IC2	EVENT OUT
PC2	-	-	-	-	-	-	-	-	-	SEG20	-	TIMx_IC3	EVENT OUT
PC3	-	-	-	-	-	-	-	-	-	SEG21	-	TIMx_IC4	EVENT OUT
PC4	-	-	-	-	-	-	-	-	-	SEG22	-	TIMx_IC1	EVENT OUT
PC5	-	-	-	-	-	-	-	-	-	SEG23	-	TIMx_IC2	EVENT OUT
PC6	-	-	TIM3_CH1	-	-	I2S2_MCK	-	-	-	SEG24		TIMx_IC3	EVENT OUT
PC7	-	-	TIM3_CH2	-	-	-	I2S3_MCK	-	-	SEG25		TIMx_IC4	EVENT OUT
PC8	-	-	тімз_снз	-	-	-	-	-	-	SEG26		TIMx_IC1	EVENT OUT
PC9	-	-	TIM3_CH4	-	-	-	-	-	-	SEG27		TIMx_IC2	EVENT OUT

Pin descriptions

STM32L162xC/C-A

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

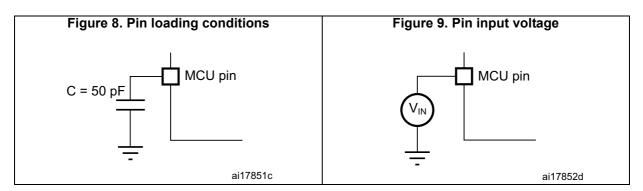
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.6$ V (for the 1.65 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 8*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 9*.

Symbol	Parameter	Conditions	Min	Max	Unit
т.	Junction temperature range	6 suffix version	-40	105	°C
TJ		7 suffix version	-40	110	C

Table 13. General operating conditions (continued)

1. When the ADC is used, refer to Table 55: ADC characteristics.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up .

3. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled.

 If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see Table 69: Thermal characteristics on page 124).

5. In low-power dissipation state, T_A can be extended to -40°C to 105°C temperature range as long as T_J does not exceed T_J max (see *Table 69: Thermal characteristics on page 124*).

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	V _{DD} rise time rate	BOR detector enabled	0	-	8	
t _{VDD} ⁽¹⁾		BOR detector disabled	0	-	1000	μs/V
٩٥٩٠	V _{DD} fall time rate	BOR detector enabled	20	-	∞	μ3/ ν
		BOR detector disabled	0	-	1000	
T _{RSTTEMPO} ⁽¹⁾	Reset temporization	V _{DD} rising, BOR enabled	-	2	3.3	ms
'RSTTEMPO` '	V _{DD} rising, BOR disabled		0.4	0.7	1.6	1115
N	Power on/power down reset	Falling edge	1	1.5	1.65	
V _{POR/PDR}	threshold	Rising edge	1.3	1.5	1.65	
V	Brown-out reset threshold 0	Falling edge	1.67	1.7	1.74	
V _{BOR0}		Rising edge	1.69	1.76	1.8	v
N/ -	Brown-out reset threshold 1	Falling edge	1.87	1.93	1.97	v
V _{BOR1}		Rising edge	1.96	2.03	2.07	
N .	Brown-out reset threshold 2	Falling edge	2.22	2.30	2.35	1
V _{BOR2}		Rising edge	2.31	2.41	2.44	

Table 14. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
t _{WUSLEEP}	Wakeup from Sleep mode	f _{HCLK} = 32 MHz	0.4	-	
+	Wakeup from Low-power sleep	f _{HCLK} = 262 kHz Flash enabled	46	-	
^t wusleep_lp	mode, f _{HCLK} = 262 kHz	f _{HCLK} = 262 kHz Flash switched OFF	46	-	
	Wakeup from Stop mode, regulator in Run mode ULP bit = 1 and FWU bit = 1	f _{HCLK} = f _{MSI} = 4.2 MHz	8.2	-	
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage range 1 and 2	7.7	8.9	
	Wakeup from Stop mode, regulator in low-power mode ULP bit = 1 and FWU bit = 1	f _{HCLK} = f _{MSI} = 4.2 MHz Voltage range 3	8.2	13.1	μs
t _{WUSTOP}		f _{HCLK} = f _{MSI} = 2.1 MHz	10.2	13.4	
		f _{HCLK} = f _{MSI} = 1.05 MHz	16	20	
		f _{HCLK} = f _{MSI} = 524 kHz	31	37	
		f _{HCLK} = f _{MSI} = 262 kHz	57	66	
		f _{HCLK} = f _{MSI} = 131 kHz	112	123	
		f _{HCLK} = MSI = 65 kHz	221	236	
tuniona	Wakeup from Standby mode ULP bit = 1 and FWU bit = 1	f _{HCLK} = MSI = 2.1 MHz	58	104	
twustdby	Wakeup from Standby mode FWU bit = 0	f _{HCLK} = MSI = 2.1 MHz	2.6	3.25	ms

Table 25. Low-power mode wakeup timings

1. Guaranteed by characterization, unless otherwise specified

6.3.6 External clock source characteristics

.

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.12*. However, the recommended clock input waveform is shown in *Figure 13*.

Table 26	High-speed	external	user clock	characteristics ⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	CSS is on or PLL is used	1	8	32	MHz
		CSS is off, PLL not used	0	8	32	MHz

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V_{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V_{SS}	-	$0.3V_{\text{DD}}$	
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time		12	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance		-	2.6	-	pF

Table 26. High-speed external user clock characteristics⁽¹⁾ (continued)

1. Guaranteed by design.

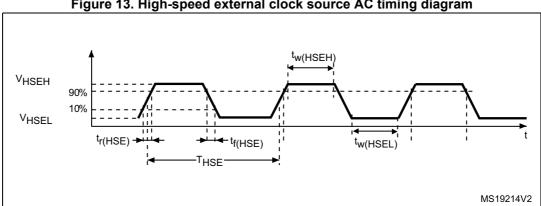


Figure 13. High-speed external clock source AC timing diagram

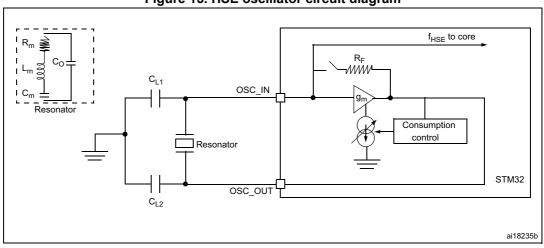


Figure 15. HSE oscillator circuit diagram

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 29*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{LSE}	Low speed external oscillator frequency	-	-	32.768	-	kHz		
R _F	Feedback resistor	-	-	1.2	-	MΩ		
C ⁽²⁾	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 kΩ	-	8	-	pF		
I _{LSE}	LSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS}	-	-	1.1	μA		
		V _{DD} = 1.8 V	-	450	-			
I _{DD (LSE)}	LSE oscillator current consumption	V _{DD} = 3.0 V	-	600	-	nA		
		V _{DD} = 3.6V	-	750	-			
9 _m	Oscillator transconductance	-	3	-	-	µA/V		
$t_{SU(LSE)}^{(4)}$	Startup time	V_{DD} is stabilized	-	1	-	S		

Table 29. L	SE oscillator	characteristics	(f _{LSE} = 32.768	kHz) ⁽¹⁾
-------------	---------------	-----------------	----------------------------	---------------------

1. Guaranteed by characterization results.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

 The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details.

Symbol	Parameter	Condition	Тур	Max	Unit
		MSI range 0	-	40	
		MSI range 1	-	20	
		MSI range 2	-	10	
t _{STAB(MSI)} ⁽²⁾		MSI range 3	-	4	
	MSI oscillator stabilization time	MSI range 4	-	2.5	μs
		MSI range 5	-	2	
		MSI range 6, Voltage range 1 and 2	-	2	
		MSI range 3, Voltage range 3	-	3	
f _{OVER(MSI)}	MSI oscillator frequency overshoot	Any range to range 5	-	4	MHz
		Any range to range 6	-	6	

Table 32. MSI oscillator characteristics (continued)

1. This is a deviation for an individual part, once the initial frequency has been measured.

2. Guaranteed by characterization results.

6.3.8 PLL characteristics

The parameters given in *Table 33* are derived from tests performed under the conditions summarized in *Table 13*.

Cumhal	Devenueter		Value			
Symbol	Parameter	Min	Тур	Max ⁽¹⁾	– Unit	
£	PLL input clock ⁽²⁾	2	-	24	MHz	
f _{PLL_IN}	PLL input clock duty cycle	45	-	55	%	
f _{PLL_OUT}	PLL output clock	2	-	32	MHz	
t _{LOCK}	PLL lock time PLL input = 16 MHz PLL VCO = 96 MHz	-	115	160	μs	
Jitter	Cycle-to-cycle jitter	-	-	±600	ps	
I _{DDA} (PLL)	Current consumption on V _{DDA}	-	220	450		
I _{DD} (PLL)	Current consumption on V _{DD}	-	120	150	- μΑ	

1. Guaranteed by characterization results.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT} .

6.3.9 Memory characteristics

The characteristics are given at T_A = -40 to 105 °C unless otherwise specified.

RAM memory

Table 34. RAM and hardware regist	ers
-----------------------------------	-----

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

6.3.13 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 48* are derived from tests performed under the conditions summarized in *Table 13*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{IL}	Input low level voltage	-	_	-	0.3V _{DD}			
		Standard I/O	0.7.\/	-	-	v		
V_{IH}	Input high level voltage	FT I/O	0.7 V _{DD}	-	-	v		
		BOOT0 I/O		-	-			
V _{hys}	I/O Schmitt trigger voltage hysteresis ⁽²⁾	Standard I/O	-	10% V _{DD} ⁽³⁾	-			
		V _{SS} ≤V _{IN} ≤V _{DD} I/Os with LCD	-	-	±50			
		V _{SS} ≤V _{IN} ≤V _{DD} I/Os with analog switches	-	-	±50			
l _{lkg}	_{kg} Input leakage current ⁽⁴⁾	Input leakage current ⁽⁴⁾	Input leakage current ⁽⁴⁾	V _{SS} ≤V _{IN} ≤V _{DD} I/Os with analog switches and LCD	-	-	±50	nA
		V _{SS} ≤V _{IN} ≤V _{DD} I/Os with USB	-	-	±250			
		V _{SS} ≤V _{IN} ≤V _{DD} Standard I/Os	-	-	±50			
		FT I/O V _{DD} ≤ V _{IN} ≤ 5V	-	-	±10	uA		
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾⁽⁵⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ		
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	30	45	60	kΩ		
C _{IO}	I/O pin capacitance	-	-	5	-	pF		

Table 42. I/O static characteristics

1. Guaranteed by test in production

2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.

3. With a minimum of 200 mV. Guaranteed by characterization results.

4. The max. value may be exceeded if negative current is injected on adjacent pins.

5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
dOffset/dT ⁽¹⁾	Offset error temperature coefficient (code 0x800)	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_A = 0$ to 50 ° C DAC output buffer OFF	-20	-10	0	- μV/°C	
		$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_A = 0 \text{ to } 50 ^{\circ}\text{C}$ DAC output buffer ON	0	20	50		
Gain ⁽¹⁾	Gain error ⁽⁷⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	+0.1 / -0.2%	+0.2 / -0.5%	- %	
	Gain error	No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF	-	+0 / -0.2%	+0 / -0.4%		
dGain/dT ⁽¹⁾	Gain error temperature	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_A = 0 \text{ to } 50 \ ^{\circ}\text{C}$ DAC output buffer OFF	-10	-2	0	-μV/°C	
	coefficient	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_A = 0 \text{ to } 50 ^{\circ}\text{C}$ DAC output buffer ON	-40	-8	0		
TUE ⁽¹⁾	Total upadiusted error	$C_{L} \le 50 \text{ pF}, R_{L} \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	12	30	- LSB	
	Total unadjusted error	No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF	-	8	12		
tsettling	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till DAC_OUT reaches final value ±1LSB	$C_L ≤ 50 \text{ pF, } R_L ≥ 5 \text{ k}\Omega$	-	7	12	μs	
Update rate	Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-	1	Msps	
twakeup	Wakeup time from off state (setting the ENx bit in the DAC Control register) ⁽⁸⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	9	15	μs	
PSRR+	V _{DDA} supply rejection ratio (static DC measurement)	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$	-	-60	-35	dB	

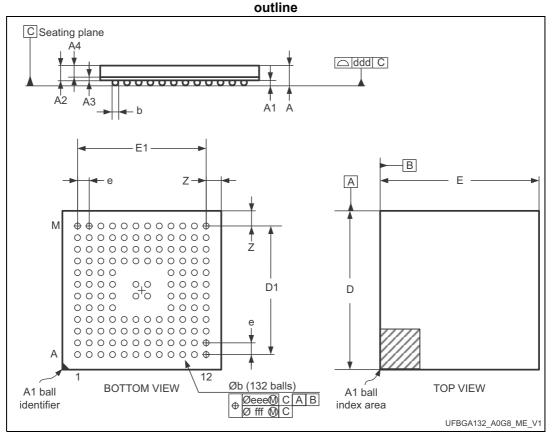
Table 58. DAC characteristics (continued)

1. Data based on characterization results.

2. Connected between DAC_OUT and $\mathsf{V}_{\mathsf{SSA}}.$

3. Difference between two consecutive codes - 1 LSB.

data							
Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	21.800	22.000	22.200	0.8583	0.8661	0.8740	
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
D3	-	17.500	-	-	0.6890	-	
Е	21.800	22.000	22.200	0.8583	0.8661	0.8740	
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
E3	-	17.500	-	-	0.6890	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.080	-	-	0.0031	


Table 65. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

7.4 UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package information

Figure 39. UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package

1. Drawing is not to scale.

Table 68. UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid arraypackage mechanical data

F							
Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Мах	
А	0.460	0.530	0.600	0.0181	0.0209	0.0236	
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043	
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197	
A3	0.270	0.320	0.370	0.0106	0.0126	0.0146	
b	0.170	0.280	0.330	0.0067	0.0110	0.0130	
D	6.950	7.000	7.050	0.2736	0.2756	0.2776	
Е	6.950	7.000	7.050	0.2736	0.2756	0.2776	
е	-	0.500	-	-	0.0197	-	
F	0.700	0.750	0.800	0.0276	0.0295	0.0315	

DocID026175 Rev 4

7.5 Thermal characteristics

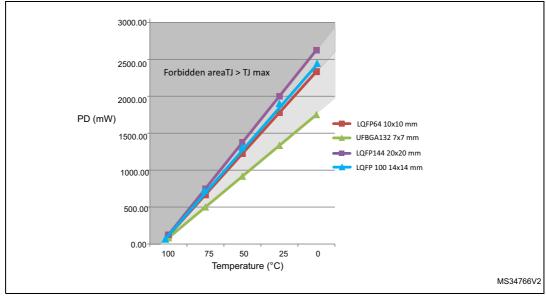
The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:


 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit	
Θ _{JA}	Thermal resistance junction-ambient LQFP144 - 20 x 20 mm / 0.5 mm pitch	40		
	Thermal resistance junction-ambient UFBGA132 - 7 x 7 mm	60	°C/W	
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	43	0/11	
	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	46		

Table 69. Thermal characteristics

Figure 42. Thermal resistance suffix 6

